organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propanaminium p-toluene­sulfonate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jinyunihao@yahoo.cn

(Received 23 April 2012; accepted 30 April 2012; online 5 May 2012)

In the crystal structure of the title salt, C3H10N+·C7H7O3S, N—H⋯O hydrogen bonds involving the ammonium groups of the cations and the sulfonate O atoms result in the formation of a three-dimensional network.

Related literature

For general background to ferroelectric metal-organic frameworks, see: Zhang et al. (2009[Zhang, W., Li, Z.-C., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544-12545.]). For related structures, see: Helvenston et al. (2006[Helvenston, M. C., Nesterov, V. N. & Jenkins, H. J. (2006). Acta Cryst. E62, o2339-o2341.]); Collier et al. (2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]); Koshima et al. (2001[Koshima, H., Hamada, M., Yagi, I. & Uosaki, K. (2001). Cryst. Growth Des. 1, 467-471.]).

[Scheme 1]

Experimental

Crystal data
  • C3H10N+·C7H7O3S

  • Mr = 231.31

  • Triclinic, [P \overline 1]

  • a = 5.6682 (11) Å

  • b = 7.3927 (15) Å

  • c = 13.817 (3) Å

  • α = 93.81 (3)°

  • β = 94.22 (3)°

  • γ = 91.27 (3)°

  • V = 575.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.489, Tmax = 1.000

  • 6023 measured reflections

  • 2639 independent reflections

  • 1897 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.189

  • S = 1.03

  • 2639 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 2.00 2.892 (4) 176
N1—H1C⋯O3ii 0.89 2.05 2.921 (4) 165
N1—H1B⋯O1 0.89 2.09 2.884 (4) 149
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several crystal structures of p-toluenesulfonates have been reported previously, with the ammonium groups of the cations and the sulfonate O atoms efficiently establishing numerous hydrogen bond interactions (Helvenston et al., 2006; Collier et al., 2006; Koshima et al., 2001). As an extension of this research, the synthesis and crystal structure of the title compound, (C3H10N+)(C7H7O3S-)-, aiming at enriching the series of p-toluenesulfonates is presented herein.

Ferroelectric compounds have a wide use in modern science. These compounds have displayed such technical applications as ferroelectric random access memories, ferroelectric field-effect transistors, piezoelectric sensors, nonlinear optical devices as a result of their excellent ferroelectric, piezoelectric, pyroelectric, and optical properties. Numerous new ferroelectric metal-organic coordination compounds corresponding to the necessary requirements for ferroelectric properties have been found, yet other necessary conditions, such as a phase transition, a good electric hysteresis loop and electric domain, and a dielectric anomaly, are often missed in these compounds (Zhang et al., 2009). Therefore pure organic compounds have a tendency to make up for the drawbacks found in ferroelectric metal-organic coordination compounds. As part of our search for simple ferroelectric compounds, the title compound was investigated and its crystal structure is reported herein.

The asymmetric unit of the unit cell contains one anion and one cation that are shown in Fig. 1. Hydrogen bond interactions are listed in Table 1. The compound remains stable as a result of the existence of several hydrogen bond interactions formed in the crystal structure. These interactions tie the cations and anions together in a complex spatial geometry displayed in Fig2).

Related literature top

For general background to ferroelectric metal-organic frameworks, see: Zhang et al. (2009). For related structures, see: Helvenston et al. (2006); Collier et al. (2006); Koshima et al. (2001).

Experimental top

(C3H10N+)(C7H7O3S-) was formed from a mixture of propylamine, C3H9N (118.22 mg, 2.00 mmol), and p-toluenesulfonic acid, C7H7SO3H (172 mg, 1.00 mmol), and distilled water (10 mL). The reaction mixture was stirred a few minutes at room temperature, giving a clear solution. After evaporation of the solvent for a few days, block-shaped colorless crystals suitable for X-ray diffraction were obtained in 86% yield, filtered and washed with distilled water.

Refinement top

H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.93 to 0.97 Å and N—H = 0.89 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the anion and cation of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed along the a axis. Intermolecular interactions are shown as dashed lines.
Propanaminium p-toluenesulfonate top
Crystal data top
C3H10N+·C7H7O3SZ = 2
Mr = 231.31F(000) = 248
Triclinic, P1Dx = 1.334 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6682 (11) ÅCell parameters from 3450 reflections
b = 7.3927 (15) Åθ = 6.2–55.3°
c = 13.817 (3) ŵ = 0.27 mm1
α = 93.81 (3)°T = 293 K
β = 94.22 (3)°Block, colorless
γ = 91.27 (3)°0.3 × 0.3 × 0.2 mm
V = 575.9 (2) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
2639 independent reflections
Radiation source: fine-focus sealed tube1897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 77
Tmin = 0.489, Tmax = 1.000k = 99
6023 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0894P)2 + 0.589P]
where P = (Fo2 + 2Fc2)/3
2639 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C3H10N+·C7H7O3Sγ = 91.27 (3)°
Mr = 231.31V = 575.9 (2) Å3
Triclinic, P1Z = 2
a = 5.6682 (11) ÅMo Kα radiation
b = 7.3927 (15) ŵ = 0.27 mm1
c = 13.817 (3) ÅT = 293 K
α = 93.81 (3)°0.3 × 0.3 × 0.2 mm
β = 94.22 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2639 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1897 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 1.000Rint = 0.040
6023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.03Δρmax = 1.02 e Å3
2639 reflectionsΔρmin = 0.52 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1911 (8)0.6760 (6)0.2544 (3)0.0653 (12)
H1D0.30470.77340.27100.098*
H1E0.16340.65990.18490.098*
H1F0.25090.56620.27900.098*
C20.0444 (8)0.7220 (7)0.2999 (3)0.0667 (12)
H2A0.10120.83660.27840.080*
H2B0.16390.62840.27960.080*
C30.0004 (9)0.7333 (7)0.4042 (3)0.0677 (12)
H3A0.10280.83790.42350.081*
H3B0.08290.62630.42290.081*
C40.6719 (8)0.7797 (6)1.0672 (3)0.0566 (10)
H4A0.83540.74831.07410.085*
H4B0.57840.69361.09800.085*
H4C0.65350.89881.09730.085*
C50.5912 (6)0.7771 (4)0.9612 (2)0.0390 (8)
C60.3676 (6)0.7134 (5)0.9274 (2)0.0426 (8)
H60.26660.66910.97090.051*
C70.2909 (6)0.7140 (4)0.8304 (2)0.0379 (7)
H70.13920.67120.80910.045*
C80.4394 (5)0.7782 (4)0.7650 (2)0.0287 (6)
C90.6642 (6)0.8422 (5)0.7971 (2)0.0403 (8)
H90.76620.88460.75340.048*
C100.7356 (6)0.8427 (5)0.8943 (2)0.0444 (8)
H100.88580.88860.91580.053*
N10.2160 (5)0.7484 (4)0.45840 (19)0.0394 (7)
H1A0.29580.84470.44080.059*
H1B0.17490.76060.52200.059*
H1C0.30690.64880.44500.059*
O10.0916 (4)0.7800 (4)0.63485 (18)0.0593 (8)
O20.4559 (5)0.9336 (3)0.60426 (17)0.0487 (6)
O30.4344 (4)0.6090 (3)0.59619 (16)0.0463 (6)
S10.34710 (14)0.77477 (11)0.64010 (5)0.0344 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.073 (3)0.068 (3)0.058 (3)0.010 (2)0.025 (2)0.006 (2)
C20.072 (3)0.070 (3)0.057 (3)0.004 (2)0.004 (2)0.005 (2)
C30.079 (3)0.065 (3)0.059 (3)0.004 (2)0.013 (2)0.003 (2)
C40.076 (3)0.059 (2)0.0333 (18)0.015 (2)0.0078 (18)0.0034 (17)
C50.050 (2)0.0366 (17)0.0294 (15)0.0122 (15)0.0036 (14)0.0001 (13)
C60.051 (2)0.0438 (19)0.0345 (16)0.0011 (16)0.0067 (15)0.0081 (14)
C70.0376 (17)0.0409 (18)0.0349 (16)0.0059 (14)0.0036 (13)0.0010 (13)
C80.0336 (15)0.0271 (14)0.0251 (13)0.0081 (12)0.0012 (11)0.0021 (11)
C90.0331 (17)0.052 (2)0.0361 (16)0.0024 (14)0.0050 (14)0.0024 (15)
C100.0329 (17)0.058 (2)0.0406 (18)0.0017 (15)0.0019 (14)0.0033 (16)
N10.0468 (16)0.0387 (15)0.0326 (14)0.0032 (12)0.0017 (12)0.0022 (12)
O10.0358 (14)0.103 (2)0.0379 (13)0.0121 (14)0.0045 (11)0.0013 (14)
O20.0657 (17)0.0429 (14)0.0392 (13)0.0082 (12)0.0040 (12)0.0136 (11)
O30.0599 (16)0.0423 (13)0.0356 (12)0.0057 (11)0.0045 (11)0.0088 (10)
S10.0370 (5)0.0403 (5)0.0255 (4)0.0057 (3)0.0007 (3)0.0003 (3)
Geometric parameters (Å, º) top
C1—C21.552 (6)C6—C71.378 (4)
C1—H1D0.9600C6—H60.9300
C1—H1E0.9600C7—C81.379 (4)
C1—H1F0.9600C7—H70.9300
C2—C31.442 (6)C8—C91.381 (4)
C2—H2A0.9700C8—S11.764 (3)
C2—H2B0.9700C9—C101.374 (5)
C3—N11.482 (5)C9—H90.9300
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700N1—H1A0.8900
C4—C51.500 (4)N1—H1B0.8900
C4—H4A0.9600N1—H1C0.8900
C4—H4B0.9600O1—S11.446 (3)
C4—H4C0.9600O2—S11.447 (3)
C5—C61.380 (5)O3—S11.445 (2)
C5—C101.383 (5)
C2—C1—H1D109.5C7—C6—C5121.3 (3)
C2—C1—H1E109.5C7—C6—H6119.3
H1D—C1—H1E109.5C5—C6—H6119.3
C2—C1—H1F109.5C6—C7—C8120.0 (3)
H1D—C1—H1F109.5C6—C7—H7120.0
H1E—C1—H1F109.5C8—C7—H7120.0
C3—C2—C1108.1 (4)C7—C8—C9119.8 (3)
C3—C2—H2A110.1C7—C8—S1120.6 (2)
C1—C2—H2A110.1C9—C8—S1119.6 (2)
C3—C2—H2B110.1C10—C9—C8119.3 (3)
C1—C2—H2B110.1C10—C9—H9120.4
H2A—C2—H2B108.4C8—C9—H9120.4
C2—C3—N1114.5 (4)C9—C10—C5122.1 (3)
C2—C3—H3A108.6C9—C10—H10118.9
N1—C3—H3A108.6C5—C10—H10118.9
C2—C3—H3B108.6C3—N1—H1A109.5
N1—C3—H3B108.6C3—N1—H1B109.5
H3A—C3—H3B107.6H1A—N1—H1B109.5
C5—C4—H4A109.5C3—N1—H1C109.5
C5—C4—H4B109.5H1A—N1—H1C109.5
H4A—C4—H4B109.5H1B—N1—H1C109.5
C5—C4—H4C109.5O3—S1—O1113.29 (17)
H4A—C4—H4C109.5O3—S1—O2111.81 (15)
H4B—C4—H4C109.5O1—S1—O2112.99 (17)
C6—C5—C10117.6 (3)O3—S1—C8106.01 (14)
C6—C5—C4121.1 (3)O1—S1—C8105.90 (15)
C10—C5—C4121.3 (3)O2—S1—C8106.13 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.002.892 (4)176
N1—H1C···O3ii0.892.052.921 (4)165
N1—H1B···O10.892.092.884 (4)149
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC3H10N+·C7H7O3S
Mr231.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.6682 (11), 7.3927 (15), 13.817 (3)
α, β, γ (°)93.81 (3), 94.22 (3), 91.27 (3)
V3)575.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.489, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6023, 2639, 1897
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.189, 1.03
No. of reflections2639
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.52

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.002.892 (4)175.9
N1—H1C···O3ii0.892.052.921 (4)164.9
N1—H1B···O10.892.092.884 (4)148.9
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

The author thanks Southeast University for support.

References

First citationCollier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498–505.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHelvenston, M. C., Nesterov, V. N. & Jenkins, H. J. (2006). Acta Cryst. E62, o2339–o2341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoshima, H., Hamada, M., Yagi, I. & Uosaki, K. (2001). Cryst. Growth Des. 1, 467–471.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Li, Z.-C., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds