metal-organic compounds
Tris(3-chloropentane-2,4-dionato-κ2O,O′)aluminium
aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SI-1000 Ljubljana, Slovenia, and bCO EN–FIST, Dunajska 156, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: franc.perdih@fkkt.uni-lj.si
In the title compound, [Al(C5H6ClO2)3], the AlIII cation is situated on a twofold rotation axis and is coordinated by six O atoms from three 3-chloropentane-2,4-dionate ligands in an octahedral environment. Al—O bond lengths are in the range 1.8741 (14)–1.8772 (14) Å. In the crystal, molecules are linked via C—H⋯Cl contacts.
Related literature
For applications of metal complexes with β-diketonate ligands, see: Bray et al. (2007); Garibay et al. (2009); Lichtenberger et al. (2010); Perdih (2011); Vreshch et al. (2004); Wu & Wang (2009). For related structures, see: Hon & Pfluger (1973); Perdih (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812023203/im2374sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812023203/im2374Isup2.hkl
To a clear solution of Al2(SO4)3.18H2O (1 mmol, 0.67 g) in water (15 ml) a solution of 3-chloropentane-2,4-dione (6 mmol, 0.81 g) in methanol (5 ml) was added while stirring. Afterwards 1 M NaOH (6 ml) was slowly added and the resulting solution was stirred at 70°C for 15 minutes. After cooling to room temperature the light pink product was filtrated, washed with water (20 ml), and subsequently air-dried. Yield: 0.60 g, 70%. Crystals suitable for X-ray analysis were obtained by recrystallization from ethanol.
All H atoms were initially located in a difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.96 Å, and with Uiso(H) = 1.5Ueq(C).
Data collection: COLLECT (Hooft, 1998); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).[Al(C5H6ClO2)3] | F(000) = 880 |
Mr = 427.62 | Dx = 1.494 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2269 reflections |
a = 12.8790 (3) Å | θ = 2.6–27.5° |
b = 9.9086 (2) Å | µ = 0.56 mm−1 |
c = 15.5311 (4) Å | T = 293 K |
β = 106.368 (2)° | Plate, pink |
V = 1901.64 (8) Å3 | 0.33 × 0.25 × 0.08 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 2156 independent reflections |
Graphite monochromator | 1759 reflections with I > 2σ(I) |
Detector resolution: 0.055 pixels mm-1 | Rint = 0.014 |
ω scans | θmax = 27.5°, θmin = 5.6° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | h = −16→16 |
Tmin = 0.838, Tmax = 0.957 | k = −10→12 |
3916 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0632P)2 + 1.1678P] where P = (Fo2 + 2Fc2)/3 |
2156 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[Al(C5H6ClO2)3] | V = 1901.64 (8) Å3 |
Mr = 427.62 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 12.8790 (3) Å | µ = 0.56 mm−1 |
b = 9.9086 (2) Å | T = 293 K |
c = 15.5311 (4) Å | 0.33 × 0.25 × 0.08 mm |
β = 106.368 (2)° |
Nonius KappaCCD area-detector diffractometer | 2156 independent reflections |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | 1759 reflections with I > 2σ(I) |
Tmin = 0.838, Tmax = 0.957 | Rint = 0.014 |
3916 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.33 e Å−3 |
2156 reflections | Δρmin = −0.34 e Å−3 |
118 parameters |
Experimental. 211 frames in 5 sets of ω scans. Rotation/frame = 2.0 °. Crystal-detector distance = 25.00 mm. Measuring time = 55 s/°. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Al1 | 0.5 | 0.15245 (8) | 0.25 | 0.0454 (2) | |
Cl1 | 0.36200 (7) | 0.39260 (8) | −0.04272 (5) | 0.0995 (3) | |
Cl2 | 0.5 | −0.35153 (8) | 0.25 | 0.0799 (3) | |
O1 | 0.39394 (11) | 0.28432 (14) | 0.20496 (10) | 0.0575 (4) | |
O2 | 0.53620 (11) | 0.15368 (15) | 0.14118 (9) | 0.0565 (4) | |
O3 | 0.39461 (10) | 0.01885 (13) | 0.20911 (9) | 0.0527 (3) | |
C1 | 0.2712 (2) | 0.4373 (3) | 0.1141 (2) | 0.0824 (8) | |
H1A | 0.2095 | 0.4025 | 0.0694 | 0.124* | |
H1B | 0.292 | 0.5223 | 0.0945 | 0.124* | |
H1C | 0.2532 | 0.4496 | 0.1695 | 0.124* | |
C2 | 0.36336 (15) | 0.33939 (18) | 0.12819 (15) | 0.0558 (5) | |
C3 | 0.41130 (17) | 0.3110 (2) | 0.06059 (14) | 0.0587 (5) | |
C4 | 0.49653 (15) | 0.2202 (2) | 0.06969 (12) | 0.0529 (4) | |
C5 | 0.5460 (2) | 0.1956 (3) | −0.00518 (15) | 0.0756 (7) | |
H5A | 0.6094 | 0.1406 | 0.016 | 0.113* | |
H5B | 0.5656 | 0.2803 | −0.0262 | 0.113* | |
H5C | 0.4947 | 0.1502 | −0.0534 | 0.113* | |
C6 | 0.29806 (17) | −0.1843 (2) | 0.17442 (17) | 0.0671 (6) | |
H6A | 0.2393 | −0.1214 | 0.156 | 0.101* | |
H6B | 0.2852 | −0.2439 | 0.2191 | 0.101* | |
H6C | 0.3034 | −0.2359 | 0.1235 | 0.101* | |
C7 | 0.40167 (15) | −0.10871 (18) | 0.21301 (11) | 0.0468 (4) | |
C8 | 0.5 | −0.1744 (3) | 0.25 | 0.0493 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al1 | 0.0412 (4) | 0.0466 (4) | 0.0457 (4) | 0 | 0.0078 (3) | 0 |
Cl1 | 0.1147 (6) | 0.0930 (5) | 0.0719 (4) | 0.0188 (4) | −0.0043 (4) | 0.0304 (3) |
Cl2 | 0.0779 (6) | 0.0479 (4) | 0.0966 (6) | 0 | −0.0039 (4) | 0 |
O1 | 0.0517 (7) | 0.0531 (8) | 0.0671 (8) | 0.0097 (6) | 0.0155 (6) | 0.0005 (6) |
O2 | 0.0512 (7) | 0.0686 (8) | 0.0482 (7) | 0.0139 (6) | 0.0116 (5) | 0.0076 (6) |
O3 | 0.0422 (6) | 0.0522 (7) | 0.0565 (7) | 0.0005 (5) | 0.0021 (5) | −0.0059 (6) |
C1 | 0.0621 (13) | 0.0577 (12) | 0.114 (2) | 0.0167 (11) | 0.0029 (13) | −0.0025 (13) |
C2 | 0.0430 (9) | 0.0406 (9) | 0.0739 (13) | −0.0008 (7) | 0.0002 (8) | −0.0001 (8) |
C3 | 0.0546 (11) | 0.0536 (10) | 0.0573 (11) | −0.0005 (9) | −0.0015 (8) | 0.0105 (9) |
C4 | 0.0461 (9) | 0.0589 (10) | 0.0483 (9) | −0.0071 (8) | 0.0043 (7) | 0.0034 (8) |
C5 | 0.0700 (14) | 0.1046 (19) | 0.0528 (11) | 0.0003 (14) | 0.0182 (10) | 0.0051 (12) |
C6 | 0.0496 (11) | 0.0674 (13) | 0.0775 (14) | −0.0105 (10) | 0.0066 (10) | −0.0102 (11) |
C7 | 0.0457 (9) | 0.0526 (10) | 0.0400 (8) | −0.0046 (7) | 0.0088 (7) | −0.0045 (7) |
C8 | 0.0512 (14) | 0.0484 (13) | 0.0443 (12) | 0 | 0.0072 (10) | 0 |
Al1—O3 | 1.8741 (14) | C1—H1C | 0.96 |
Al1—O3i | 1.8741 (14) | C2—C3 | 1.389 (3) |
Al1—O2i | 1.8756 (13) | C3—C4 | 1.395 (3) |
Al1—O2 | 1.8756 (13) | C4—C5 | 1.495 (3) |
Al1—O1i | 1.8772 (14) | C5—H5A | 0.96 |
Al1—O1 | 1.8772 (14) | C5—H5B | 0.96 |
Cl1—C3 | 1.748 (2) | C5—H5C | 0.96 |
Cl2—C8 | 1.755 (3) | C6—C7 | 1.500 (3) |
O1—C2 | 1.269 (3) | C6—H6A | 0.96 |
O2—C4 | 1.268 (2) | C6—H6B | 0.96 |
O3—C7 | 1.267 (2) | C6—H6C | 0.96 |
C1—C2 | 1.500 (3) | C7—C8 | 1.396 (2) |
C1—H1A | 0.96 | C8—C7i | 1.396 (2) |
C1—H1B | 0.96 | ||
O3—Al1—O3i | 90.12 (8) | C3—C2—C1 | 121.5 (2) |
O3—Al1—O2i | 88.26 (6) | C2—C3—C4 | 123.97 (18) |
O3i—Al1—O2i | 92.26 (6) | C2—C3—Cl1 | 118.44 (16) |
O3—Al1—O2 | 92.26 (6) | C4—C3—Cl1 | 117.59 (17) |
O3i—Al1—O2 | 88.26 (6) | O2—C4—C3 | 122.35 (18) |
O2i—Al1—O2 | 179.26 (10) | O2—C4—C5 | 116.20 (19) |
O3—Al1—O1i | 178.02 (6) | C3—C4—C5 | 121.44 (19) |
O3i—Al1—O1i | 89.08 (6) | C4—C5—H5A | 109.5 |
O2i—Al1—O1i | 89.96 (6) | C4—C5—H5B | 109.5 |
O2—Al1—O1i | 89.53 (7) | H5A—C5—H5B | 109.5 |
O3—Al1—O1 | 89.08 (6) | C4—C5—H5C | 109.5 |
O3i—Al1—O1 | 178.02 (6) | H5A—C5—H5C | 109.5 |
O2i—Al1—O1 | 89.53 (7) | H5B—C5—H5C | 109.5 |
O2—Al1—O1 | 89.96 (6) | C7—C6—H6A | 109.5 |
O1i—Al1—O1 | 91.78 (9) | C7—C6—H6B | 109.5 |
C2—O1—Al1 | 130.55 (13) | H6A—C6—H6B | 109.5 |
C4—O2—Al1 | 130.63 (13) | C7—C6—H6C | 109.5 |
C7—O3—Al1 | 130.76 (12) | H6A—C6—H6C | 109.5 |
C2—C1—H1A | 109.5 | H6B—C6—H6C | 109.5 |
C2—C1—H1B | 109.5 | O3—C7—C8 | 121.98 (17) |
H1A—C1—H1B | 109.5 | O3—C7—C6 | 115.78 (17) |
C2—C1—H1C | 109.5 | C8—C7—C6 | 122.24 (19) |
H1A—C1—H1C | 109.5 | C7i—C8—C7 | 124.4 (2) |
H1B—C1—H1C | 109.5 | C7i—C8—Cl2 | 117.82 (12) |
O1—C2—C3 | 122.47 (17) | C7—C8—Cl2 | 117.82 (12) |
O1—C2—C1 | 116.0 (2) | ||
O3—Al1—O1—C2 | −89.43 (17) | C1—C2—C3—C4 | −179.5 (2) |
O2i—Al1—O1—C2 | −177.70 (17) | O1—C2—C3—Cl1 | 179.76 (15) |
O2—Al1—O1—C2 | 2.83 (18) | C1—C2—C3—Cl1 | 0.1 (3) |
O1i—Al1—O1—C2 | 92.36 (17) | Al1—O2—C4—C3 | −0.2 (3) |
O3—Al1—O2—C4 | 87.74 (18) | Al1—O2—C4—C5 | 179.99 (15) |
O3i—Al1—O2—C4 | 177.79 (18) | C2—C3—C4—O2 | 1.3 (3) |
O1i—Al1—O2—C4 | −93.12 (18) | Cl1—C3—C4—O2 | −178.31 (15) |
O1—Al1—O2—C4 | −1.34 (18) | C2—C3—C4—C5 | −179.0 (2) |
O3i—Al1—O3—C7 | 1.05 (13) | Cl1—C3—C4—C5 | 1.4 (3) |
O2i—Al1—O3—C7 | −91.21 (17) | Al1—O3—C7—C8 | −2.0 (3) |
O2—Al1—O3—C7 | 89.32 (16) | Al1—O3—C7—C6 | 178.65 (13) |
O1—Al1—O3—C7 | 179.24 (16) | O3—C7—C8—C7i | 1.01 (12) |
Al1—O1—C2—C3 | −2.7 (3) | C6—C7—C8—C7i | −179.72 (19) |
Al1—O1—C2—C1 | 176.98 (15) | O3—C7—C8—Cl2 | −178.99 (12) |
O1—C2—C3—C4 | 0.2 (3) | C6—C7—C8—Cl2 | 0.28 (19) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···Cl1ii | 0.96 | 2.94 | 3.796 (2) | 149 |
Symmetry code: (ii) −x+1/2, −y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Al(C5H6ClO2)3] |
Mr | 427.62 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 12.8790 (3), 9.9086 (2), 15.5311 (4) |
β (°) | 106.368 (2) |
V (Å3) | 1901.64 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.56 |
Crystal size (mm) | 0.33 × 0.25 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.838, 0.957 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3916, 2156, 1759 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.125, 1.05 |
No. of reflections | 2156 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.34 |
Computer programs: COLLECT (Hooft, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···Cl1i | 0.96 | 2.94 | 3.796 (2) | 149.2 |
Symmetry code: (i) −x+1/2, −y+1/2, −z. |
Acknowledgements
The author thanks the Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 and X–2000.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bray, D. J., Clegg, J. K., Lindoy, L. F. & Schilter, D. (2007). Adv. Inorg. Chem. 59, 1–37. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Garibay, S. J., Stork, J. R. & Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335–378. Web of Science CrossRef CAS Google Scholar
Hon, P. K. & Pfluger, C. E. (1973). J. Coord. Chem. 3, 67–76. CrossRef CAS Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Lichtenberger, R., Baumann, S. O., Bendova, M., Puchberger, M. & Schubert, U. (2010). Monatsh. Chem. 141, 717–727. Web of Science CSD CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Perdih, F. (2011). Acta Cryst. E67, m1697. Web of Science CSD CrossRef IUCr Journals Google Scholar
Perdih, F. (2012). Acta Cryst. E68, m807. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vreshch, V. D., Lysenko, A. B., Chernega, A. N., Howard, J. A. K., Krautscheid, H., Sieler, J. & Domasevitch, K. V. (2004). Dalton Trans. pp. 2899–2903. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, H.-B. & Wang, Q.-M. (2009). Angew. Chem. Int. Ed. 48, 7343–7345. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
β-Diketonates have been proven to be versatile ligands for various metal ions. They can be easily derivatized, thus modifying the electronic and steric nature of these ligands to design suitable structure/function relationships (Bray et al., 2007; Garibay et al., 2009; Perdih, 2011). β-Diketonate compounds of aluminium have received great attention due to the promise of the construction of cages (Vreshch et al., 2004; Wu & Wang, 2009). Besides that, aluminium β-diketonates and malonates can be good precursors in metal-organic chemical vapour deposition (MOCVD) (Bray et al., 2007; Garibay et al., 2009; Lichtenberger et al., 2010).
In the title molecule (Fig. 1), the aluminium(III) cation is situated on a twofold axis, and is surrounded by six O atoms from three 3-chloropentane-2,4-dionate ligands in a octahedral environment. The geometry around aluminium is close to the orthogonallity as can be seen from the angles. The Al—O bond lengths are in the range 1.8741 (14)–1.8772 (14) Å and are similar as for example in Al(acac)3 (Hon & Pfluger, 1973). The displacement of the metal atom is best described by a bending of a chelate ligand about the "bite" atoms. The angles between the O—Al—O and the ligand chelate mean planes are 0.38° and 1.72°. For comparison these values are 0.78° and 12.68° in the isostructural iron(III) compound (Perdih, 2012). A 1-D framework is achieved due to intermolecular C6–H6A···Cl1 (–x + 1/2, –y + 1/2, –z) contacts (Fig. 2).