metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(5,6-di­methyl-1H-benzimidazole-κN3)(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)nickel(II)

aCollege of Chemical Engineering, Hebei United University, Tangshan 063009, People's Republic of China, bCollege of Light Industry, Hebei United University, Tangshan 063009, People's Republic of China, and cQian'an College, Hebei United University, Tangshan 063009, People's Republic of China
*Correspondence e-mail: tsdgying@126.com

(Received 21 April 2012; accepted 1 May 2012; online 5 May 2012)

The title mononuclear complex, [Ni(C7H3NO4)(C9H10N2)3], shows a central NiII atom which is coordinated by two carboxyl­ate O atoms and the N atom from a pyridine-2,6-dicarboxyl­ate ligand and by three N atoms from different 5,6-dimethyl-1H-­benzimidazole ligands in a distorted octa­hedral geometry. The crystal structure shows intermolecular N—H⋯O hydrogen bonds.

Related literature

For related structures of dipicolinate complexes, see: How et al. (1991[How, G. A., Whei, L. K., Graeme, R. H., Jeffrey, A. C., Mary, M. & Nick, C. (1991). J. Chem. Soc. Dalton Trans. pp. 3193-3291.]); Dong et al. (2010[Dong, G.-Y., Fan, L.-H., Yang, L.-X. & Khan, I. U. (2010). Acta Cryst. E66, m532.]); Liu et al. (2011[Liu, T. F., Wu, W. F., Wan, C. Q., He, C. H., Jiao, C. H. & Cui, G. H. (2011). J. Coord. Chem. 64, 975-986.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H3NO4)(C9H10N2)3]

  • Mr = 662.38

  • Triclinic, [P \overline 1]

  • a = 7.5884 (7) Å

  • b = 9.4499 (9) Å

  • c = 23.839 (2) Å

  • α = 89.0040 (9)°

  • β = 81.484 (1)°

  • γ = 74.078 (1)°

  • V = 1625.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.872, Tmax = 0.935

  • 12396 measured reflections

  • 5721 independent reflections

  • 5078 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 0.94

  • 5721 reflections

  • 421 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4i 0.86 2.27 2.877 (2) 127
N5—H5A⋯O1ii 0.86 2.14 2.786 (2) 132
N7—H7A⋯O4iii 0.86 1.94 2.788 (2) 171
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzimidazole and its derivatives are widely used as intermediates in synthesis and commonly coordinate to transition metals by N atom. Some Cu(II) dipicolinate complexes with additional imidazole ligands have been reported (How et al., 1991; Dong et al., 2010; Liu et al., 2011). Here, we report the crystal structure of the title compound.

The asymmetric unit of (I) contains one nickel(II), one 2,6- pyridinedicarboxylato and three 5,6-dimethylbenzimidazole ligands. The nickel center is six-coordinated in a distorted octahedral coordination geometry (Fig.1). Each nickel(II) is coordinated by one tridentate dipicolinato ligand via its carboxylate oxygen atoms and the pyridine nitrogen atom as donors (Ni1—N1= 1.997 (2); Ni1—O2=2.134 (1); Ni1—O3= 2.190 (1) Å). Three additional N donor atoms from three 5,6-dimethylbenzimidazole ligands complete the coordination sphere of nickel (Ni1- N from 2.056 (2) to 2.123 (2) Å). It is noteworthy that there exist strong N—H···O hydrogen bond interactions (Table 1) involving the carboxy group oxygen atoms of dipicolinato ligands as well as the NH functions of the benzimidazole ligands.

Related literature top

For related structures of dipicolinate complexes, see: How et al. (1991); Dong et al. (2010); Liu et al. (2011).

Experimental top

A mixture of Ni(NO3)2.6H2O (290.8 mg, 0.5 mmol), 2,6-pyridinedicarboxylic acid (167 mg, 1 mmol), NaOH (80 mg, 2 mm mol), 5,6-dimethylbenzimidazole (73 mg, 0.5 mmol) and water (12 ml) was sealed in a 25 ml teflon-lined stainless steel reactor and heated to 413 K for 72 h. The reaction was cooled to room temperature over a period of 24 h. Green prismatic crystals of (I) suitable for X– ray difraction analysis were obtained with a yield of 38% (based Ni(NO3)2.6H2O).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) for the NH group.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Tris(5,6-dimethyl-1H-benzimidazole-κN3)(pyridine-2,6- dicarboxylato-κ3O2,N,O6)nickel(II) top
Crystal data top
[Ni(C7H3NO4)(C9H10N2)3]V = 1625.3 (3) Å3
Mr = 662.38Z = 2
Triclinic, P1F(000) = 692
Hall symbol: -P 1Dx = 1.353 Mg m3
a = 7.5884 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4499 (9) ŵ = 0.65 mm1
c = 23.839 (2) ÅT = 293 K
α = 89.0040 (9)°Block, green
β = 81.484 (1)°0.18 × 0.15 × 0.14 mm
γ = 74.078 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5721 independent reflections
Radiation source: fine-focus sealed tube5078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.872, Tmax = 0.935k = 1111
12396 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.7157P]
where P = (Fo2 + 2Fc2)/3
5721 reflections(Δ/σ)max = 0.001
421 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni(C7H3NO4)(C9H10N2)3]γ = 74.078 (1)°
Mr = 662.38V = 1625.3 (3) Å3
Triclinic, P1Z = 2
a = 7.5884 (7) ÅMo Kα radiation
b = 9.4499 (9) ŵ = 0.65 mm1
c = 23.839 (2) ÅT = 293 K
α = 89.0040 (9)°0.18 × 0.15 × 0.14 mm
β = 81.484 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5721 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5078 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.935Rint = 0.021
12396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 0.94Δρmax = 0.27 e Å3
5721 reflectionsΔρmin = 0.34 e Å3
421 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.99661 (3)0.63280 (2)0.222282 (9)0.02907 (9)
N10.9467 (2)0.84068 (16)0.19677 (6)0.0297 (3)
N40.8878 (2)0.57135 (18)0.15400 (7)0.0365 (4)
N21.1152 (2)0.68619 (17)0.29151 (7)0.0342 (4)
N61.0510 (2)0.41948 (17)0.24934 (7)0.0362 (4)
O30.71968 (17)0.73993 (13)0.26733 (6)0.0349 (3)
O21.24640 (17)0.62840 (15)0.16685 (6)0.0389 (3)
O40.51849 (18)0.96040 (15)0.28495 (7)0.0459 (4)
C230.9603 (3)0.1205 (2)0.33262 (9)0.0443 (5)
H231.03120.02850.34190.053*
C70.6658 (2)0.87699 (19)0.26080 (8)0.0313 (4)
C60.7936 (2)0.9412 (2)0.21938 (8)0.0318 (4)
C251.2158 (3)0.3253 (2)0.24373 (9)0.0423 (5)
H251.32080.34410.22320.051*
C91.0555 (3)0.6914 (2)0.35000 (8)0.0334 (4)
C11.0729 (3)0.8747 (2)0.15801 (8)0.0351 (4)
O11.3415 (2)0.7556 (2)0.09431 (7)0.0637 (5)
N71.2178 (2)0.19856 (18)0.27062 (8)0.0453 (4)
H7A1.31240.12370.27120.054*
C170.9343 (3)0.3497 (2)0.28265 (8)0.0337 (4)
N31.3074 (2)0.7679 (2)0.33549 (7)0.0439 (4)
H3A1.40040.79970.34000.053*
C81.2639 (3)0.7329 (2)0.28601 (9)0.0392 (5)
H81.33300.74110.25110.047*
C21.2345 (3)0.7425 (2)0.13747 (8)0.0393 (5)
C270.9756 (3)0.4677 (2)0.11018 (8)0.0343 (4)
C180.7458 (3)0.3971 (2)0.30265 (8)0.0370 (4)
H180.67450.48760.29220.044*
C281.1593 (3)0.3843 (2)0.09756 (8)0.0389 (4)
H281.24720.39540.11920.047*
C241.0398 (3)0.2113 (2)0.29699 (8)0.0385 (5)
C160.9040 (3)0.6554 (2)0.38086 (9)0.0408 (5)
H160.82470.61950.36250.049*
C190.6656 (3)0.3076 (2)0.33837 (9)0.0392 (5)
C340.8467 (3)0.4538 (2)0.07628 (9)0.0400 (5)
C101.1749 (3)0.7435 (2)0.37780 (9)0.0389 (4)
N50.6813 (2)0.5511 (2)0.10001 (8)0.0508 (5)
H5A0.57650.56710.08790.061*
C220.7744 (3)0.1691 (2)0.35405 (9)0.0426 (5)
C291.2092 (3)0.2845 (2)0.05225 (9)0.0441 (5)
C50.7630 (3)1.0872 (2)0.20455 (10)0.0462 (5)
H50.65701.15810.22070.055*
C31.0500 (3)1.0176 (3)0.14083 (10)0.0513 (6)
H31.13741.04170.11350.062*
C260.7146 (3)0.6156 (2)0.14517 (9)0.0457 (5)
H260.62360.68550.16820.055*
C140.7053 (4)0.6362 (4)0.47250 (12)0.0769 (8)
H14A0.62000.72420.49000.115*
H14B0.74470.56720.50130.115*
H14C0.64550.59340.44730.115*
C321.0753 (4)0.2693 (2)0.01906 (9)0.0498 (6)
C330.8945 (3)0.3547 (3)0.03046 (9)0.0502 (5)
H330.80700.34640.00820.060*
C150.8732 (3)0.6738 (3)0.43916 (9)0.0496 (5)
C111.1441 (3)0.7635 (3)0.43657 (9)0.0519 (6)
H111.22370.79970.45480.062*
C311.1298 (5)0.1571 (3)0.02934 (11)0.0750 (8)
H31A1.02500.16350.04840.112*
H31B1.17040.06010.01470.112*
H31C1.22870.17650.05560.112*
C120.9932 (4)0.7287 (3)0.46718 (9)0.0554 (6)
C40.8950 (4)1.1245 (3)0.16495 (11)0.0579 (6)
H40.87901.22200.15460.069*
C200.4618 (3)0.3609 (3)0.36204 (11)0.0574 (6)
H20A0.44800.38790.40140.086*
H20B0.40400.28370.35820.086*
H20C0.40390.44490.34150.086*
C130.9562 (5)0.7524 (4)0.53117 (11)0.0908 (10)
H13A1.05430.78460.54330.136*
H13B0.95030.66160.54910.136*
H13C0.84050.82580.54160.136*
C210.6875 (4)0.0748 (3)0.39503 (11)0.0608 (7)
H21A0.77930.01470.40090.091*
H21B0.58840.05180.37960.091*
H21C0.63950.12740.43060.091*
C301.4084 (4)0.1915 (3)0.03947 (11)0.0643 (7)
H30A1.47950.21790.06560.096*
H30B1.45920.20840.00140.096*
H30C1.41280.08940.04320.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02265 (13)0.02596 (14)0.03356 (14)0.00152 (9)0.00148 (9)0.00487 (9)
N10.0260 (8)0.0300 (8)0.0320 (8)0.0065 (6)0.0031 (6)0.0069 (6)
N40.0296 (8)0.0356 (9)0.0405 (9)0.0043 (7)0.0027 (7)0.0024 (7)
N20.0307 (8)0.0341 (8)0.0354 (9)0.0071 (7)0.0015 (7)0.0052 (7)
N60.0329 (9)0.0284 (8)0.0421 (9)0.0010 (7)0.0037 (7)0.0052 (7)
O30.0266 (6)0.0282 (7)0.0438 (8)0.0027 (5)0.0035 (5)0.0076 (6)
O20.0274 (7)0.0441 (8)0.0395 (8)0.0039 (6)0.0022 (6)0.0033 (6)
O40.0290 (7)0.0337 (8)0.0642 (10)0.0022 (6)0.0063 (7)0.0032 (7)
C230.0577 (14)0.0256 (10)0.0444 (12)0.0020 (9)0.0101 (10)0.0061 (9)
C70.0239 (9)0.0286 (10)0.0383 (10)0.0027 (7)0.0034 (8)0.0021 (8)
C60.0295 (9)0.0275 (9)0.0364 (10)0.0046 (7)0.0052 (8)0.0052 (8)
C250.0344 (11)0.0362 (11)0.0489 (12)0.0003 (9)0.0014 (9)0.0053 (9)
C90.0337 (10)0.0284 (9)0.0345 (10)0.0037 (8)0.0036 (8)0.0041 (8)
C10.0314 (10)0.0448 (11)0.0312 (10)0.0152 (8)0.0038 (8)0.0096 (8)
O10.0379 (8)0.0897 (13)0.0485 (9)0.0043 (8)0.0132 (7)0.0230 (9)
N70.0388 (10)0.0315 (9)0.0539 (11)0.0081 (7)0.0040 (8)0.0064 (8)
C170.0397 (10)0.0241 (9)0.0354 (10)0.0049 (8)0.0071 (8)0.0027 (8)
N30.0341 (9)0.0525 (11)0.0479 (10)0.0169 (8)0.0058 (8)0.0023 (8)
C80.0336 (10)0.0428 (11)0.0391 (11)0.0106 (9)0.0006 (8)0.0053 (9)
C20.0257 (10)0.0573 (13)0.0335 (10)0.0108 (9)0.0011 (8)0.0072 (9)
C270.0384 (10)0.0300 (10)0.0337 (10)0.0101 (8)0.0026 (8)0.0073 (8)
C180.0364 (10)0.0260 (9)0.0441 (11)0.0006 (8)0.0071 (9)0.0038 (8)
C280.0390 (11)0.0367 (11)0.0387 (11)0.0091 (9)0.0010 (9)0.0034 (8)
C240.0424 (11)0.0283 (10)0.0394 (11)0.0003 (8)0.0082 (9)0.0006 (8)
C160.0403 (11)0.0423 (11)0.0398 (11)0.0138 (9)0.0016 (9)0.0052 (9)
C190.0439 (11)0.0338 (10)0.0394 (11)0.0105 (9)0.0047 (9)0.0006 (8)
C340.0427 (11)0.0402 (11)0.0395 (11)0.0150 (9)0.0081 (9)0.0096 (9)
C100.0370 (11)0.0362 (11)0.0415 (11)0.0070 (8)0.0059 (9)0.0045 (9)
N50.0359 (10)0.0623 (12)0.0540 (11)0.0091 (9)0.0143 (8)0.0018 (9)
C220.0581 (14)0.0325 (11)0.0369 (11)0.0130 (10)0.0055 (10)0.0033 (9)
C290.0530 (13)0.0370 (11)0.0373 (11)0.0109 (10)0.0059 (9)0.0028 (9)
C50.0465 (12)0.0288 (10)0.0581 (14)0.0048 (9)0.0032 (10)0.0081 (9)
C30.0533 (14)0.0510 (13)0.0524 (13)0.0238 (11)0.0008 (11)0.0204 (11)
C260.0324 (11)0.0499 (13)0.0494 (13)0.0031 (9)0.0041 (9)0.0001 (10)
C140.0722 (19)0.104 (2)0.0523 (15)0.0346 (17)0.0154 (13)0.0067 (15)
C320.0753 (16)0.0429 (12)0.0329 (11)0.0229 (12)0.0008 (11)0.0032 (9)
C330.0646 (15)0.0521 (13)0.0414 (12)0.0255 (12)0.0141 (11)0.0078 (10)
C150.0527 (13)0.0550 (14)0.0378 (11)0.0146 (11)0.0026 (10)0.0069 (10)
C110.0561 (14)0.0587 (14)0.0437 (12)0.0166 (11)0.0150 (11)0.0005 (10)
C310.105 (2)0.0683 (18)0.0490 (15)0.0240 (17)0.0016 (15)0.0136 (13)
C120.0630 (15)0.0625 (15)0.0365 (12)0.0121 (12)0.0042 (11)0.0030 (11)
C40.0665 (16)0.0356 (12)0.0719 (16)0.0181 (11)0.0056 (13)0.0220 (11)
C200.0497 (14)0.0542 (14)0.0639 (15)0.0128 (11)0.0020 (11)0.0094 (12)
C130.107 (3)0.128 (3)0.0393 (15)0.039 (2)0.0024 (15)0.0056 (16)
C210.0778 (18)0.0452 (14)0.0577 (15)0.0200 (12)0.0007 (13)0.0167 (11)
C300.0601 (15)0.0596 (16)0.0592 (15)0.0043 (12)0.0143 (12)0.0126 (12)
Geometric parameters (Å, º) top
Ni1—N11.9976 (15)C16—H160.9300
Ni1—N62.0561 (15)C19—C221.420 (3)
Ni1—N42.0886 (16)C19—C201.513 (3)
Ni1—N22.1227 (16)C34—C331.390 (3)
Ni1—O22.1348 (13)C34—N51.384 (3)
Ni1—O32.1901 (12)C10—C111.393 (3)
N1—C61.330 (2)N5—C261.335 (3)
N1—C11.331 (2)N5—H5A0.8600
N4—C261.313 (3)C22—C211.511 (3)
N4—C271.402 (2)C29—C321.414 (3)
N2—C81.309 (3)C29—C301.515 (3)
N2—C91.398 (2)C5—C41.386 (3)
N6—C251.310 (2)C5—H50.9300
N6—C171.394 (2)C3—C41.379 (3)
O3—C71.261 (2)C3—H30.9300
O2—C21.265 (2)C26—H260.9300
O4—C71.243 (2)C14—C151.523 (3)
C23—C221.379 (3)C14—H14A0.9600
C23—C241.389 (3)C14—H14B0.9600
C23—H230.9300C14—H14C0.9600
C7—C61.517 (3)C32—C331.378 (3)
C6—C51.384 (3)C32—C311.512 (3)
C25—N71.346 (3)C33—H330.9300
C25—H250.9300C15—C121.413 (3)
C9—C101.391 (3)C11—C121.379 (3)
C9—C161.391 (3)C11—H110.9300
C1—C31.377 (3)C31—H31A0.9600
C1—C21.518 (3)C31—H31B0.9600
O1—C21.239 (2)C31—H31C0.9600
N7—C241.377 (3)C12—C131.519 (3)
N7—H7A0.8600C4—H40.9300
C17—C181.389 (3)C20—H20A0.9600
C17—C241.400 (3)C20—H20B0.9600
N3—C81.341 (3)C20—H20C0.9600
N3—C101.379 (3)C13—H13A0.9600
N3—H3A0.8600C13—H13B0.9600
C8—H80.9300C13—H13C0.9600
C27—C281.391 (3)C21—H21A0.9600
C27—C341.391 (3)C21—H21B0.9600
C18—C191.384 (3)C21—H21C0.9600
C18—H180.9300C30—H30A0.9600
C28—C291.385 (3)C30—H30B0.9600
C28—H280.9300C30—H30C0.9600
C16—C151.381 (3)
N1—Ni1—N6179.06 (6)C22—C19—C20120.27 (19)
N1—Ni1—N491.46 (6)C33—C34—N5133.1 (2)
N6—Ni1—N489.43 (6)C33—C34—C27121.8 (2)
N1—Ni1—N290.59 (6)N5—C34—C27105.10 (18)
N6—Ni1—N288.51 (6)N3—C10—C9105.30 (17)
N4—Ni1—N2177.57 (6)N3—C10—C11133.4 (2)
N1—Ni1—O277.98 (6)C9—C10—C11121.2 (2)
N6—Ni1—O2101.73 (6)C26—N5—C34107.34 (17)
N4—Ni1—O289.53 (6)C26—N5—H5A126.3
N2—Ni1—O289.62 (6)C34—N5—H5A126.3
N1—Ni1—O376.12 (5)C23—C22—C19120.33 (19)
N6—Ni1—O3104.15 (6)C23—C22—C21119.6 (2)
N4—Ni1—O392.00 (6)C19—C22—C21120.1 (2)
N2—Ni1—O389.76 (6)C28—C29—C32120.3 (2)
O2—Ni1—O3154.09 (5)C28—C29—C30118.8 (2)
C6—N1—C1121.90 (16)C32—C29—C30120.9 (2)
C6—N1—Ni1120.19 (12)C6—C5—C4118.0 (2)
C1—N1—Ni1117.88 (13)C6—C5—H5121.0
C26—N4—C27104.39 (17)C4—C5—H5121.0
C26—N4—Ni1126.53 (14)C1—C3—C4118.7 (2)
C27—N4—Ni1128.93 (13)C1—C3—H3120.7
C8—N2—C9104.53 (16)C4—C3—H3120.7
C8—N2—Ni1124.08 (14)N4—C26—N5113.77 (19)
C9—N2—Ni1131.26 (13)N4—C26—H26123.1
C25—N6—C17105.31 (16)N5—C26—H26123.1
C25—N6—Ni1124.83 (14)C15—C14—H14A109.5
C17—N6—Ni1129.39 (12)C15—C14—H14B109.5
C7—O3—Ni1114.55 (11)H14A—C14—H14B109.5
C2—O2—Ni1113.29 (12)C15—C14—H14C109.5
C22—C23—C24118.82 (18)H14A—C14—H14C109.5
C22—C23—H23120.6H14B—C14—H14C109.5
C24—C23—H23120.6C33—C32—C29120.9 (2)
O4—C7—O3125.25 (17)C33—C32—C31119.2 (2)
O4—C7—C6118.94 (16)C29—C32—C31119.9 (2)
O3—C7—C6115.81 (15)C32—C33—C34118.1 (2)
N1—C6—C5120.68 (18)C32—C33—H33121.0
N1—C6—C7112.95 (15)C34—C33—H33121.0
C5—C6—C7126.36 (17)C16—C15—C12120.6 (2)
N6—C25—N7113.26 (19)C16—C15—C14118.6 (2)
N6—C25—H25123.4C12—C15—C14120.7 (2)
N7—C25—H25123.4C12—C11—C10118.6 (2)
C10—C9—C16120.18 (18)C12—C11—H11120.7
C10—C9—N2109.36 (17)C10—C11—H11120.7
C16—C9—N2130.46 (18)C32—C31—H31A109.5
N1—C1—C3120.40 (19)C32—C31—H31B109.5
N1—C1—C2112.89 (16)H31A—C31—H31B109.5
C3—C1—C2126.71 (18)C32—C31—H31C109.5
C25—N7—C24107.06 (16)H31A—C31—H31C109.5
C25—N7—H7A126.5H31B—C31—H31C109.5
C24—N7—H7A126.5C11—C12—C15120.3 (2)
C18—C17—N6131.03 (17)C11—C12—C13119.2 (2)
C18—C17—C24120.27 (18)C15—C12—C13120.5 (2)
N6—C17—C24108.68 (17)C3—C4—C5120.3 (2)
C8—N3—C10107.15 (17)C3—C4—H4119.8
C8—N3—H3A126.4C5—C4—H4119.8
C10—N3—H3A126.4C19—C20—H20A109.5
N2—C8—N3113.66 (18)C19—C20—H20B109.5
N2—C8—H8123.2H20A—C20—H20B109.5
N3—C8—H8123.2C19—C20—H20C109.5
O1—C2—O2126.2 (2)H20A—C20—H20C109.5
O1—C2—C1118.03 (19)H20B—C20—H20C109.5
O2—C2—C1115.77 (16)C12—C13—H13A109.5
C28—C27—C34119.94 (18)C12—C13—H13B109.5
C28—C27—N4130.66 (18)H13A—C13—H13B109.5
C34—C27—N4109.40 (17)C12—C13—H13C109.5
C19—C18—C17119.02 (17)H13A—C13—H13C109.5
C19—C18—H18120.5H13B—C13—H13C109.5
C17—C18—H18120.5C22—C21—H21A109.5
C29—C28—C27119.0 (2)C22—C21—H21B109.5
C29—C28—H28120.5H21A—C21—H21B109.5
C27—C28—H28120.5C22—C21—H21C109.5
N7—C24—C23133.22 (18)H21A—C21—H21C109.5
N7—C24—C17105.66 (17)H21B—C21—H21C109.5
C23—C24—C17121.09 (19)C29—C30—H30A109.5
C15—C16—C9119.0 (2)C29—C30—H30B109.5
C15—C16—H16120.5H30A—C30—H30B109.5
C9—C16—H16120.5C29—C30—H30C109.5
C18—C19—C22120.42 (19)H30A—C30—H30C109.5
C18—C19—C20119.28 (18)H30B—C30—H30C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.862.272.877 (2)127
N5—H5A···O1ii0.862.142.786 (2)132
N7—H7A···O4iii0.861.942.788 (2)171
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C7H3NO4)(C9H10N2)3]
Mr662.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5884 (7), 9.4499 (9), 23.839 (2)
α, β, γ (°)89.0040 (9), 81.484 (1), 74.078 (1)
V3)1625.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.18 × 0.15 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.872, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
12396, 5721, 5078
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 0.94
No. of reflections5721
No. of parameters421
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.862.272.877 (2)127
N5—H5A···O1ii0.862.142.786 (2)132
N7—H7A···O4iii0.861.942.788 (2)171
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y1, z.
 

Acknowledgements

The authors thank Hebei United University for supporting this work.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, G.-Y., Fan, L.-H., Yang, L.-X. & Khan, I. U. (2010). Acta Cryst. E66, m532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHow, G. A., Whei, L. K., Graeme, R. H., Jeffrey, A. C., Mary, M. & Nick, C. (1991). J. Chem. Soc. Dalton Trans. pp. 3193–3291.  Google Scholar
First citationLiu, T. F., Wu, W. F., Wan, C. Q., He, C. H., Jiao, C. H. & Cui, G. H. (2011). J. Coord. Chem. 64, 975–986.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds