metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m711-m712

Bis[2-(2-amino­eth­yl)-1H-benzimidazole-κ2N2,N3](nitrato-κ2O,O′)cobalt(II) chloride trihydrate

aChangchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, bGraduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China, cThe Experimental and Practical Teaching Centre, Shijiazhuang University of Economics, Shijiazhuang 050031, People's Republic of China, and dInstrumental Analysis Center, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
*Correspondence e-mail: zhuguoyi@ciac.jl.cn

(Received 20 April 2012; accepted 25 April 2012; online 2 May 2012)

In the title compound, [Co(NO3)(C9H11N3)2]Cl·3H2O, the CoII atom is coordinated by four N atoms from two chelating 2-(2-amino­eth­yl)-1H-benzimidazole ligands and two O atoms from one nitrate anion in a distorted octa­hedral coordination environment. In the crystal, N—H⋯Cl, N—H⋯O, O—H⋯Cl and O—H⋯O hydrogen bonds link the complex cations, chloride anions and solvent water mol­ecules into a three-dimensional network. ππ inter­actions between the imidazole and benzene rings and between the benzene rings are observed [centroid–centroid distances = 3.903 (3), 3.720 (3), 3.774 (3) and 3.926 (3) Å].

Related literature

For background to the coordination chemistry of benzimidazole and 2-substituted benzimidazole derivatives towards transition metal ions, see: Téllez et al. (2008[Téllez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2008). Arkivoc, (v), 245-275.]). For the structures and properties of transition metal complexes with 2-(2-amino­eth­yl)benzimidazole, see: Dash et al. (1995[Dash, A. C., Acharya, A. N. & Sahoo, R. (1995). Transition Met. Chem. 20, 147-152.]); Zhang et al. (2008[Zhang, J., Li, Y., Huo, F. & Zhang, Z. (2008). Acta Cryst. E64, m182.]). For the synthesis of the 2-(2-amino­eth­yl)benz­imid­azole ligand, see: Cescon & Day (1962[Cescon, L. A. & Day, A. R. (1962). J. Org. Chem. 27, 581-586.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NO3)(C9H11N3)2]Cl·3H2O

  • Mr = 532.85

  • Triclinic, [P \overline 1]

  • a = 7.408 (2) Å

  • b = 9.808 (3) Å

  • c = 17.280 (6) Å

  • α = 76.238 (7)°

  • β = 89.203 (7)°

  • γ = 67.867 (5)°

  • V = 1125.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 296 K

  • 0.28 × 0.27 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.780, Tmax = 0.794

  • 5677 measured reflections

  • 3936 independent reflections

  • 2895 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.131

  • S = 0.99

  • 3936 reflections

  • 298 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.86 1.91 2.757 (5) 168
N3—H3B⋯Cl1i 0.90 2.56 3.322 (3) 143
N3—H3C⋯O3ii 0.90 2.08 2.897 (4) 150
N5—H5⋯Cl1iii 0.86 2.29 3.148 (4) 174
N6—H6A⋯O4i 0.90 2.54 3.299 (5) 142
N6—H6B⋯O3ii 0.90 2.12 2.897 (4) 145
O4—H1O4⋯O5 0.85 1.92 2.766 (4) 179
O4—H2O4⋯O6iv 0.85 1.93 2.781 (5) 179
O5—H1O5⋯Cl1v 0.85 2.41 3.189 (3) 153
O5—H2O5⋯O1vi 0.85 2.03 2.872 (4) 174
O6—H1O6⋯O2 0.85 2.01 2.828 (4) 162
O6—H2O6⋯Cl1vi 0.85 2.34 3.192 (4) 176
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) x, y, z+1; (iv) -x+1, -y+2, -z+1; (v) x-1, y+1, z; (vi) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzimidazole and 2-substituted benzimidazole derivatives are important heteroaromatic compounds acting as multidentate ligands towards transition metal ions in coordination chemistry (Téllez et al., 2008). 2-(2-Aminoethyl)benzimidazole is a bidentate ligand possessing two aromatic rings and can chelate a 3d transition-metal ion through two N atoms of the pendant aminoethyl group and the imidazole ring (Zhang et al., 2008). Furthermore, this ligand has a larger conjugated π-system than imidazole, which is expected to display a stability-enhancement due to the hydrophobic interaction with the substituted group of the amino acids or to be involved in aromatic ring ππ stacking effects with purine and pyrimidine bases. Based on the inherent characters of the benzimidazole group, a large number of studies have been reported on metal complexes of benzimidazole-based ligands (Dash et al., 1995). To our knowledge, CoII complexes with 2-(2-aminoethyl)benzimidazole ligand have not been reported. In this paper, we report the crystal structure of one such complex.

The title compound consists of a [Co(NO3)(C9H11N3)2]+ complex cation, a chloride anion and three hydrate solvent molecules. As shown in Fig. 1, two bidentate 2-(2-aminoethyl)benzimidazole ligands are coordinated to the CoII atom solely via two N atoms. A bidentate nitrate is coordinated to the CoII atom via two O atoms. The coordination geometry around the CoII atom is distorted octahedral, with bite angles of 68.37 (12)° for the nitrate anion and 89.44 (13) and 89.37 (14)° for the two bidentate ligands. The other cis bond angles at the CoII atom fall in the range of 89.37 (14)–98.11 (13)° and the trans bond angles are 166.29 (13), 166.39 (13) and 178.40 (14)°, suggesting a significant deviation from a perfect octahedral coordination. The Co—N bond lengths range from 1.948 (3) to 1.957 (3) Å, with an average of 1.952 (3) Å. The Co—O bond lengths are 1.928 (3) and 1.930 (3) Å. Extensive hydrogen bonds in the crystal, as shown in Fig. 2 and Table 1, link the complex cations, chloride anions and hydrate solvent molecules into a three-dimensional network.

Related literature top

For background to the coordination chemistry of benzimidazole and 2-substituted benzimidazole derivatives towards transition metal ions, see: Téllez et al. (2008). For the structures and properties of transition metal complexes with 2-(2-aminoethyl)benzimidazole, see: Dash et al. (1995); Zhang et al. (2008). For the synthesis of the 2-(2-aminoethyl)benzimidazole ligand, see: Cescon & Day (1962).

Experimental top

The title compound was prepared by adding a methanol solution (5 ml) of Co(NO3)2.6H2O (0.1 mmol) to a methanol solution (5 ml) of 2-(2-aminoethyl)benzimidazole dihydrochloride (0.2 mmol) neutralized by sodium hydroxide (Cescon & Day, 1962). The mixture was stirred at room temperature for 15 h and then filtered. Purple crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent after several days. Analysis, calculated for C18H28ClCoN7O6: C 40.57, H 5.30, N 18.40%; found: C 40.42, H 5.48, N 18.36%.

Refinement top

H atoms bonded to C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (CH2) and N—H = 0.86 (NH), 0.90 (NH2) Å and with Uiso(H) = 1.2Ueq(C,N). H atorms of water molecules were found from a difference Fourier map and refined as riding atoms, with O—H = 0.85 Å and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram viewed along the a axis. Dashed lines denote hydrogen bonds.
Bis[2-(2-aminoethyl)-1H-benzimidazole- κ2N2,N3](nitrato-κ2O,O')cobalt(II) chloride trihydrate top
Crystal data top
[Co(NO3)(C9H11N3)2]Cl·3H2OZ = 2
Mr = 532.85F(000) = 554
Triclinic, P1Dx = 1.572 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.408 (2) ÅCell parameters from 1285 reflections
b = 9.808 (3) Åθ = 2.9–23.7°
c = 17.280 (6) ŵ = 0.93 mm1
α = 76.238 (7)°T = 296 K
β = 89.203 (7)°Cube, purple
γ = 67.867 (5)°0.28 × 0.27 × 0.26 mm
V = 1125.6 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3936 independent reflections
Radiation source: fine-focus sealed tube2895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.780, Tmax = 0.794k = 911
5677 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0713P)2]
where P = (Fo2 + 2Fc2)/3
3936 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.35 e Å3
3 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Co(NO3)(C9H11N3)2]Cl·3H2Oγ = 67.867 (5)°
Mr = 532.85V = 1125.6 (6) Å3
Triclinic, P1Z = 2
a = 7.408 (2) ÅMo Kα radiation
b = 9.808 (3) ŵ = 0.93 mm1
c = 17.280 (6) ÅT = 296 K
α = 76.238 (7)°0.28 × 0.27 × 0.26 mm
β = 89.203 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
3936 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2895 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.794Rint = 0.029
5677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.99Δρmax = 0.35 e Å3
3936 reflectionsΔρmin = 0.86 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.76176 (7)0.51980 (6)0.74870 (3)0.01888 (18)
Cl11.08278 (18)0.11248 (13)0.14279 (7)0.0416 (3)
C10.7611 (6)0.4443 (5)0.5882 (2)0.0240 (9)
C20.7801 (6)0.2936 (5)0.6108 (3)0.0324 (10)
H2A0.79280.24250.66440.039*
C30.7796 (7)0.2221 (6)0.5509 (3)0.0413 (12)
H30.79230.12110.56460.050*
C40.7604 (7)0.2986 (6)0.4698 (3)0.0430 (12)
H40.75850.24760.43100.052*
C50.7445 (6)0.4455 (6)0.4467 (3)0.0371 (11)
H5A0.73210.49590.39290.045*
C60.7475 (6)0.5175 (5)0.5072 (2)0.0291 (10)
C70.7441 (6)0.6755 (5)0.5797 (2)0.0248 (9)
C80.7469 (7)0.8163 (5)0.5963 (3)0.0361 (11)
H8A0.64030.90220.56330.043*
H8B0.86780.82600.57940.043*
C90.7298 (6)0.8281 (5)0.6815 (2)0.0285 (10)
H9A0.76660.91020.68770.034*
H9B0.59490.85240.69390.034*
C100.6666 (6)0.5948 (5)0.9090 (2)0.0239 (9)
C110.5304 (6)0.7426 (5)0.8863 (2)0.0317 (10)
H110.49120.79240.83280.038*
C120.4541 (7)0.8140 (6)0.9470 (3)0.0439 (13)
H120.36200.91340.93320.053*
C130.5108 (7)0.7422 (6)1.0267 (3)0.0447 (13)
H130.45610.79411.06520.054*
C140.6464 (7)0.5955 (6)1.0504 (3)0.0399 (12)
H140.68460.54621.10400.048*
C150.7235 (6)0.5244 (5)0.9898 (2)0.0294 (10)
C160.8857 (6)0.3640 (5)0.9178 (2)0.0265 (9)
C171.0300 (7)0.2219 (5)0.9025 (3)0.0362 (11)
H17A1.00440.13680.93490.043*
H17B1.15950.21090.92030.043*
C181.0314 (7)0.2116 (5)0.8160 (3)0.0336 (10)
H18A1.15050.12980.80950.040*
H18B0.92140.18820.80280.040*
N10.7582 (5)0.5483 (4)0.63286 (18)0.0229 (7)
N20.7352 (5)0.6619 (4)0.50395 (19)0.0317 (8)
H20.72390.73170.46120.038*
N30.8577 (5)0.6833 (4)0.73877 (18)0.0249 (8)
H3B0.86540.70080.78720.030*
H3C0.97900.65300.72220.030*
N40.7730 (5)0.4905 (4)0.86430 (18)0.0233 (8)
N50.8614 (5)0.3800 (4)0.9931 (2)0.0346 (9)
H50.92120.31211.03590.042*
N61.0196 (4)0.3571 (4)0.76028 (19)0.0247 (8)
H6A1.05110.34060.71190.030*
H6B1.10820.38720.77830.030*
N70.4435 (5)0.5208 (4)0.7462 (2)0.0332 (8)
O10.6072 (4)0.3975 (3)0.75714 (15)0.0238 (6)
O20.4853 (4)0.6428 (3)0.73689 (15)0.0248 (6)
O30.2770 (4)0.5211 (3)0.74554 (16)0.0325 (7)
O40.7163 (5)0.8522 (4)0.35574 (18)0.0491 (9)
H1O40.64800.85490.31580.059*
H2O40.75840.92250.33910.059*
O50.4947 (5)0.8627 (4)0.2253 (2)0.0512 (9)
H1O50.40950.93250.19020.061*
H2O50.47380.78170.23020.061*
O60.1492 (5)0.9162 (4)0.7010 (2)0.0515 (9)
H1O60.23600.82780.70510.062*
H2O60.08650.91320.74250.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0188 (3)0.0192 (3)0.0200 (3)0.0091 (2)0.0009 (2)0.0046 (2)
Cl10.0477 (7)0.0351 (7)0.0390 (7)0.0174 (6)0.0086 (5)0.0009 (5)
C10.022 (2)0.030 (2)0.022 (2)0.0093 (19)0.0009 (17)0.0119 (18)
C20.039 (3)0.032 (2)0.031 (2)0.017 (2)0.005 (2)0.011 (2)
C30.050 (3)0.036 (3)0.048 (3)0.020 (2)0.004 (2)0.022 (2)
C40.049 (3)0.054 (3)0.040 (3)0.027 (3)0.005 (2)0.028 (3)
C50.037 (3)0.059 (3)0.023 (2)0.022 (2)0.0043 (19)0.017 (2)
C60.021 (2)0.037 (3)0.027 (2)0.010 (2)0.0001 (18)0.007 (2)
C70.028 (2)0.028 (2)0.020 (2)0.0139 (19)0.0017 (17)0.0045 (18)
C80.048 (3)0.028 (2)0.032 (2)0.017 (2)0.005 (2)0.001 (2)
C90.032 (2)0.018 (2)0.033 (2)0.0085 (19)0.0006 (19)0.0039 (18)
C100.024 (2)0.029 (2)0.025 (2)0.0147 (19)0.0019 (17)0.0097 (18)
C110.036 (3)0.030 (2)0.026 (2)0.009 (2)0.0018 (19)0.0075 (19)
C120.036 (3)0.049 (3)0.050 (3)0.012 (3)0.011 (2)0.028 (3)
C130.046 (3)0.069 (4)0.037 (3)0.028 (3)0.019 (2)0.036 (3)
C140.046 (3)0.064 (4)0.020 (2)0.030 (3)0.007 (2)0.016 (2)
C150.036 (3)0.039 (3)0.021 (2)0.023 (2)0.0021 (18)0.0062 (19)
C160.031 (2)0.028 (2)0.024 (2)0.018 (2)0.0026 (18)0.0012 (18)
C170.037 (3)0.025 (2)0.035 (3)0.006 (2)0.009 (2)0.006 (2)
C180.032 (2)0.023 (2)0.041 (3)0.009 (2)0.005 (2)0.003 (2)
N10.0239 (18)0.0219 (18)0.0241 (18)0.0094 (15)0.0024 (14)0.0071 (15)
N20.041 (2)0.032 (2)0.0208 (18)0.0159 (18)0.0025 (16)0.0005 (16)
N30.0266 (19)0.0244 (19)0.0246 (18)0.0107 (16)0.0009 (14)0.0064 (15)
N40.0250 (19)0.0222 (18)0.0219 (17)0.0082 (16)0.0014 (14)0.0055 (15)
N50.041 (2)0.037 (2)0.0193 (18)0.0133 (19)0.0047 (16)0.0021 (16)
N60.0179 (17)0.0263 (19)0.0310 (19)0.0096 (15)0.0020 (14)0.0075 (15)
N70.0252 (12)0.0359 (15)0.043 (2)0.0149 (11)0.0013 (16)0.0121 (18)
O10.0239 (13)0.0269 (14)0.0258 (14)0.0155 (10)0.0026 (12)0.0062 (12)
O20.0180 (14)0.0258 (15)0.0295 (15)0.0068 (12)0.0002 (12)0.0075 (13)
O30.0229 (14)0.0463 (19)0.0324 (16)0.0175 (14)0.0022 (13)0.0103 (14)
O40.064 (2)0.050 (2)0.0339 (18)0.0329 (19)0.0067 (16)0.0074 (16)
O50.050 (2)0.037 (2)0.064 (2)0.0182 (18)0.0146 (18)0.0055 (17)
O60.047 (2)0.037 (2)0.059 (2)0.0079 (17)0.0078 (17)0.0037 (17)
Geometric parameters (Å, º) top
Co1—O11.928 (3)C12—C131.379 (7)
Co1—O21.930 (3)C12—H120.9300
Co1—N41.948 (3)C13—C141.375 (7)
Co1—N61.949 (3)C13—H130.9300
Co1—N11.953 (3)C14—C151.392 (6)
Co1—N31.957 (3)C14—H140.9300
C1—C21.388 (6)C15—N51.388 (6)
C1—C61.400 (6)C16—N41.337 (5)
C1—N11.412 (5)C16—N51.349 (5)
C2—C31.383 (6)C16—C171.483 (6)
C2—H2A0.9300C17—C181.521 (6)
C3—C41.404 (7)C17—H17A0.9700
C3—H30.9300C17—H17B0.9700
C4—C51.360 (7)C18—N61.491 (5)
C4—H40.9300C18—H18A0.9700
C5—C61.399 (6)C18—H18B0.9700
C5—H5A0.9300N2—H20.8600
C6—N21.372 (5)N3—H3B0.9000
C7—N11.331 (5)N3—H3C0.9000
C7—N21.351 (5)N5—H50.8600
C7—C81.484 (6)N6—H6A0.9000
C8—C91.504 (5)N6—H6B0.9000
C8—H8A0.9700N7—O31.233 (4)
C8—H8B0.9700N7—O21.319 (4)
C9—N31.496 (5)N7—O11.327 (4)
C9—H9A0.9700O4—H1O40.8500
C9—H9B0.9700O4—H2O40.8496
C10—C111.383 (6)O5—H1O50.8501
C10—C151.394 (5)O5—H2O50.8500
C10—N41.419 (5)O6—H1O60.8500
C11—C121.394 (6)O6—H2O60.8499
C11—H110.9300
O1—Co1—O268.37 (12)C14—C13—C12121.3 (4)
O1—Co1—N489.76 (12)C14—C13—H13119.3
O2—Co1—N492.05 (12)C12—C13—H13119.3
O1—Co1—N698.11 (13)C13—C14—C15116.5 (4)
O2—Co1—N6166.39 (13)C13—C14—H14121.7
N4—Co1—N689.37 (14)C15—C14—H14121.7
O1—Co1—N191.42 (12)N5—C15—C14131.0 (4)
O2—Co1—N189.38 (12)N5—C15—C10106.1 (3)
N4—Co1—N1178.40 (14)C14—C15—C10122.9 (4)
N6—Co1—N189.40 (13)N4—C16—N5111.3 (4)
O1—Co1—N3166.29 (13)N4—C16—C17128.0 (4)
O2—Co1—N397.97 (13)N5—C16—C17120.6 (4)
N4—Co1—N389.66 (13)C16—C17—C18115.8 (3)
N6—Co1—N395.58 (14)C16—C17—H17A108.3
N1—Co1—N389.44 (13)C18—C17—H17A108.3
C2—C1—C6120.0 (4)C16—C17—H17B108.3
C2—C1—N1132.3 (4)C18—C17—H17B108.3
C6—C1—N1107.7 (4)H17A—C17—H17B107.4
C3—C2—C1117.8 (4)N6—C18—C17111.2 (3)
C3—C2—H2A121.1N6—C18—H18A109.4
C1—C2—H2A121.1C17—C18—H18A109.4
C2—C3—C4121.4 (5)N6—C18—H18B109.4
C2—C3—H3119.3C17—C18—H18B109.4
C4—C3—H3119.3H18A—C18—H18B108.0
C5—C4—C3121.5 (4)C7—N1—C1106.1 (3)
C5—C4—H4119.2C7—N1—Co1125.7 (3)
C3—C4—H4119.2C1—N1—Co1128.2 (3)
C4—C5—C6117.2 (4)C7—N2—C6108.1 (3)
C4—C5—H5A121.4C7—N2—H2125.9
C6—C5—H5A121.4C6—N2—H2125.9
N2—C6—C5131.4 (4)C9—N3—Co1112.9 (2)
N2—C6—C1106.5 (3)C9—N3—H3B109.0
C5—C6—C1122.0 (4)Co1—N3—H3B109.0
N1—C7—N2111.6 (4)C9—N3—H3C109.0
N1—C7—C8127.2 (3)Co1—N3—H3C109.0
N2—C7—C8121.1 (4)H3B—N3—H3C107.8
C7—C8—C9116.8 (4)C16—N4—C10106.1 (3)
C7—C8—H8A108.1C16—N4—Co1125.6 (3)
C9—C8—H8A108.1C10—N4—Co1128.3 (3)
C7—C8—H8B108.1C16—N5—C15108.5 (3)
C9—C8—H8B108.1C16—N5—H5125.8
H8A—C8—H8B107.3C15—N5—H5125.8
N3—C9—C8111.6 (3)C18—N6—Co1113.3 (2)
N3—C9—H9A109.3C18—N6—H6A108.9
C8—C9—H9A109.3Co1—N6—H6A108.9
N3—C9—H9B109.3C18—N6—H6B108.9
C8—C9—H9B109.3Co1—N6—H6B108.9
H9A—C9—H9B108.0H6A—N6—H6B107.7
C11—C10—C15119.7 (4)O3—N7—O2125.0 (4)
C11—C10—N4132.3 (4)O3—N7—O1125.0 (4)
C15—C10—N4108.0 (4)O2—N7—O1110.0 (3)
C10—C11—C12117.4 (4)N7—O1—Co190.7 (2)
C10—C11—H11121.3N7—O2—Co190.9 (2)
C12—C11—H11121.3H1O4—O4—H2O4104.9
C13—C12—C11122.1 (5)H1O5—O5—H2O5107.7
C13—C12—H12118.9H1O6—O6—H2O6107.7
C11—C12—H12118.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.861.912.757 (5)168
N3—H3B···Cl1i0.902.563.322 (3)143
N3—H3C···O3ii0.902.082.897 (4)150
N5—H5···Cl1iii0.862.293.148 (4)174
N6—H6A···O4i0.902.543.299 (5)142
N6—H6B···O3ii0.902.122.897 (4)145
O4—H1O4···O50.851.922.766 (4)179
O4—H2O4···O6iv0.851.932.781 (5)179
O5—H1O5···Cl1v0.852.413.189 (3)153
O5—H2O5···O1vi0.852.032.872 (4)174
O6—H1O6···O20.852.012.828 (4)162
O6—H2O6···Cl1vi0.852.343.192 (4)176
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x, y, z+1; (iv) x+1, y+2, z+1; (v) x1, y+1, z; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(NO3)(C9H11N3)2]Cl·3H2O
Mr532.85
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.408 (2), 9.808 (3), 17.280 (6)
α, β, γ (°)76.238 (7), 89.203 (7), 67.867 (5)
V3)1125.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.28 × 0.27 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.780, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
5677, 3936, 2895
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.131, 0.99
No. of reflections3936
No. of parameters298
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.86

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.861.912.757 (5)168
N3—H3B···Cl1i0.902.563.322 (3)143
N3—H3C···O3ii0.902.082.897 (4)150
N5—H5···Cl1iii0.862.293.148 (4)174
N6—H6A···O4i0.902.543.299 (5)142
N6—H6B···O3ii0.902.122.897 (4)145
O4—H1O4···O50.851.922.766 (4)179
O4—H2O4···O6iv0.851.932.781 (5)179
O5—H1O5···Cl1v0.852.413.189 (3)153
O5—H2O5···O1vi0.852.032.872 (4)174
O6—H1O6···O20.852.012.828 (4)162
O6—H2O6···Cl1vi0.852.343.192 (4)176
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x, y, z+1; (iv) x+1, y+2, z+1; (v) x1, y+1, z; (vi) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Youth Foundation of Hebei Normal University (No. L2006Q20).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCescon, L. A. & Day, A. R. (1962). J. Org. Chem. 27, 581–586.  CrossRef CAS Google Scholar
First citationDash, A. C., Acharya, A. N. & Sahoo, R. (1995). Transition Met. Chem. 20, 147–152.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTéllez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2008). Arkivoc, (v), 245–275.  Google Scholar
First citationZhang, J., Li, Y., Huo, F. & Zhang, Z. (2008). Acta Cryst. E64, m182.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m711-m712
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds