metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2,6-dihy­dr­oxy­benzoato-κO1)bis­­(1,10-phenanthroline-κ2N,N′)manganese(II) 2,6-dihy­dr­oxy­benzoate hemihydrate

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: jin_hongxiao@yahoo.com.cn

(Received 26 April 2012; accepted 16 May 2012; online 26 May 2012)

In the complex cation of the title compound, [Mn(C7H5O4)(C12H8N2)2(H2O)](C7H5O4)·0.5H2O, the MnII atom has a six-coordinate octa­hedral environment defined by one carboxyl­ate O atom belonging to a 2,6-dihy­droxy­benzoate (DHB) ligand, four N atoms from two chelating 1,10-phenanthroline mol­ecules and one water mol­ecule. The lattice water mol­ecule lies on a twofold rotation axis. Intra­molecular O—H⋯O hydrogen bonds are present in the DHB anions and complex cations. Inter­molecular O—H⋯O hydrogen bonds link two cations, two anions and one water mol­ecule into a dimer. ππ inter­actions between the pyridine and benzene rings and between the benzene rings are also observed [centroid–centroid distances = 3.7774 (16), 3.7912 (16) and 3.7310 (17) Å].

Related literature

For related structures of dihy­droxy­benzoate manganese(II) complexes, see: Garribba et al. (2004[Garribba, E., Micera, G. & Zema, M. (2004). Inorg. Chim. Acta, 357, 2038-2048.]). For the structure of a neodymium(III) complex containing 2,6-dihy­droxy­benzoate ligands, see: Zheng et al. (2010[Zheng, J., Jin, H. & Ge, H. (2010). Acta Cryst. E66, m1469-m1470.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H5O4)(C12H8N2)2(H2O)](C7H5O4)·0.5H2O

  • Mr = 748.59

  • Orthorhombic, P b c n

  • a = 30.0648 (7) Å

  • b = 8.2468 (2) Å

  • c = 27.3311 (6) Å

  • V = 6776.4 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.73 mm−1

  • T = 298 K

  • 0.36 × 0.32 × 0.30 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.347, Tmax = 0.401

  • 28472 measured reflections

  • 6613 independent reflections

  • 5152 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.08

  • 6613 reflections

  • 478 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.82 1.83 2.552 (2) 147
O4—H4⋯O2 0.82 1.79 2.525 (3) 148
O7—H7⋯O6 0.82 1.79 2.518 (4) 147
O8—H8⋯O5 0.82 1.74 2.474 (3) 149
O9—H9A⋯O2 0.85 1.90 2.735 (2) 169
O9—H9B⋯O6 0.85 1.80 2.648 (3) 171
O10—H10A⋯O5 0.85 2.07 2.890 (3) 162
O10—H10B⋯O5i 0.85 2.09 2.890 (3) 156
Symmetry code: (i) [-x+2, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dihydroxybenzoate is a good ligand in the construction of coordination complexes. Several dihydroxybenzoate manganese(II) complexes have been reported (Garribba et al., 2004). In our previous paper, we reported a mononuclear neodymium(III) complex containing 2,6-dihydroxybenzoate ligands (Zheng et al., 2010). Herein, we reported the synthesis and crystal structure of a mononuclear manganese(II) complex formed by 2,6-dihydroxybenzoate and 1,10-phenanthroline ligands (Fig. 1).

Related literature top

For related structures of dihydroxybenzoate manganese(II) complexes, see: Garribba et al. (2004). For the structure of a neodymium(III) complex containing 2,6-dihydroxybenzoate ligands, see: Zheng et al. (2010).

Experimental top

All reagents were commercially available and of analytical grade. Mn(CH3CO2)2.6H2O (0.123 g, 0.5 mmol), 2,6-dihydroxybenzoic acid (0.074 g, 0.5 mmol), 1,10-phenanthroline (0.090 g, 0.5 mmol) and NaHCO3 (0.042 g, 0.5 mmol) were dissolved in a water–ethanol solution (10 ml, 1:1 v/v). The solution was refluxed for 4 h and filtered after cooling to room temperature. Orange single crystals were obtained from the filtrate after 14 days.

Refinement top

H atoms were positioned geometrically and refined as riding, with C—H = 0.93 and O—H = 0.82 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). Water H atoms were located from a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Aqua(2,6-dihydroxybenzoato-κO1)bis(1,10-phenanthroline- κ2N,N')manganese(II) 2,6-dihydroxybenzoate hemihydrate top
Crystal data top
[Mn(C7H5O4)(C12H8N2)2(H2O)](C7H5O4)·0.5H2OF(000) = 3088
Mr = 748.59Dx = 1.468 Mg m3
Orthorhombic, PbcnCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2n 2abCell parameters from 7956 reflections
a = 30.0648 (7) Åθ = 2.9–72.2°
b = 8.2468 (2) ŵ = 3.73 mm1
c = 27.3311 (6) ÅT = 298 K
V = 6776.4 (3) Å3Block, orange
Z = 80.36 × 0.32 × 0.30 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
6613 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source5152 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 15.9149 pixels mm-1θmax = 72.4°, θmin = 2.9°
ω scansh = 3637
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 610
Tmin = 0.347, Tmax = 0.401l = 3333
28472 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0368P)2 + 2.5648P]
where P = (Fo2 + 2Fc2)/3
6613 reflections(Δ/σ)max = 0.001
478 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Mn(C7H5O4)(C12H8N2)2(H2O)](C7H5O4)·0.5H2OV = 6776.4 (3) Å3
Mr = 748.59Z = 8
Orthorhombic, PbcnCu Kα radiation
a = 30.0648 (7) ŵ = 3.73 mm1
b = 8.2468 (2) ÅT = 298 K
c = 27.3311 (6) Å0.36 × 0.32 × 0.30 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
6613 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
5152 reflections with I > 2σ(I)
Tmin = 0.347, Tmax = 0.401Rint = 0.035
28472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
6613 reflectionsΔρmin = 0.21 e Å3
478 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.904768 (12)0.27378 (4)0.113182 (13)0.04739 (11)
O10.87384 (5)0.43792 (19)0.06526 (6)0.0560 (4)
O20.85364 (7)0.6491 (2)0.11035 (6)0.0708 (5)
O30.84933 (7)0.4138 (2)0.02385 (6)0.0686 (5)
H30.86120.38570.00180.103*
O40.80413 (7)0.8670 (2)0.07505 (8)0.0777 (5)
H40.81990.82090.09520.116*
O50.92987 (8)0.2412 (3)0.28186 (9)0.0983 (7)
O60.87072 (10)0.3792 (3)0.25639 (8)0.1094 (9)
O70.79336 (9)0.2862 (4)0.27780 (12)0.1330 (12)
H70.81280.34770.26780.200*
O80.92100 (7)0.0039 (4)0.33313 (10)0.0994 (7)
H80.93350.07160.31930.149*
O90.90225 (5)0.4442 (2)0.16807 (6)0.0584 (4)
H9A0.88640.51470.15360.088*
H9B0.89440.41690.19680.088*
O101.00000.4563 (3)0.25000.0771 (8)
H10A0.97570.41140.25840.085*0.50
H10B1.01600.37290.24520.095*0.50
N10.92663 (6)0.0806 (2)0.15615 (6)0.0474 (4)
N20.84369 (6)0.1748 (2)0.13519 (7)0.0474 (4)
N30.96907 (6)0.3514 (2)0.09744 (7)0.0545 (5)
N40.91591 (6)0.1556 (2)0.04627 (7)0.0497 (4)
C10.96754 (8)0.0270 (3)0.16341 (9)0.0569 (6)
H10.99100.08490.14980.068*
C20.97727 (9)0.1116 (3)0.19038 (10)0.0659 (7)
H21.00650.14760.19320.079*
C30.94342 (9)0.1943 (3)0.21265 (9)0.0628 (7)
H3A0.94950.28600.23130.075*
C40.89980 (8)0.1404 (3)0.20734 (8)0.0514 (5)
C50.89295 (7)0.0040 (3)0.17738 (8)0.0453 (5)
C60.84838 (7)0.0510 (3)0.16779 (8)0.0446 (5)
C70.81257 (8)0.0247 (3)0.19095 (9)0.0535 (6)
C80.82074 (9)0.1589 (3)0.22284 (9)0.0606 (6)
H50.79700.20760.23890.073*
C90.86214 (10)0.2160 (3)0.23004 (9)0.0607 (6)
H90.86640.30590.25000.073*
C100.76990 (8)0.0347 (3)0.18059 (10)0.0653 (7)
H100.74510.00870.19620.078*
C110.76506 (8)0.1563 (3)0.14745 (11)0.0667 (7)
H110.73690.19490.13970.080*
C120.80263 (8)0.2231 (3)0.12502 (10)0.0575 (6)
H120.79870.30480.10200.069*
C130.99607 (9)0.4387 (3)0.12563 (11)0.0688 (7)
H130.98600.47300.15610.083*
C141.03887 (10)0.4802 (4)0.11101 (14)0.0869 (10)
H141.05730.53800.13200.104*
C151.05357 (10)0.4364 (4)0.06625 (14)0.0870 (10)
H151.08200.46590.05610.104*
C161.02588 (9)0.3460 (3)0.03496 (11)0.0691 (8)
C170.98391 (8)0.3022 (3)0.05320 (9)0.0539 (6)
C180.95485 (8)0.2018 (3)0.02497 (8)0.0522 (5)
C190.96681 (10)0.1560 (3)0.02248 (10)0.0664 (7)
C201.00934 (12)0.2082 (4)0.04083 (12)0.0833 (10)
H201.01760.18000.07250.100*
C211.03732 (11)0.2962 (4)0.01362 (13)0.0864 (10)
H211.06480.32560.02650.104*
C220.93619 (12)0.0618 (4)0.04863 (10)0.0792 (9)
H220.94260.03020.08050.095*
C230.89707 (11)0.0165 (4)0.02745 (10)0.0754 (8)
H230.87660.04580.04470.091*
C240.88821 (9)0.0650 (3)0.02050 (9)0.0613 (6)
H240.86170.03220.03490.074*
C250.85339 (7)0.5720 (3)0.07086 (8)0.0492 (5)
C260.82837 (7)0.6362 (3)0.02839 (8)0.0483 (5)
C270.82782 (8)0.5569 (3)0.01695 (9)0.0552 (6)
C280.80537 (10)0.6231 (4)0.05679 (10)0.0742 (8)
H280.80590.57150.08700.089*
C290.78247 (11)0.7658 (4)0.05062 (13)0.0867 (10)
H290.76720.80940.07710.104*
C300.78140 (10)0.8462 (4)0.00658 (13)0.0815 (9)
H300.76530.94200.00320.098*
C310.80450 (8)0.7826 (3)0.03246 (10)0.0598 (6)
C320.88844 (12)0.2651 (4)0.27998 (10)0.0725 (8)
C330.85863 (8)0.1496 (3)0.30562 (9)0.0589 (6)
C340.81229 (11)0.1636 (5)0.30321 (12)0.0851 (10)
C350.78520 (13)0.0503 (7)0.32548 (16)0.1192 (17)
H350.75440.05920.32330.143*
C360.80394 (18)0.0743 (6)0.35054 (16)0.1225 (18)
H360.78550.14890.36600.147*
C370.84936 (15)0.0940 (5)0.35391 (12)0.0987 (12)
H370.86150.18050.37120.118*
C380.87655 (10)0.0180 (4)0.33094 (9)0.0684 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.04736 (19)0.0504 (2)0.04444 (19)0.00031 (15)0.00056 (15)0.00292 (16)
O10.0669 (10)0.0543 (9)0.0468 (9)0.0109 (8)0.0036 (7)0.0033 (7)
O20.0984 (14)0.0633 (11)0.0505 (10)0.0151 (10)0.0119 (9)0.0060 (9)
O30.0799 (13)0.0720 (12)0.0540 (10)0.0045 (10)0.0015 (9)0.0062 (9)
O40.0936 (15)0.0586 (11)0.0808 (13)0.0140 (10)0.0004 (11)0.0023 (10)
O50.0815 (15)0.1182 (19)0.0952 (17)0.0267 (14)0.0113 (13)0.0121 (14)
O60.171 (3)0.0844 (15)0.0724 (14)0.0355 (17)0.0304 (15)0.0189 (13)
O70.108 (2)0.174 (3)0.118 (2)0.075 (2)0.0212 (18)0.027 (2)
O80.0818 (14)0.128 (2)0.0880 (17)0.0105 (14)0.0200 (13)0.0289 (15)
O90.0723 (11)0.0570 (10)0.0457 (9)0.0026 (8)0.0053 (8)0.0004 (7)
O100.0698 (17)0.0724 (17)0.089 (2)0.0000.0111 (15)0.000
N10.0442 (9)0.0544 (11)0.0437 (10)0.0021 (8)0.0010 (8)0.0026 (8)
N20.0440 (9)0.0491 (10)0.0490 (10)0.0025 (8)0.0003 (8)0.0027 (8)
N30.0530 (11)0.0576 (12)0.0531 (11)0.0050 (9)0.0015 (9)0.0098 (9)
N40.0531 (11)0.0502 (10)0.0458 (10)0.0051 (8)0.0005 (8)0.0025 (9)
C10.0472 (12)0.0689 (16)0.0545 (14)0.0040 (11)0.0039 (10)0.0059 (12)
C20.0588 (15)0.0690 (16)0.0697 (16)0.0114 (13)0.0140 (13)0.0055 (14)
C30.0777 (18)0.0551 (14)0.0556 (14)0.0059 (12)0.0190 (13)0.0057 (12)
C40.0671 (14)0.0453 (12)0.0418 (11)0.0031 (11)0.0065 (10)0.0021 (10)
C50.0536 (12)0.0446 (11)0.0376 (10)0.0004 (9)0.0017 (9)0.0038 (9)
C60.0475 (11)0.0453 (11)0.0410 (11)0.0021 (9)0.0018 (9)0.0044 (9)
C70.0549 (13)0.0543 (13)0.0515 (13)0.0094 (10)0.0072 (10)0.0091 (11)
C80.0713 (17)0.0588 (15)0.0517 (14)0.0183 (13)0.0083 (12)0.0017 (12)
C90.0869 (19)0.0495 (13)0.0458 (13)0.0134 (13)0.0009 (12)0.0016 (11)
C100.0493 (13)0.0684 (17)0.0782 (18)0.0085 (12)0.0166 (12)0.0151 (14)
C110.0444 (13)0.0670 (17)0.089 (2)0.0065 (11)0.0021 (13)0.0127 (15)
C120.0478 (13)0.0558 (14)0.0689 (16)0.0070 (11)0.0025 (11)0.0021 (12)
C130.0621 (16)0.0735 (17)0.0708 (17)0.0157 (14)0.0115 (13)0.0085 (14)
C140.0634 (18)0.090 (2)0.107 (3)0.0190 (16)0.0103 (18)0.015 (2)
C150.0509 (16)0.087 (2)0.124 (3)0.0093 (15)0.0057 (18)0.031 (2)
C160.0559 (15)0.0659 (16)0.086 (2)0.0089 (13)0.0175 (14)0.0266 (15)
C170.0500 (12)0.0536 (13)0.0581 (14)0.0044 (10)0.0064 (11)0.0157 (11)
C180.0584 (13)0.0512 (13)0.0469 (12)0.0127 (11)0.0093 (10)0.0108 (10)
C190.0823 (18)0.0654 (16)0.0516 (14)0.0235 (14)0.0135 (13)0.0115 (13)
C200.096 (2)0.086 (2)0.0675 (19)0.0298 (19)0.0383 (18)0.0227 (17)
C210.074 (2)0.088 (2)0.097 (2)0.0197 (17)0.0397 (19)0.0337 (19)
C220.109 (2)0.083 (2)0.0460 (14)0.0301 (18)0.0036 (15)0.0038 (14)
C230.094 (2)0.0752 (19)0.0576 (16)0.0119 (16)0.0109 (15)0.0135 (14)
C240.0660 (15)0.0605 (15)0.0574 (14)0.0032 (12)0.0063 (12)0.0045 (12)
C250.0510 (12)0.0479 (12)0.0487 (12)0.0033 (10)0.0011 (10)0.0057 (10)
C260.0443 (11)0.0501 (12)0.0506 (12)0.0069 (9)0.0020 (9)0.0073 (10)
C270.0499 (13)0.0599 (14)0.0559 (14)0.0088 (11)0.0032 (11)0.0081 (11)
C280.0814 (19)0.085 (2)0.0559 (15)0.0150 (16)0.0181 (14)0.0093 (15)
C290.088 (2)0.086 (2)0.086 (2)0.0039 (18)0.0383 (18)0.0229 (18)
C300.0746 (19)0.0694 (18)0.100 (2)0.0107 (15)0.0217 (17)0.0168 (18)
C310.0582 (14)0.0546 (14)0.0666 (16)0.0017 (11)0.0034 (12)0.0059 (12)
C320.094 (2)0.0728 (18)0.0509 (15)0.0036 (16)0.0064 (14)0.0024 (14)
C330.0607 (14)0.0715 (16)0.0445 (12)0.0013 (12)0.0018 (11)0.0096 (12)
C340.0704 (19)0.119 (3)0.0663 (18)0.0132 (19)0.0021 (15)0.0299 (19)
C350.074 (2)0.185 (5)0.099 (3)0.037 (3)0.029 (2)0.059 (3)
C360.135 (4)0.144 (4)0.088 (3)0.076 (3)0.042 (3)0.031 (3)
C370.143 (4)0.091 (2)0.0624 (19)0.029 (2)0.007 (2)0.0038 (17)
C380.0748 (18)0.0837 (19)0.0467 (14)0.0116 (15)0.0032 (12)0.0029 (13)
Geometric parameters (Å, º) top
Mn1—O92.0567 (16)C10—C111.359 (4)
Mn1—N32.0812 (19)C10—H100.9300
Mn1—N12.0851 (18)C11—C121.398 (4)
Mn1—N22.0977 (18)C11—H110.9300
Mn1—N42.0993 (19)C12—H120.9300
Mn1—O12.1005 (15)C13—C141.390 (4)
O1—C251.275 (3)C13—H130.9300
O2—C251.253 (3)C14—C151.350 (5)
O3—C271.359 (3)C14—H140.9300
O3—H30.8200C15—C161.407 (4)
O4—C311.356 (3)C15—H150.9300
O4—H40.8200C16—C171.404 (3)
O5—C321.262 (4)C16—C211.432 (4)
O6—C321.259 (4)C17—C181.430 (4)
O7—C341.352 (4)C18—C191.398 (3)
O7—H70.8200C19—C221.401 (4)
O8—C381.350 (3)C19—C201.439 (4)
O8—H80.8200C20—C211.337 (5)
O9—H9A0.8500C20—H200.9300
O9—H9B0.8500C21—H210.9300
O10—H10A0.8501C22—C231.363 (4)
O10—H10B0.8501C22—H220.9300
N1—C11.322 (3)C23—C241.396 (4)
N1—C51.360 (3)C23—H230.9300
N2—C121.327 (3)C24—H240.9300
N2—C61.362 (3)C25—C261.481 (3)
N3—C131.331 (3)C26—C271.401 (3)
N3—C171.351 (3)C26—C311.409 (3)
N4—C241.322 (3)C27—C281.392 (3)
N4—C181.362 (3)C28—C291.374 (4)
C1—C21.391 (3)C28—H280.9300
C1—H10.9300C29—C301.375 (4)
C2—C31.368 (4)C29—H290.9300
C2—H20.9300C30—C311.377 (4)
C3—C41.392 (3)C30—H300.9300
C3—H3A0.9300C32—C331.484 (4)
C4—C51.406 (3)C33—C381.395 (4)
C4—C91.434 (3)C33—C341.400 (4)
C5—C61.439 (3)C34—C351.381 (6)
C6—C71.396 (3)C35—C361.357 (6)
C7—C101.402 (4)C35—H350.9300
C7—C81.430 (4)C36—C371.378 (6)
C8—C91.345 (4)C36—H360.9300
C8—H50.9300C37—C381.384 (4)
C9—H90.9300C37—H370.9300
O9—Mn1—N388.56 (8)C15—C14—C13119.9 (3)
O9—Mn1—N197.05 (7)C15—C14—H14120.1
N3—Mn1—N193.35 (7)C13—C14—H14120.1
O9—Mn1—N291.40 (7)C14—C15—C16119.9 (3)
N3—Mn1—N2172.76 (7)C14—C15—H15120.0
N1—Mn1—N279.47 (7)C16—C15—H15120.0
O9—Mn1—N4163.43 (7)C17—C16—C15116.9 (3)
N3—Mn1—N479.31 (8)C17—C16—C21118.1 (3)
N1—Mn1—N494.91 (7)C15—C16—C21125.0 (3)
N2—Mn1—N4102.05 (7)N3—C17—C16122.5 (3)
O9—Mn1—O189.90 (6)N3—C17—C18117.1 (2)
N3—Mn1—O194.82 (7)C16—C17—C18120.4 (2)
N1—Mn1—O1169.40 (7)N4—C18—C19122.8 (2)
N2—Mn1—O192.41 (7)N4—C18—C17117.2 (2)
N4—Mn1—O180.02 (7)C19—C18—C17120.0 (2)
C25—O1—Mn1134.25 (15)C18—C19—C22117.0 (3)
C27—O3—H3109.5C18—C19—C20118.1 (3)
C31—O4—H4109.5C22—C19—C20124.9 (3)
C34—O7—H7109.5C21—C20—C19121.8 (3)
C38—O8—H8109.5C21—C20—H20119.1
Mn1—O9—H9A98.5C19—C20—H20119.1
Mn1—O9—H9B120.2C20—C21—C16121.4 (3)
H9A—O9—H9B117.3C20—C21—H21119.3
H10A—O10—H10B100.1C16—C21—H21119.3
C1—N1—C5117.2 (2)C23—C22—C19120.2 (3)
C1—N1—Mn1129.29 (16)C23—C22—H22119.9
C5—N1—Mn1113.44 (14)C19—C22—H22119.9
C12—N2—C6117.3 (2)C22—C23—C24119.0 (3)
C12—N2—Mn1129.62 (17)C22—C23—H23120.5
C6—N2—Mn1112.86 (14)C24—C23—H23120.5
C13—N3—C17118.6 (2)N4—C24—C23122.8 (3)
C13—N3—Mn1127.83 (19)N4—C24—H24118.6
C17—N3—Mn1113.54 (16)C23—C24—H24118.6
C24—N4—C18118.2 (2)O2—C25—O1122.8 (2)
C24—N4—Mn1128.75 (17)O2—C25—C26119.8 (2)
C18—N4—Mn1112.31 (15)O1—C25—C26117.5 (2)
N1—C1—C2123.4 (2)C27—C26—C31117.6 (2)
N1—C1—H1118.3C27—C26—C25122.2 (2)
C2—C1—H1118.3C31—C26—C25120.2 (2)
C3—C2—C1119.3 (2)O3—C27—C28117.5 (2)
C3—C2—H2120.4O3—C27—C26121.5 (2)
C1—C2—H2120.4C28—C27—C26121.0 (3)
C2—C3—C4119.7 (2)C29—C28—C27118.8 (3)
C2—C3—H3A120.2C29—C28—H28120.6
C4—C3—H3A120.2C27—C28—H28120.6
C3—C4—C5117.0 (2)C28—C29—C30122.2 (3)
C3—C4—C9124.0 (2)C28—C29—H29118.9
C5—C4—C9119.0 (2)C30—C29—H29118.9
N1—C5—C4123.4 (2)C29—C30—C31118.9 (3)
N1—C5—C6116.98 (19)C29—C30—H30120.6
C4—C5—C6119.6 (2)C31—C30—H30120.6
N2—C6—C7123.5 (2)O4—C31—C30117.8 (3)
N2—C6—C5116.87 (19)O4—C31—C26120.8 (2)
C7—C6—C5119.7 (2)C30—C31—C26121.5 (3)
C6—C7—C10117.3 (2)O6—C32—O5123.7 (3)
C6—C7—C8119.3 (2)O6—C32—C33117.8 (3)
C10—C7—C8123.4 (2)O5—C32—C33118.5 (3)
C9—C8—C7121.3 (2)C38—C33—C34118.2 (3)
C9—C8—H5119.4C38—C33—C32120.0 (3)
C7—C8—H5119.4C34—C33—C32121.7 (3)
C8—C9—C4121.0 (2)O7—C34—C35119.0 (4)
C8—C9—H9119.5O7—C34—C33120.3 (4)
C4—C9—H9119.5C35—C34—C33120.7 (4)
C11—C10—C7119.3 (2)C36—C35—C34119.3 (4)
C11—C10—H10120.3C36—C35—H35120.3
C7—C10—H10120.3C34—C35—H35120.3
C10—C11—C12119.8 (2)C35—C36—C37122.3 (4)
C10—C11—H11120.1C35—C36—H36118.9
C12—C11—H11120.1C37—C36—H36118.9
N2—C12—C11122.8 (2)C36—C37—C38118.4 (4)
N2—C12—H12118.6C36—C37—H37120.8
C11—C12—H12118.6C38—C37—H37120.8
N3—C13—C14122.1 (3)O8—C38—C37118.4 (3)
N3—C13—H13118.9O8—C38—C33120.5 (3)
C14—C13—H13118.9C37—C38—C33121.1 (3)
O9—Mn1—O1—C2513.4 (2)C10—C11—C12—N21.2 (4)
N3—Mn1—O1—C25101.9 (2)C17—N3—C13—C140.1 (4)
N1—Mn1—O1—C25117.7 (4)Mn1—N3—C13—C14178.8 (2)
N2—Mn1—O1—C2578.0 (2)N3—C13—C14—C152.3 (5)
N4—Mn1—O1—C25179.8 (2)C13—C14—C15—C161.3 (5)
O9—Mn1—N1—C195.6 (2)C14—C15—C16—C171.6 (4)
N3—Mn1—N1—C16.7 (2)C14—C15—C16—C21178.3 (3)
N2—Mn1—N1—C1174.2 (2)C13—N3—C17—C163.1 (4)
N4—Mn1—N1—C172.9 (2)Mn1—N3—C17—C16177.90 (19)
O1—Mn1—N1—C1133.7 (4)C13—N3—C17—C18176.9 (2)
O9—Mn1—N1—C587.70 (15)Mn1—N3—C17—C182.1 (3)
N3—Mn1—N1—C5176.66 (15)C15—C16—C17—N33.9 (4)
N2—Mn1—N1—C52.42 (14)C21—C16—C17—N3176.1 (2)
N4—Mn1—N1—C5103.79 (15)C15—C16—C17—C18176.1 (2)
O1—Mn1—N1—C542.9 (4)C21—C16—C17—C184.0 (4)
O9—Mn1—N2—C1282.4 (2)C24—N4—C18—C190.7 (3)
N1—Mn1—N2—C12179.3 (2)Mn1—N4—C18—C19171.54 (18)
N4—Mn1—N2—C1287.9 (2)C24—N4—C18—C17178.9 (2)
O1—Mn1—N2—C127.6 (2)Mn1—N4—C18—C178.1 (2)
O9—Mn1—N2—C691.84 (15)N3—C17—C18—N44.1 (3)
N1—Mn1—N2—C65.07 (14)C16—C17—C18—N4175.9 (2)
N4—Mn1—N2—C697.90 (15)N3—C17—C18—C19175.5 (2)
O1—Mn1—N2—C6178.21 (15)C16—C17—C18—C194.5 (3)
O9—Mn1—N3—C1317.3 (2)N4—C18—C19—C221.6 (4)
N1—Mn1—N3—C1379.7 (2)C17—C18—C19—C22178.1 (2)
N4—Mn1—N3—C13174.1 (2)N4—C18—C19—C20178.3 (2)
O1—Mn1—N3—C13107.1 (2)C17—C18—C19—C202.1 (3)
O9—Mn1—N3—C17163.78 (16)C18—C19—C20—C210.9 (4)
N1—Mn1—N3—C1799.25 (17)C22—C19—C20—C21179.0 (3)
N4—Mn1—N3—C174.88 (16)C19—C20—C21—C161.4 (5)
O1—Mn1—N3—C1774.00 (16)C17—C16—C21—C201.0 (4)
O9—Mn1—N4—C24132.9 (3)C15—C16—C21—C20179.0 (3)
N3—Mn1—N4—C24176.5 (2)C18—C19—C22—C231.1 (4)
N1—Mn1—N4—C2491.0 (2)C20—C19—C22—C23178.8 (3)
N2—Mn1—N4—C2410.7 (2)C19—C22—C23—C240.1 (4)
O1—Mn1—N4—C2479.6 (2)C18—N4—C24—C230.6 (4)
O9—Mn1—N4—C1836.7 (3)Mn1—N4—C24—C23168.5 (2)
N3—Mn1—N4—C186.94 (15)C22—C23—C24—N41.0 (4)
N1—Mn1—N4—C1899.43 (15)Mn1—O1—C25—O211.5 (4)
N2—Mn1—N4—C18179.69 (15)Mn1—O1—C25—C26168.17 (15)
O1—Mn1—N4—C1889.96 (15)O2—C25—C26—C27178.5 (2)
C5—N1—C1—C21.5 (4)O1—C25—C26—C271.8 (3)
Mn1—N1—C1—C2175.08 (19)O2—C25—C26—C310.7 (3)
N1—C1—C2—C33.0 (4)O1—C25—C26—C31179.0 (2)
C1—C2—C3—C41.1 (4)C31—C26—C27—O3178.9 (2)
C2—C3—C4—C52.0 (4)C25—C26—C27—O31.9 (3)
C2—C3—C4—C9178.5 (2)C31—C26—C27—C281.6 (3)
C1—N1—C5—C42.0 (3)C25—C26—C27—C28177.6 (2)
Mn1—N1—C5—C4179.11 (17)O3—C27—C28—C29178.5 (3)
C1—N1—C5—C6177.6 (2)C26—C27—C28—C291.9 (4)
Mn1—N1—C5—C60.5 (2)C27—C28—C29—C300.7 (5)
C3—C4—C5—N13.8 (3)C28—C29—C30—C310.8 (5)
C9—C4—C5—N1176.8 (2)C29—C30—C31—O4177.9 (3)
C3—C4—C5—C6175.9 (2)C29—C30—C31—C261.2 (4)
C9—C4—C5—C63.6 (3)C27—C26—C31—O4179.0 (2)
C12—N2—C6—C70.8 (3)C25—C26—C31—O40.2 (4)
Mn1—N2—C6—C7174.24 (17)C27—C26—C31—C300.0 (4)
C12—N2—C6—C5178.0 (2)C25—C26—C31—C30179.2 (2)
Mn1—N2—C6—C57.0 (2)O6—C32—C33—C38177.9 (3)
N1—C5—C6—N25.1 (3)O5—C32—C33—C380.2 (4)
C4—C5—C6—N2174.52 (19)O6—C32—C33—C341.2 (4)
N1—C5—C6—C7176.0 (2)O5—C32—C33—C34176.9 (3)
C4—C5—C6—C74.3 (3)C38—C33—C34—O7177.9 (3)
N2—C6—C7—C101.8 (3)C32—C33—C34—O71.2 (4)
C5—C6—C7—C10179.5 (2)C38—C33—C34—C350.2 (4)
N2—C6—C7—C8177.0 (2)C32—C33—C34—C35176.9 (3)
C5—C6—C7—C81.7 (3)O7—C34—C35—C36179.2 (4)
C6—C7—C8—C91.6 (4)C33—C34—C35—C361.0 (6)
C10—C7—C8—C9177.1 (2)C34—C35—C36—C371.3 (6)
C7—C8—C9—C42.3 (4)C35—C36—C37—C380.2 (6)
C3—C4—C9—C8179.1 (2)C36—C37—C38—O8178.2 (3)
C5—C4—C9—C80.3 (3)C36—C37—C38—C331.1 (5)
C6—C7—C10—C112.8 (4)C34—C33—C38—O8178.0 (3)
C8—C7—C10—C11175.9 (2)C32—C33—C38—O81.2 (4)
C7—C10—C11—C121.5 (4)C34—C33—C38—C371.3 (4)
C6—N2—C12—C112.3 (3)C32—C33—C38—C37178.1 (3)
Mn1—N2—C12—C11171.75 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.821.832.552 (2)147
O4—H4···O20.821.792.525 (3)148
O7—H7···O60.821.792.518 (4)147
O8—H8···O50.821.742.474 (3)149
O9—H9A···O20.851.902.735 (2)169
O9—H9B···O60.851.802.648 (3)171
O10—H10A···O50.852.072.890 (3)162
O10—H10B···O5i0.852.092.890 (3)156
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C7H5O4)(C12H8N2)2(H2O)](C7H5O4)·0.5H2O
Mr748.59
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)30.0648 (7), 8.2468 (2), 27.3311 (6)
V3)6776.4 (3)
Z8
Radiation typeCu Kα
µ (mm1)3.73
Crystal size (mm)0.36 × 0.32 × 0.30
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.347, 0.401
No. of measured, independent and
observed [I > 2σ(I)] reflections
28472, 6613, 5152
Rint0.035
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.08
No. of reflections6613
No. of parameters478
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.821.832.552 (2)147
O4—H4···O20.821.792.525 (3)148
O7—H7···O60.821.792.518 (4)147
O8—H8···O50.821.742.474 (3)149
O9—H9A···O20.851.902.735 (2)169
O9—H9B···O60.851.802.648 (3)171
O10—H10A···O50.852.072.890 (3)162
O10—H10B···O5i0.852.092.890 (3)156
Symmetry code: (i) x+2, y, z+1/2.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarribba, E., Micera, G. & Zema, M. (2004). Inorg. Chim. Acta, 357, 2038–2048.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, J., Jin, H. & Ge, H. (2010). Acta Cryst. E66, m1469–m1470.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds