organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-butyl-4-hy­dr­oxy-1,1-dioxo-2H-1,2-benzo­thia­zine-3-carboxyl­ate

aDepartment of Chemistry, University of Gujrat, Gujrat 50781, Pakistan, bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, cApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, dDepartment of Biochemistry, Federal Urdu University of Arts Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan, and eThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia
*Correspondence e-mail: mnachemist@hotmail.com

(Received 18 April 2012; accepted 2 May 2012; online 5 May 2012)

In the title compound, C14H17NO5S, the thia­zine ring adopts a half-chair conformation. The mol­ecule exhibits an intra­molecular O—H⋯O hydrogen bond, which forms a six-membered S(6) ring motif. The planes of the benzene and thia­zine rings are inclined at a dihedral angle of 15.30 (12)°.

Related literature

For the synthesis, see: Arshad et al. (2011a[Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011a). Asian J. Chem. 23, o2801-2805.]). For biological activity of related compounds, see: Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]). For related structures, see: Arshad et al. (2011b[Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M., Danish, M. & Holman, K. T. (2011b). Acta Cryst. E67, o3445.], 2012[Arshad, M. N., Zia-ur-Rehman, M., Khan, I. U., Mustafa, G., Shafiq, M., Rafique, H. M. & Holman, K. T. (2012). Walailak J. Sci. Tech. 10. In the press.]); For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO5S

  • Mr = 311.35

  • Monoclinic, C 2/c

  • a = 25.173 (7) Å

  • b = 9.280 (2) Å

  • c = 12.531 (3) Å

  • β = 91.741 (3)°

  • V = 2926.0 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.44 × 0.31 × 0.25 mm

Data collection
  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.901, Tmax = 0.942

  • 12490 measured reflections

  • 3498 independent reflections

  • 3132 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.210

  • S = 1.10

  • 3498 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 1.70 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4 0.84 1.85 2.564 (4) 142

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Our research group already reported the synthesis and biological activities (Arshad et al., 2011a; Zia-ur-Rehman et al., 2006) of the title compound as well as the crystal structures of related compounds (Arshad et al., 2011b, 2012).

The title compound is the N-butyl derivative of methyl-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-3-carboxylate. The methyl ester moiety attached to the thiazine ring shows an almost planar geometry with a root mean square (r. m. s.) deviation of 0.0034 (14) Å and is oriented at a dihedral angle of 11.4 (2)° and 10.5 (2)° with respect to the thiazine (C1/C6/C7/C8/N1/S1) and aromatic benzene (C1/C2/C3/C4/C5/C6) rings, respectively. The two fused rings in the molecule are inclined at 15.30 (12)°. The thiazine ring in the molecule adopts a half chair conformation which is in accordance with already published data. The r. m. s. deviation for the ring is 0.207 (2) Å. The molecule shows the formation of a six membered S11(6) ring motif (Bernstein, et al., 1995) by a O—H···O intramolecular hydrogen bonding interaction between the hydroxyl group in 4-position of the thiazine ring and the carbonyl oxygen atom of the methyl ester substituent. The resulting ring (C7/O1/H1O/O4/C9/C8) deviates from the least square plane with a r. m. s. deviation of 0.052 (4) Å. The maximum deviation is measured for O1 = 0.08 (2) Å and H1O = -0.08 (3) Å. The N-butyl moiety shows a maximum deviation of the thiazine ring of about 83.52 (11)° and it is anti with respect to the methyl ester.

Related literature top

For the synthesis, see: Arshad et al. (2011a). For biological activity of related compounds, see: Zia-ur-Rehman et al. (2006). For related structures, see: Arshad et al. (2011b, 2012); For graph-set notation, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The synthesis of the title compound has already been published (Arshad et al., 2011a). Recrystallization has been performed from a methanolic solution by slow evaporation of the solvent.

Refinement top

Carbon bound H-atoms were positioned in idealized positions with C—H = 0.95 Å, C—H = 0.99 Å and C—H = 0.98 Å for aromatic, methylene and methyl carbon atoms respectively, and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic and methylene and Uiso(H) = 1.5 Ueq(C) for methyl carbon atoms. The O–H hydrogen atom was located in the difference map and was refined with O–H= 0.84 (2) Å and Uiso(H) = 1.5 Ueq(O). Electron density synthesis with coefficients Fo—Fc: Highest peaks are 1.70 at 0.3972 0.1429 0.4219 [0.82 Å from N1] & 1.55 at 0.3978 0.1460 0.5612 [0.91 Å from S1] and deepest hole -0.49 at 0.3776 0.1772 0.4612 [0.59 A from S1]. A disorder of the thiazine ring could not be resolved.

The reflections 13 1 1, 1 3 1, -9 7 2 and 11 1 1 for which (Iobs)-(Icalc)/σW > 10 were omitted in the final refinement.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the molecular structure of (I) showing intramolecular O—H···O hydrogen bonding as a dashed line and thermal ellipsoids at the 50% probability level.
Methyl 2-butyl-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-3-carboxylate top
Crystal data top
C14H17NO5SF(000) = 1312
Mr = 311.35Dx = 1.414 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5544 reflections
a = 25.173 (7) Åθ = 2.3–28.4°
b = 9.280 (2) ŵ = 0.24 mm1
c = 12.531 (3) ÅT = 100 K
β = 91.741 (3)°Block, colorless
V = 2926.0 (13) Å30.44 × 0.31 × 0.25 mm
Z = 8
Data collection top
Bruker SMART 1K
diffractometer
3498 independent reflections
Radiation source: fine-focus sealed tube3132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3233
Tmin = 0.901, Tmax = 0.942k = 1212
12490 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0839P)2 + 25.4705P]
where P = (Fo2 + 2Fc2)/3
3498 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 1.70 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C14H17NO5SV = 2926.0 (13) Å3
Mr = 311.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.173 (7) ŵ = 0.24 mm1
b = 9.280 (2) ÅT = 100 K
c = 12.531 (3) Å0.44 × 0.31 × 0.25 mm
β = 91.741 (3)°
Data collection top
Bruker SMART 1K
diffractometer
3498 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3132 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.942Rint = 0.031
12490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.210H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0839P)2 + 25.4705P]
where P = (Fo2 + 2Fc2)/3
3498 reflectionsΔρmax = 1.70 e Å3
193 parametersΔρmin = 0.49 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39425 (3)0.14891 (9)0.48843 (6)0.0157 (2)
O10.28629 (10)0.2661 (3)0.23550 (19)0.0204 (5)
H1O0.30090.27960.17700.024*
O20.39702 (10)0.3001 (3)0.5114 (2)0.0212 (5)
O30.42548 (10)0.0508 (3)0.55284 (19)0.0218 (5)
O40.36673 (10)0.3043 (3)0.11802 (19)0.0222 (5)
O50.44802 (10)0.2584 (3)0.19007 (19)0.0202 (5)
N10.40931 (11)0.1252 (3)0.3631 (2)0.0166 (6)
C10.32710 (13)0.0977 (4)0.4870 (3)0.0164 (6)
C20.30543 (14)0.0261 (4)0.5729 (3)0.0206 (7)
H20.32730.00190.63250.025*
C30.25114 (15)0.0039 (4)0.5702 (3)0.0231 (7)
H30.23580.05220.62860.028*
C40.21938 (14)0.0363 (4)0.4828 (3)0.0215 (7)
H40.18240.01600.48180.026*
C50.24152 (13)0.1063 (4)0.3964 (3)0.0191 (7)
H50.21950.13390.33700.023*
C60.29595 (13)0.1362 (4)0.3967 (3)0.0173 (6)
C70.32050 (13)0.2003 (4)0.3037 (3)0.0171 (6)
C80.37370 (13)0.1909 (4)0.2873 (2)0.0167 (6)
C90.39560 (13)0.2557 (3)0.1903 (3)0.0169 (6)
C100.47078 (15)0.3216 (5)0.0957 (3)0.0273 (8)
H10A0.46460.25730.03460.041*
H10B0.50910.33510.10810.041*
H10C0.45400.41510.08090.041*
C110.43520 (13)0.0124 (4)0.3326 (3)0.0182 (6)
H11A0.46660.02820.38050.022*
H11B0.44800.00280.25900.022*
C120.39938 (14)0.1447 (4)0.3374 (3)0.0195 (7)
H12A0.36750.13000.29060.023*
H12B0.38760.15840.41140.023*
C130.42921 (15)0.2787 (4)0.3015 (3)0.0227 (7)
H13A0.46310.28640.34320.027*
H13B0.43780.26830.22530.027*
C140.39715 (17)0.4169 (4)0.3160 (4)0.0340 (9)
H14A0.38610.42380.39020.051*
H14B0.41910.50040.29890.051*
H14C0.36560.41490.26820.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0160 (4)0.0161 (4)0.0148 (4)0.0010 (3)0.0017 (3)0.0007 (3)
O10.0192 (12)0.0225 (12)0.0192 (12)0.0038 (9)0.0023 (9)0.0033 (9)
O20.0222 (12)0.0166 (12)0.0244 (12)0.0010 (9)0.0021 (9)0.0047 (9)
O30.0210 (12)0.0254 (13)0.0188 (11)0.0036 (10)0.0032 (9)0.0026 (9)
O40.0236 (13)0.0227 (13)0.0201 (12)0.0006 (10)0.0020 (9)0.0049 (9)
O50.0202 (12)0.0226 (12)0.0176 (11)0.0026 (9)0.0000 (9)0.0032 (9)
N10.0200 (14)0.0180 (13)0.0116 (12)0.0010 (11)0.0013 (10)0.0003 (10)
C10.0149 (14)0.0163 (15)0.0180 (15)0.0021 (12)0.0008 (11)0.0025 (12)
C20.0224 (17)0.0195 (16)0.0199 (16)0.0047 (13)0.0011 (12)0.0014 (12)
C30.0277 (18)0.0184 (16)0.0235 (17)0.0050 (14)0.0066 (13)0.0026 (13)
C40.0177 (16)0.0179 (16)0.0290 (18)0.0012 (12)0.0031 (13)0.0043 (13)
C50.0173 (15)0.0169 (15)0.0232 (16)0.0008 (12)0.0005 (12)0.0033 (12)
C60.0193 (16)0.0151 (15)0.0175 (15)0.0026 (12)0.0005 (11)0.0023 (11)
C70.0205 (16)0.0142 (15)0.0164 (15)0.0020 (12)0.0037 (11)0.0017 (11)
C80.0208 (16)0.0149 (14)0.0142 (14)0.0000 (12)0.0023 (11)0.0006 (11)
C90.0199 (16)0.0110 (14)0.0197 (15)0.0006 (11)0.0008 (12)0.0005 (11)
C100.0236 (18)0.036 (2)0.0225 (17)0.0062 (16)0.0038 (13)0.0081 (15)
C110.0180 (15)0.0179 (15)0.0187 (15)0.0017 (12)0.0008 (11)0.0009 (12)
C120.0215 (16)0.0174 (16)0.0196 (16)0.0031 (12)0.0002 (12)0.0007 (12)
C130.0281 (18)0.0206 (17)0.0193 (16)0.0060 (14)0.0007 (13)0.0014 (13)
C140.034 (2)0.0225 (19)0.046 (2)0.0012 (16)0.0062 (17)0.0043 (17)
Geometric parameters (Å, º) top
S1—O21.433 (3)C5—H50.9500
S1—O31.435 (2)C6—C71.462 (5)
S1—N11.642 (3)C7—C81.364 (5)
S1—C11.756 (3)C8—C91.478 (5)
O1—C71.341 (4)C10—H10A0.9800
O1—H1O0.8400C10—H10B0.9800
O4—C91.230 (4)C10—H10C0.9800
O5—C91.320 (4)C11—C121.526 (5)
O5—C101.453 (4)C11—H11A0.9900
N1—C81.423 (4)C11—H11B0.9900
N1—C111.489 (4)C12—C131.527 (5)
C1—C21.390 (5)C12—H12A0.9900
C1—C61.404 (4)C12—H12B0.9900
C2—C31.394 (5)C13—C141.528 (6)
C2—H20.9500C13—H13A0.9900
C3—C41.388 (5)C13—H13B0.9900
C3—H30.9500C14—H14A0.9800
C4—C51.393 (5)C14—H14B0.9800
C4—H40.9500C14—H14C0.9800
C5—C61.398 (5)
O2—S1—O3119.06 (15)N1—C8—C9118.7 (3)
O2—S1—N1108.17 (15)O4—C9—O5124.0 (3)
O3—S1—N1108.32 (15)O4—C9—C8121.9 (3)
O2—S1—C1107.95 (15)O5—C9—C8114.1 (3)
O3—S1—C1110.17 (16)O5—C10—H10A109.5
N1—S1—C1101.78 (15)O5—C10—H10B109.5
C7—O1—H1O109.5H10A—C10—H10B109.5
C9—O5—C10115.4 (3)O5—C10—H10C109.5
C8—N1—C11117.9 (3)H10A—C10—H10C109.5
C8—N1—S1114.9 (2)H10B—C10—H10C109.5
C11—N1—S1118.5 (2)N1—C11—C12114.6 (3)
C2—C1—C6121.6 (3)N1—C11—H11A108.6
C2—C1—S1121.5 (2)C12—C11—H11A108.6
C6—C1—S1117.0 (3)N1—C11—H11B108.6
C1—C2—C3119.0 (3)C12—C11—H11B108.6
C1—C2—H2120.5H11A—C11—H11B107.6
C3—C2—H2120.5C11—C12—C13110.3 (3)
C4—C3—C2120.4 (3)C11—C12—H12A109.6
C4—C3—H3119.8C13—C12—H12A109.6
C2—C3—H3119.8C11—C12—H12B109.6
C3—C4—C5120.3 (3)C13—C12—H12B109.6
C3—C4—H4119.9H12A—C12—H12B108.1
C5—C4—H4119.9C12—C13—C14112.4 (3)
C4—C5—C6120.4 (3)C12—C13—H13A109.1
C4—C5—H5119.8C14—C13—H13A109.1
C6—C5—H5119.8C12—C13—H13B109.1
C5—C6—C1118.3 (3)C14—C13—H13B109.1
C5—C6—C7121.1 (3)H13A—C13—H13B107.8
C1—C6—C7120.5 (3)C13—C14—H14A109.5
O1—C7—C8123.2 (3)C13—C14—H14B109.5
O1—C7—C6114.4 (3)H14A—C14—H14B109.5
C8—C7—C6122.3 (3)C13—C14—H14C109.5
C7—C8—N1121.9 (3)H14A—C14—H14C109.5
C7—C8—C9119.3 (3)H14B—C14—H14C109.5
O2—S1—N1—C863.0 (3)C5—C6—C7—O119.3 (5)
O3—S1—N1—C8166.7 (2)C1—C6—C7—O1163.4 (3)
C1—S1—N1—C850.6 (3)C5—C6—C7—C8159.5 (3)
O2—S1—N1—C11150.0 (2)C1—C6—C7—C817.9 (5)
O3—S1—N1—C1119.7 (3)O1—C7—C8—N1177.6 (3)
C1—S1—N1—C1196.5 (3)C6—C7—C8—N13.8 (5)
O2—S1—C1—C2102.1 (3)O1—C7—C8—C90.1 (5)
O3—S1—C1—C229.5 (3)C6—C7—C8—C9178.7 (3)
N1—S1—C1—C2144.2 (3)C11—N1—C8—C7112.4 (4)
O2—S1—C1—C676.0 (3)S1—N1—C8—C734.9 (4)
O3—S1—C1—C6152.4 (2)C11—N1—C8—C970.1 (4)
N1—S1—C1—C637.7 (3)S1—N1—C8—C9142.7 (3)
C6—C1—C2—C32.0 (5)C10—O5—C9—O41.1 (5)
S1—C1—C2—C3176.0 (3)C10—O5—C9—C8179.9 (3)
C1—C2—C3—C40.4 (5)C7—C8—C9—O48.0 (5)
C2—C3—C4—C50.4 (5)N1—C8—C9—O4174.3 (3)
C3—C4—C5—C60.3 (5)C7—C8—C9—O5170.8 (3)
C4—C5—C6—C11.8 (5)N1—C8—C9—O56.8 (4)
C4—C5—C6—C7175.6 (3)C8—N1—C11—C1276.7 (4)
C2—C1—C6—C52.7 (5)S1—N1—C11—C1269.3 (3)
S1—C1—C6—C5175.4 (3)N1—C11—C12—C13178.3 (3)
C2—C1—C6—C7174.8 (3)C11—C12—C13—C14174.0 (3)
S1—C1—C6—C77.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.841.852.564 (4)142

Experimental details

Crystal data
Chemical formulaC14H17NO5S
Mr311.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)25.173 (7), 9.280 (2), 12.531 (3)
β (°) 91.741 (3)
V3)2926.0 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.44 × 0.31 × 0.25
Data collection
DiffractometerBruker SMART 1K
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.901, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
12490, 3498, 3132
Rint0.031
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.210, 1.10
No. of reflections3498
No. of parameters193
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0839P)2 + 25.4705P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.70, 0.49

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and X-SEED (Barbour, 2001), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.841.852.564 (4)142.2
 

Footnotes

Chemistry Department, Faculty of Science, King Abdul Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia.

Acknowledgements

The authors acknowledge support from the Higher Education Commission of Pakistan for providing fellowships to MNA (PIN # 042–120607-Ps2–183 and PIN # IRSIP-10-PS-2).

References

First citationArshad, M. N., Khan, I. U., Zia-ur-Rehman, M., Danish, M. & Holman, K. T. (2011b). Acta Cryst. E67, o3445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011a). Asian J. Chem. 23, o2801–2805.  Google Scholar
First citationArshad, M. N., Zia-ur-Rehman, M., Khan, I. U., Mustafa, G., Shafiq, M., Rafique, H. M. & Holman, K. T. (2012). Walailak J. Sci. Tech. 10. In the press.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds