organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9,9-Di­butyl-9H-fluorene-2-carbo­nitrile

aDepartment of Chemical Engineering, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, bDepartment of Organic Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and cDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 30 April 2012; accepted 18 May 2012; online 26 May 2012)

The fluorene fragment of the title compound, C22H25N, is essentially planar, with an r.m.s deviation of the five-membered ring of 0.005 (2) Å. The dihedral angle between this ring and the outer benzene rings are 1.5 (2) and 0.7 (2)° while that between the benzene rings is 2.1 (2)°. The cyano group makes an angle of 0.3 (2)° with the attached benzene ring.

Related literature

For applications of the title compound, including as a substrate in the synthesis of organic light-emitting materials, see: Jiang et al. (2012[Jiang, P., Zhao, D. D., Yang, X. L., Zhu, X. L., Chan, J. & Zhu, H. J. (2012). Org. Biomol. Chem. doi:10.1039/C2OB25120E.]). For its synthesis, see: Omer et al. (2010[Omer, K. M., Ku, S. Y., Chen, Y. C., Wong, K. T. & Bard, A. J. (2010). J. Am. Chem. Soc. 132, 10944-10952.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H25N

  • Mr = 303.43

  • Triclinic, [P \overline 1]

  • a = 9.2810 (19) Å

  • b = 9.994 (2) Å

  • c = 11.885 (2) Å

  • α = 100.35 (3)°

  • β = 96.73 (3)°

  • γ = 117.42 (3)°

  • V = 937.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.982, Tmax = 0.994

  • 3652 measured reflections

  • 3420 independent reflections

  • 1875 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.186

  • S = 1.00

  • 3420 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 in CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 2-cyano-9,9-dibutylfluorene, is an important compound which can be used in many fields such as a substrate in the synthesis of organic light-emitting materials (Jiang et al., 2012). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. Bond lengths are within normal ranges (Allen et al., 1987).

In the molecule of the title compound, the fluorene fragment of the title compound, C22H25N, is essentially planar with a r.m.s deviation of ring A (C1/C6/C7/C12/C13) of 0.005 (2). The dihedral angle between ring A (C1/C6/C7/C12/C13) and the benzene rings B (C1—C6) and C (C7—C12) is 1.5 (2)° and 0.7 (2)°, respectively. The dihedral angle between the benzene rings B and C is 2.1 (2)°. The angle of cyano group with the benzene ring B is 0.3 (2)°.

Related literature top

For applications of the title compound, including as a substrate in the synthesis of organic light-emitting materials, see: Jiang et al. (2012). For its synthesis, see: Omer et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound,(I) was prepared according to the literature method (Omer et al., 2010). Yellow block-shaped crystals were obtained by dissolving (I) (0.5 g, 1.04 mmol) in a mixed solution (10 ml petroleum ether and 1 ml EtOAc) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

All hydrogen atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq (C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: SET4 in CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
9,9-Dibutyl-9H-fluorene-2-carbonitrile top
Crystal data top
C22H25NZ = 2
Mr = 303.43F(000) = 328
Triclinic, P1Dx = 1.075 Mg m3
Hall symbol: -P 1Melting point: 374 K
a = 9.2810 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.994 (2) ÅCell parameters from 25 reflections
c = 11.885 (2) Åθ = 9–13°
α = 100.35 (3)°µ = 0.06 mm1
β = 96.73 (3)°T = 293 K
γ = 117.42 (3)°Block, yellow
V = 937.0 (3) Å30.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1875 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.4°, θmin = 1.8°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1210
Tmin = 0.982, Tmax = 0.994l = 1414
3652 measured reflections3 standard reflections every 200 reflections
3420 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.070P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
3420 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C22H25Nγ = 117.42 (3)°
Mr = 303.43V = 937.0 (3) Å3
Triclinic, P1Z = 2
a = 9.2810 (19) ÅMo Kα radiation
b = 9.994 (2) ŵ = 0.06 mm1
c = 11.885 (2) ÅT = 293 K
α = 100.35 (3)°0.30 × 0.20 × 0.10 mm
β = 96.73 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1875 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.982, Tmax = 0.9943 standard reflections every 200 reflections
3652 measured reflections intensity decay: 1%
3420 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0681 restraint
wR(F2) = 0.186H-atom parameters constrained
S = 1.00Δρmax = 0.45 e Å3
3420 reflectionsΔρmin = 0.13 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.2377 (4)0.2430 (4)0.3798 (3)0.1162 (11)
C10.2296 (3)0.0884 (3)0.2410 (2)0.0587 (7)
C20.1181 (3)0.0220 (3)0.3086 (2)0.0643 (7)
H2A0.14030.06980.38810.077*
C30.0281 (3)0.1178 (3)0.2548 (3)0.0692 (7)
C40.0608 (4)0.1901 (3)0.1362 (3)0.0816 (9)
H4A0.15940.28340.10140.098*
C50.0513 (4)0.1248 (3)0.0704 (3)0.0782 (9)
H5A0.03010.17420.00860.094*
C60.1966 (3)0.0153 (3)0.1223 (2)0.0624 (7)
C70.3335 (3)0.1124 (3)0.0740 (2)0.0658 (7)
C80.3608 (4)0.0907 (4)0.0388 (3)0.0875 (9)
H8A0.28540.00150.09800.105*
C90.5023 (5)0.2045 (5)0.0604 (3)0.1045 (12)
H9A0.52150.19280.13570.125*
C100.6160 (5)0.3356 (4)0.0274 (3)0.1079 (12)
H10A0.71160.41020.01100.130*
C110.5895 (4)0.3572 (4)0.1397 (3)0.0883 (10)
H11A0.66590.44610.19880.106*
C120.4472 (3)0.2443 (3)0.1626 (2)0.0652 (7)
C130.3936 (3)0.2420 (3)0.2785 (2)0.0587 (7)
C140.5202 (3)0.2379 (3)0.3724 (2)0.0684 (8)
H14A0.62490.33480.38920.082*
H14B0.47980.23410.44410.082*
C150.5545 (4)0.1028 (4)0.3405 (3)0.0891 (10)
H15A0.57930.09650.26330.107*
H15B0.45440.00620.33590.107*
C160.6984 (5)0.1167 (5)0.4276 (3)0.1128 (13)
H16A0.68450.14350.50660.135*
H16B0.69290.01560.41430.135*
C170.8637 (6)0.2332 (7)0.4198 (5)0.166 (2)
H17A0.94730.23820.47890.248*
H17B0.87030.33370.43190.248*
H17C0.88190.20420.34350.248*
C180.3682 (3)0.3808 (3)0.3257 (2)0.0625 (7)
H18A0.33090.36980.39810.075*
H18B0.47550.47560.34510.075*
C190.2465 (4)0.4010 (3)0.2449 (2)0.0739 (8)
H19A0.13780.30810.22690.089*
H19B0.28190.41090.17180.089*
C200.2307 (5)0.5418 (4)0.2962 (3)0.1006 (11)
H20A0.20370.53550.37220.121*
H20B0.33780.63510.30890.121*
C210.1008 (6)0.5581 (6)0.2209 (4)0.1452 (17)
H21A0.09810.64980.25900.218*
H21B0.00640.46760.20950.218*
H21C0.12790.56720.14610.218*
C220.1465 (4)0.1884 (4)0.3242 (3)0.0849 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.092 (2)0.094 (2)0.125 (3)0.0158 (18)0.039 (2)0.0225 (19)
C10.0596 (16)0.0563 (15)0.0570 (15)0.0306 (13)0.0061 (13)0.0067 (12)
C20.0649 (17)0.0584 (16)0.0611 (16)0.0283 (15)0.0085 (14)0.0062 (13)
C30.0641 (17)0.0559 (16)0.079 (2)0.0258 (14)0.0094 (14)0.0128 (14)
C40.074 (2)0.0562 (17)0.087 (2)0.0209 (16)0.0050 (18)0.0046 (16)
C50.087 (2)0.0663 (18)0.0619 (17)0.0320 (17)0.0012 (16)0.0007 (14)
C60.0681 (17)0.0559 (15)0.0562 (16)0.0317 (14)0.0023 (13)0.0031 (13)
C70.0797 (19)0.0696 (18)0.0539 (16)0.0437 (16)0.0139 (14)0.0105 (14)
C80.107 (3)0.083 (2)0.0657 (19)0.046 (2)0.0185 (18)0.0053 (16)
C90.134 (3)0.107 (3)0.076 (2)0.058 (3)0.047 (2)0.022 (2)
C100.118 (3)0.100 (3)0.097 (3)0.042 (2)0.053 (2)0.021 (2)
C110.084 (2)0.084 (2)0.080 (2)0.0303 (19)0.0287 (18)0.0086 (17)
C120.0658 (17)0.0667 (17)0.0613 (16)0.0340 (15)0.0142 (14)0.0091 (14)
C130.0553 (15)0.0584 (15)0.0524 (14)0.0254 (13)0.0067 (12)0.0032 (12)
C140.0605 (16)0.0752 (18)0.0640 (17)0.0334 (15)0.0085 (13)0.0092 (14)
C150.093 (2)0.094 (2)0.093 (2)0.060 (2)0.0151 (19)0.0181 (18)
C160.121 (3)0.146 (4)0.112 (3)0.097 (3)0.022 (2)0.039 (3)
C170.101 (3)0.239 (6)0.176 (5)0.105 (4)0.022 (3)0.048 (4)
C180.0583 (16)0.0606 (16)0.0571 (15)0.0246 (13)0.0107 (13)0.0043 (12)
C190.0756 (19)0.0799 (19)0.0663 (17)0.0441 (17)0.0084 (15)0.0081 (15)
C200.116 (3)0.099 (3)0.104 (3)0.073 (2)0.017 (2)0.014 (2)
C210.178 (4)0.184 (5)0.137 (4)0.143 (4)0.024 (3)0.043 (3)
C220.074 (2)0.064 (2)0.095 (2)0.0224 (17)0.0118 (18)0.0086 (17)
Geometric parameters (Å, º) top
N—C221.135 (4)C13—C141.544 (3)
C1—C21.382 (3)C14—C151.519 (4)
C1—C61.393 (3)C14—H14A0.9700
C1—C131.522 (3)C14—H14B0.9700
C2—C31.390 (4)C15—C161.525 (4)
C2—H2A0.9300C15—H15A0.9700
C3—C41.390 (4)C15—H15B0.9700
C3—C221.447 (4)C16—C171.464 (5)
C4—C51.366 (4)C16—H16A0.9700
C4—H4A0.9300C16—H16B0.9700
C5—C61.384 (4)C17—H17A0.9600
C5—H5A0.9300C17—H17B0.9600
C6—C71.457 (4)C17—H17C0.9600
C7—C121.385 (4)C18—C191.505 (4)
C7—C81.391 (4)C18—H18A0.9700
C8—C91.376 (4)C18—H18B0.9700
C8—H8A0.9300C19—C201.508 (4)
C9—C101.376 (5)C19—H19A0.9700
C9—H9A0.9300C19—H19B0.9700
C10—C111.383 (4)C20—C211.504 (5)
C10—H10A0.9300C20—H20A0.9700
C11—C121.383 (4)C20—H20B0.9700
C11—H11A0.9300C21—H21A0.9600
C12—C131.519 (3)C21—H21B0.9600
C13—C181.531 (3)C21—H21C0.9600
C2—C1—C6120.5 (2)C13—C14—H14B108.3
C2—C1—C13128.1 (2)H14A—C14—H14B107.4
C6—C1—C13111.4 (2)C14—C15—C16113.8 (3)
C1—C2—C3118.4 (2)C14—C15—H15A108.8
C1—C2—H2A120.8C16—C15—H15A108.8
C3—C2—H2A120.8C14—C15—H15B108.8
C2—C3—C4120.9 (3)C16—C15—H15B108.8
C2—C3—C22119.0 (3)H15A—C15—H15B107.7
C4—C3—C22120.1 (3)C17—C16—C15114.2 (3)
C5—C4—C3120.3 (3)C17—C16—H16A108.7
C5—C4—H4A119.8C15—C16—H16A108.7
C3—C4—H4A119.8C17—C16—H16B108.7
C4—C5—C6119.5 (3)C15—C16—H16B108.7
C4—C5—H5A120.3H16A—C16—H16B107.6
C6—C5—H5A120.3C16—C17—H17A109.5
C5—C6—C1120.3 (3)C16—C17—H17B109.5
C5—C6—C7131.4 (3)H17A—C17—H17B109.5
C1—C6—C7108.3 (2)C16—C17—H17C109.5
C12—C7—C8120.8 (3)H17A—C17—H17C109.5
C12—C7—C6108.5 (2)H17B—C17—H17C109.5
C8—C7—C6130.7 (3)C19—C18—C13116.2 (2)
C9—C8—C7118.3 (3)C19—C18—H18A108.2
C9—C8—H8A120.9C13—C18—H18A108.2
C7—C8—H8A120.9C19—C18—H18B108.2
C8—C9—C10121.2 (3)C13—C18—H18B108.2
C8—C9—H9A119.4H18A—C18—H18B107.4
C10—C9—H9A119.4C18—C19—C20113.2 (2)
C9—C10—C11120.6 (3)C18—C19—H19A108.9
C9—C10—H10A119.7C20—C19—H19A108.9
C11—C10—H10A119.7C18—C19—H19B108.9
C12—C11—C10118.8 (3)C20—C19—H19B108.9
C12—C11—H11A120.6H19A—C19—H19B107.7
C10—C11—H11A120.6C21—C20—C19114.2 (3)
C11—C12—C7120.3 (3)C21—C20—H20A108.7
C11—C12—C13128.0 (2)C19—C20—H20A108.7
C7—C12—C13111.7 (2)C21—C20—H20B108.7
C12—C13—C1100.2 (2)C19—C20—H20B108.7
C12—C13—C18112.8 (2)H20A—C20—H20B107.6
C1—C13—C18111.7 (2)C20—C21—H21A109.5
C12—C13—C14111.2 (2)C20—C21—H21B109.5
C1—C13—C14111.3 (2)H21A—C21—H21B109.5
C18—C13—C14109.4 (2)C20—C21—H21C109.5
C15—C14—C13115.9 (2)H21A—C21—H21C109.5
C15—C14—H14A108.3H21B—C21—H21C109.5
C13—C14—H14A108.3N—C22—C3179.1 (4)
C15—C14—H14B108.3
C6—C1—C2—C30.8 (4)C8—C7—C12—C13179.0 (3)
C13—C1—C2—C3177.7 (3)C6—C7—C12—C131.0 (3)
C1—C2—C3—C40.6 (4)C11—C12—C13—C1179.9 (3)
C1—C2—C3—C22179.7 (3)C7—C12—C13—C10.8 (3)
C2—C3—C4—C50.3 (4)C11—C12—C13—C1861.0 (4)
C22—C3—C4—C5179.4 (3)C7—C12—C13—C18119.7 (2)
C3—C4—C5—C61.0 (4)C11—C12—C13—C1462.3 (4)
C4—C5—C6—C10.8 (4)C7—C12—C13—C14117.0 (3)
C4—C5—C6—C7178.0 (3)C2—C1—C13—C12178.5 (3)
C2—C1—C6—C50.1 (4)C6—C1—C13—C120.2 (3)
C13—C1—C6—C5178.7 (2)C2—C1—C13—C1858.7 (3)
C2—C1—C6—C7179.2 (2)C6—C1—C13—C18119.9 (2)
C13—C1—C6—C70.4 (3)C2—C1—C13—C1463.9 (3)
C5—C6—C7—C12178.1 (3)C6—C1—C13—C14117.5 (2)
C1—C6—C7—C120.9 (3)C12—C13—C14—C1556.8 (3)
C5—C6—C7—C81.9 (5)C1—C13—C14—C1554.0 (3)
C1—C6—C7—C8179.1 (3)C18—C13—C14—C15177.9 (2)
C12—C7—C8—C90.9 (5)C13—C14—C15—C16171.4 (3)
C6—C7—C8—C9179.1 (3)C14—C15—C16—C1774.2 (4)
C7—C8—C9—C101.2 (5)C12—C13—C18—C1956.3 (3)
C8—C9—C10—C111.0 (6)C1—C13—C18—C1955.7 (3)
C9—C10—C11—C120.5 (6)C14—C13—C18—C19179.5 (2)
C10—C11—C12—C70.2 (5)C13—C18—C19—C20178.8 (3)
C10—C11—C12—C13179.1 (3)C18—C19—C20—C21175.8 (3)
C8—C7—C12—C110.4 (4)C2—C3—C22—N32 (24)
C6—C7—C12—C11179.6 (3)C4—C3—C22—N147 (24)

Experimental details

Crystal data
Chemical formulaC22H25N
Mr303.43
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2810 (19), 9.994 (2), 11.885 (2)
α, β, γ (°)100.35 (3), 96.73 (3), 117.42 (3)
V3)937.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.982, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
3652, 3420, 1875
Rint0.027
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.186, 1.00
No. of reflections3420
No. of parameters208
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.13

Computer programs: , SET4 in CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJiang, P., Zhao, D. D., Yang, X. L., Zhu, X. L., Chan, J. & Zhu, H. J. (2012). Org. Biomol. Chem. doi:10.1039/C2OB25120E.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOmer, K. M., Ku, S. Y., Chen, Y. C., Wong, K. T. & Bard, A. J. (2010). J. Am. Chem. Soc. 132, 10944–10952.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds