metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(di­phenyl­phosphanylmeth­yl)di­phenyl­phosphane sulfide-κ2P,S]copper(I) hexa­fluoridophosphate

aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn

(Received 15 May 2012; accepted 22 May 2012; online 31 May 2012)

In the title compound, [Cu(C25H22P2S)2]PF6, the CuI atom, lying on a twofold rotation axis, adopts a distorted tetra­hedral geometry. The (diphenyl­phosphanylmeth­yl)diphenyl­phos­phane sulfide ligand coordinates to the CuI atom through one S and one P atom, forming a stable five-membered chelate ring. The P atom of the PF6 anion also lies on a twofold rotation axis.

Related literature

For background to copper(I) phosphane compounds, see: Bownaker et al. (1995[Bownaker, G. A., Hart, R. D., Jone, B. E., Skelton, B. W. & White, A. H. (1995). J. Chem. Soc. Dalton Trans. pp. 3063-3070.]); Comba et al. (1999[Comba, P., Katsichtis, C., Nuber, B. & Pritzkow, H. (1999). Eur. J. Inorg. Chem. pp. 777-783.]); Liaw et al. (2005[Liaw, B.-J., Lobana, T. S., Lin, Y.-W., Wang, J.-C. & Liu, C. W. (2005). Inorg. Chem. 44, 9921-9929.]); Lobana et al. (2009[Lobana, T. S., Khanna, S., Hundal, G., Butcher, R. J. & Castineiras, A. (2009). Polyhedron, 28, 3899-3906.]); Nicola et al. (2005[Nicola, C. D., Effendy, Fazaroh, F., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 720-734.]); Zhang et al. (2005[Zhang, J.-P., Wang, Y.-B., Huang, X.-C., Lin, Y.-Y. & Chen, X.-M. (2005). Chem. Eur. J. 11, 552-561.]). For related structures, see: Bera et al. (1999[Bera, J. K., Nethaji, M. & Samuelson, A. G. (1999). Inorg. Chem. 38, 218-228.]); Sivasankar et al. (2004[Sivasankar, C., Bera, J. K., Nethaji, M. & Samuelson, A. G. (2004). J. Organomet. Chem. 689, 2726-2732.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C25H22P2S)2]PF6

  • Mr = 1041.39

  • Orthorhombic, P c c a

  • a = 20.73 (3) Å

  • b = 12.004 (18) Å

  • c = 19.83 (3) Å

  • V = 4935 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 296 K

  • 0.26 × 0.22 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.830, Tmax = 0.884

  • 27988 measured reflections

  • 5535 independent reflections

  • 3424 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.152

  • S = 1.03

  • 5535 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—P2 2.300 (3)
Cu1—S1 2.411 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of copper(I) remains on the forefront in binding to soft Lewis bases such as phosphorous and sulfur donors (Liaw et al., 2005; Zhang et al., 2005). For examples, there are a number of published studies of structures that involve copper(I) complexes with phosphane ligands in variable copper(I)-to-ligand ratios (Bownaker et al., 1995; Comba et al., 1999). Mononuclear and dinuclear phosphane-copper(I) complexes with coordinated and bridging halide anions and phosphane ligands in various coordination modes have been well isolated and structurally characterized (Lobana et al., 2009). Quite a few copper(I) complexes with mixed phosphane and sulfide ligands have been synthesized and structurally measured by X-ray crystallography (Lobana et al., 2009; Nicola et al., 2005). Although adducts of bis(diphenylphosphanyl)methane (dppm), structurally defined complexes of the form CuX:dppm (1:1) (X = Cl, Br, I, CN, SCN), have been well documented (Nicola et al., 2005), only one example of mononuclear copper(I) complex with (diphenylphosphanylmethyl)diphenylphosphane sulfide (dppmS) that involves in oxidation of one phosphorus atom of the dppm ligand to P=S moiety has been reported (Sivasankar et al., 2004). The second example of mononuclear copper(I) complex with dppmS ligands is described in this paper.

The title compound consists of a cationic [Cu(dppmS)2]+ unit and a PF6- anion (Fig. 1). The dppmS ligand coordinates to the CuI atom with one S and one P atoms, forming a stable five-membered chelating ring. The coordinating environment around the CuI atom is distorted tetrahedral. The Cu—P bond length (Table 1) is similar to those found in [Cu(dppmS)2][ClO4] (Sivasankar et al., 2004) and in the copper(I)-dppm complexes (Bera et al., 1999). The Cu—S bond length of 2.411 (3) Å agrees well with that of 2.395 (3) Å in [Cu(dppmS)2][ClO4] (Sivasankar et al., 2004). The P—Cu—P bond angle of 127.60 (11)° is obviously larger than the S—Cu—S bond angle of 101.63 (11)°, due to the bulky PPh2 moiety directly binding to the Cu atom. The P—Cu—S bond angle of 97.37 (6)° in the five-membered ring of the dppmS ligand is more acute than that of 115.45 (5)° between two dppmS ligands. The PF6- anion has its expected structure as well as normal distances and angles.

Related literature top

For background to copper(I) phosphane compounds, see: Bownaker et al. (1995); Comba et al. (1999); Liaw et al. (2005); Lobana et al. (2009); Nicola et al. (2005); Zhang et al. (2005). For related structures, see: Bera et al. (1999); Sivasankar et al. (2004).

Experimental top

To a solution of [Cu(CH3CN)4][PF6] (373 mg, 1.0 mmol) in CH3CN (10 ml) was added with a dppm (796 mg, 2.0 mmol) solution in CH2Cl2 (5 ml) and S8 powder (64 mg, 2.0 mmol). After the mixture was stirred for 4 h at room temperature, the colorless solution with a little brown precipitate was obtained. After filtration, colorless block crystals were formed by slow evaporation of the filtrate at room temperature in three days. Analysis, calculated for C50H44CuF6P5S2: C 57.66, H 4.26%; found: C 57.53, H 4.23%.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids at the 50% probability level. [Symmetry codes: (A) 1/2-x, 1-y, z; (B) 1-x, y, 1/2-z.]
Bis[(diphenylphosphanylmethyl)diphenylphosphane sulfide-κ2P,S]copper(I) hexafluoridophosphate top
Crystal data top
[Cu(C25H22P2S)2]PF6F(000) = 2136
Mr = 1041.39Dx = 1.402 Mg m3
Orthorhombic, PccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2acCell parameters from 2469 reflections
a = 20.73 (3) Åθ = 1.0–24.6°
b = 12.004 (18) ŵ = 0.75 mm1
c = 19.83 (3) ÅT = 296 K
V = 4935 (13) Å3Block, colorless
Z = 40.26 × 0.22 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
5535 independent reflections
Radiation source: fine-focus sealed tube3424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ϕ and ω scansθmax = 27.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2626
Tmin = 0.830, Tmax = 0.884k = 157
27988 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0663P)2 + 1.7941P]
where P = (Fo2 + 2Fc2)/3
5535 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu(C25H22P2S)2]PF6V = 4935 (13) Å3
Mr = 1041.39Z = 4
Orthorhombic, PccaMo Kα radiation
a = 20.73 (3) ŵ = 0.75 mm1
b = 12.004 (18) ÅT = 296 K
c = 19.83 (3) Å0.26 × 0.22 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
5535 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3424 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.884Rint = 0.070
27988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
5535 reflectionsΔρmin = 0.55 e Å3
290 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25000.50000.08447 (3)0.0570 (2)
S10.25626 (4)0.34472 (9)0.00764 (4)0.0673 (3)
P10.30722 (4)0.25355 (8)0.07262 (4)0.0545 (2)
P20.34846 (4)0.47449 (8)0.13570 (4)0.0571 (3)
P30.50000.08241 (18)0.25000.1137 (7)
F10.42534 (14)0.0827 (3)0.2603 (2)0.1813 (17)
F20.49237 (19)0.0099 (3)0.1934 (2)0.1708 (17)
F30.49046 (19)0.1782 (3)0.1953 (2)0.1685 (15)
C10.37539 (13)0.3349 (3)0.10528 (16)0.0591 (8)
H1A0.40730.34440.06990.071*
H1B0.39550.29470.14210.071*
C110.34201 (15)0.1313 (3)0.03184 (16)0.0602 (8)
C120.3884 (2)0.0687 (4)0.0633 (2)0.0860 (13)
H120.40140.08750.10680.103*
C130.4165 (2)0.0224 (4)0.0314 (3)0.1030 (15)
H130.44760.06420.05380.124*
C140.3990 (3)0.0504 (5)0.0318 (3)0.1114 (16)
H140.41760.11170.05290.134*
C150.3543 (4)0.0107 (5)0.0643 (3)0.157 (3)
H150.34240.00850.10800.188*
C160.3256 (3)0.1031 (4)0.0330 (2)0.1212 (19)
H160.29530.14540.05630.145*
C210.25957 (15)0.2067 (3)0.14369 (17)0.0640 (9)
C220.19323 (17)0.1912 (4)0.1354 (2)0.0852 (12)
H220.17410.20560.09390.102*
C230.1559 (2)0.1545 (4)0.1891 (3)0.1142 (17)
H230.11190.14320.18320.137*
C240.1833 (3)0.1347 (5)0.2504 (3)0.122 (2)
H240.15770.11170.28630.146*
C250.2485 (3)0.1485 (5)0.2599 (2)0.120 (2)
H250.26670.13380.30180.144*
C260.2877 (2)0.1846 (4)0.20634 (18)0.0879 (13)
H260.33180.19380.21250.105*
C310.35556 (17)0.4728 (4)0.22775 (17)0.0714 (10)
C320.3949 (3)0.4004 (5)0.2639 (2)0.1215 (19)
H320.41970.34720.24180.146*
C330.3962 (4)0.4097 (8)0.3352 (3)0.175 (3)
H330.42080.36090.36090.211*
C340.3596 (4)0.4936 (8)0.3663 (3)0.165 (3)
H340.36000.49880.41310.198*
C350.3239 (3)0.5671 (6)0.3308 (2)0.122 (2)
H350.30170.62390.35270.147*
C360.32075 (18)0.5565 (4)0.26102 (18)0.0862 (13)
H360.29530.60550.23620.103*
C410.41620 (14)0.5644 (3)0.10968 (17)0.0621 (9)
C420.42341 (17)0.5905 (4)0.0432 (2)0.0885 (13)
H420.39510.55990.01190.106*
C430.4723 (2)0.6623 (5)0.0204 (3)0.1042 (16)
H430.47650.67730.02540.125*
C440.5129 (2)0.7090 (4)0.0646 (3)0.1016 (15)
H440.54590.75500.04940.122*
C450.5059 (2)0.6893 (5)0.1319 (3)0.1221 (19)
H450.53300.72450.16260.146*
C460.45783 (19)0.6157 (5)0.1550 (2)0.1002 (16)
H460.45390.60130.20090.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0448 (3)0.0748 (5)0.0513 (3)0.0022 (3)0.0000.000
S10.0792 (6)0.0684 (7)0.0544 (5)0.0009 (5)0.0183 (4)0.0036 (4)
P10.0491 (4)0.0655 (6)0.0490 (4)0.0057 (4)0.0055 (3)0.0063 (4)
P20.0434 (4)0.0800 (7)0.0480 (4)0.0053 (4)0.0010 (3)0.0079 (4)
P30.0781 (10)0.1068 (16)0.1562 (19)0.0000.0655 (11)0.000
F10.0818 (19)0.185 (4)0.278 (5)0.002 (2)0.058 (2)0.012 (3)
F20.152 (3)0.140 (3)0.220 (4)0.010 (2)0.064 (3)0.045 (3)
F30.186 (3)0.137 (3)0.182 (3)0.008 (2)0.090 (3)0.026 (3)
C10.0446 (15)0.073 (2)0.0595 (18)0.0040 (15)0.0001 (13)0.0038 (17)
C110.0624 (18)0.058 (2)0.0598 (19)0.0064 (16)0.0009 (15)0.0016 (16)
C120.088 (3)0.102 (4)0.068 (2)0.028 (2)0.0006 (19)0.007 (2)
C130.095 (3)0.112 (4)0.102 (4)0.036 (3)0.005 (3)0.002 (3)
C140.143 (5)0.085 (4)0.106 (4)0.021 (3)0.017 (3)0.010 (3)
C150.270 (9)0.107 (5)0.094 (4)0.055 (5)0.060 (5)0.035 (3)
C160.181 (5)0.083 (4)0.100 (3)0.031 (3)0.067 (3)0.019 (3)
C210.0567 (18)0.072 (3)0.0632 (19)0.0018 (16)0.0013 (14)0.0155 (18)
C220.057 (2)0.098 (3)0.100 (3)0.015 (2)0.0021 (19)0.022 (3)
C230.071 (3)0.118 (4)0.154 (5)0.021 (3)0.021 (3)0.042 (4)
C240.113 (4)0.132 (5)0.121 (4)0.001 (3)0.045 (3)0.055 (4)
C250.121 (4)0.154 (6)0.085 (3)0.015 (4)0.013 (3)0.058 (3)
C260.075 (2)0.121 (4)0.068 (2)0.008 (2)0.0031 (19)0.036 (2)
C310.0624 (19)0.101 (3)0.0513 (18)0.010 (2)0.0058 (16)0.0060 (19)
C320.143 (4)0.154 (5)0.068 (3)0.013 (4)0.036 (3)0.001 (3)
C330.244 (8)0.206 (9)0.076 (4)0.028 (7)0.068 (5)0.011 (4)
C340.229 (8)0.217 (9)0.049 (3)0.004 (6)0.013 (4)0.013 (4)
C350.126 (4)0.182 (6)0.060 (3)0.004 (4)0.005 (3)0.031 (3)
C360.074 (2)0.125 (4)0.060 (2)0.006 (2)0.0007 (17)0.021 (2)
C410.0447 (15)0.075 (3)0.066 (2)0.0004 (16)0.0017 (14)0.0104 (18)
C420.070 (2)0.127 (4)0.068 (2)0.026 (2)0.0032 (18)0.001 (2)
C430.079 (3)0.139 (5)0.095 (3)0.015 (3)0.021 (2)0.010 (3)
C440.071 (3)0.101 (4)0.132 (4)0.018 (2)0.031 (3)0.005 (3)
C450.083 (3)0.146 (5)0.137 (5)0.055 (3)0.002 (3)0.034 (4)
C460.077 (2)0.143 (5)0.081 (3)0.043 (3)0.005 (2)0.013 (3)
Geometric parameters (Å, º) top
Cu1—P22.300 (3)C22—H220.9300
Cu1—S12.411 (3)C23—C241.363 (7)
S1—P11.993 (2)C23—H230.9300
P1—C211.810 (4)C24—C251.374 (7)
P1—C111.824 (4)C24—H240.9300
P1—C11.836 (4)C25—C261.405 (6)
P2—C311.831 (4)C25—H250.9300
P2—C411.845 (4)C26—H260.9300
P2—C11.866 (4)C31—C321.390 (6)
P3—F11.561 (4)C31—C361.403 (6)
P3—F1i1.561 (4)C32—C331.418 (7)
P3—F21.585 (4)C32—H320.9300
P3—F2i1.585 (4)C33—C341.403 (10)
P3—F3i1.593 (4)C33—H330.9300
P3—F31.593 (4)C34—C351.351 (9)
C1—H1A0.9700C34—H340.9300
C1—H1B0.9700C35—C361.391 (6)
C11—C121.371 (5)C35—H350.9300
C11—C161.373 (6)C36—H360.9300
C12—C131.392 (6)C41—C421.364 (5)
C12—H120.9300C41—C461.390 (5)
C13—C141.347 (7)C42—C431.405 (6)
C13—H130.9300C42—H420.9300
C14—C151.345 (8)C43—C441.337 (7)
C14—H140.9300C43—H430.9300
C15—C161.404 (7)C44—C451.361 (7)
C15—H150.9300C44—H440.9300
C16—H160.9300C45—C461.409 (6)
C21—C261.397 (5)C45—H450.9300
C21—C221.397 (5)C46—H460.9300
C22—C231.388 (6)
P2ii—Cu1—P2127.60 (11)C11—C16—H16119.9
P2ii—Cu1—S1115.45 (5)C15—C16—H16119.9
P2—Cu1—S197.37 (6)C26—C21—C22119.3 (3)
P2ii—Cu1—S1ii97.37 (6)C26—C21—P1121.5 (3)
P2—Cu1—S1ii115.45 (5)C22—C21—P1119.1 (3)
S1—Cu1—S1ii101.63 (13)C23—C22—C21120.0 (4)
P1—S1—Cu192.55 (4)C23—C22—H22120.0
C21—P1—C11108.11 (19)C21—C22—H22120.0
C21—P1—C1108.11 (18)C24—C23—C22120.5 (4)
C11—P1—C1106.27 (17)C24—C23—H23119.8
C21—P1—S1112.60 (15)C22—C23—H23119.8
C11—P1—S1111.40 (15)C23—C24—C25120.7 (4)
C1—P1—S1110.10 (15)C23—C24—H24119.6
C31—P2—C41102.94 (16)C25—C24—H24119.6
C31—P2—C1106.73 (18)C24—C25—C26120.2 (5)
C41—P2—C1101.95 (17)C24—C25—H25119.9
C31—P2—Cu1120.86 (12)C26—C25—H25119.9
C41—P2—Cu1118.30 (14)C21—C26—C25119.3 (4)
C1—P2—Cu1104.02 (10)C21—C26—H26120.4
F1—P3—F1i179.7 (4)C25—C26—H26120.4
F1—P3—F289.8 (2)C32—C31—C36120.5 (4)
F1i—P3—F290.4 (2)C32—C31—P2124.6 (3)
F1—P3—F2i90.4 (2)C36—C31—P2114.8 (3)
F1i—P3—F2i89.8 (2)C31—C32—C33118.4 (6)
F2—P3—F2i91.3 (4)C31—C32—H32120.8
F1—P3—F3i91.8 (2)C33—C32—H32120.8
F1i—P3—F3i88.0 (2)C34—C33—C32118.9 (6)
F2—P3—F3i177.5 (3)C34—C33—H33120.5
F2i—P3—F3i90.6 (3)C32—C33—H33120.5
F1—P3—F388.0 (2)C35—C34—C33122.5 (5)
F1i—P3—F391.8 (2)C35—C34—H34118.8
F2—P3—F390.6 (3)C33—C34—H34118.8
F2i—P3—F3177.5 (3)C34—C35—C36118.9 (6)
F3i—P3—F387.6 (3)C34—C35—H35120.5
P1—C1—P2111.18 (17)C36—C35—H35120.5
P1—C1—H1A109.4C35—C36—C31120.6 (5)
P2—C1—H1A109.4C35—C36—H36119.7
P1—C1—H1B109.4C31—C36—H36119.7
P2—C1—H1B109.4C42—C41—C46117.1 (4)
H1A—C1—H1B108.0C42—C41—P2119.2 (3)
C12—C11—C16117.8 (4)C46—C41—P2123.4 (3)
C12—C11—P1121.1 (3)C41—C42—C43122.0 (4)
C16—C11—P1121.0 (3)C41—C42—H42119.0
C11—C12—C13121.1 (4)C43—C42—H42119.0
C11—C12—H12119.4C44—C43—C42120.1 (5)
C13—C12—H12119.4C44—C43—H43120.0
C14—C13—C12120.4 (5)C42—C43—H43120.0
C14—C13—H13119.8C43—C44—C45120.1 (4)
C12—C13—H13119.8C43—C44—H44119.9
C15—C14—C13119.7 (5)C45—C44—H44119.9
C15—C14—H14120.2C44—C45—C46120.2 (4)
C13—C14—H14120.2C44—C45—H45119.9
C14—C15—C16120.8 (5)C46—C45—H45119.9
C14—C15—H15119.6C41—C46—C45120.4 (4)
C16—C15—H15119.6C41—C46—H46119.8
C11—C16—C15120.2 (5)C45—C46—H46119.8
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C25H22P2S)2]PF6
Mr1041.39
Crystal system, space groupOrthorhombic, Pcca
Temperature (K)296
a, b, c (Å)20.73 (3), 12.004 (18), 19.83 (3)
V3)4935 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.26 × 0.22 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.830, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
27988, 5535, 3424
Rint0.070
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.152, 1.03
No. of reflections5535
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.55

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—P22.300 (3)Cu1—S12.411 (3)
 

Acknowledgements

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-08–0618).

References

First citationBera, J. K., Nethaji, M. & Samuelson, A. G. (1999). Inorg. Chem. 38, 218–228.  Web of Science CSD CrossRef CAS Google Scholar
First citationBownaker, G. A., Hart, R. D., Jone, B. E., Skelton, B. W. & White, A. H. (1995). J. Chem. Soc. Dalton Trans. pp. 3063–3070.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationComba, P., Katsichtis, C., Nuber, B. & Pritzkow, H. (1999). Eur. J. Inorg. Chem. pp. 777–783.  CrossRef Google Scholar
First citationLiaw, B.-J., Lobana, T. S., Lin, Y.-W., Wang, J.-C. & Liu, C. W. (2005). Inorg. Chem. 44, 9921–9929.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLobana, T. S., Khanna, S., Hundal, G., Butcher, R. J. & Castineiras, A. (2009). Polyhedron, 28, 3899–3906.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicola, C. D., Effendy, Fazaroh, F., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 720–734.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivasankar, C., Bera, J. K., Nethaji, M. & Samuelson, A. G. (2004). J. Organomet. Chem. 689, 2726–2732.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J.-P., Wang, Y.-B., Huang, X.-C., Lin, Y.-Y. & Chen, X.-M. (2005). Chem. Eur. J. 11, 552–561.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds