metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(3-chloro­pentane-2,4-dionato-κ2O,O′)aluminium

aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SI-1000 Ljubljana, Slovenia, and bCO EN–FIST, Dunajska 156, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: franc.perdih@fkkt.uni-lj.si

(Received 30 April 2012; accepted 21 May 2012; online 26 May 2012)

In the title compound, [Al(C5H6ClO2)3], the AlIII cation is situated on a twofold rotation axis and is coordinated by six O atoms from three 3-chloro­pentane-2,4-dionate ligands in an octa­hedral environment. Al—O bond lengths are in the range 1.8741 (14)–1.8772 (14) Å. In the crystal, mol­ecules are linked via C—H⋯Cl contacts.

Related literature

For applications of metal complexes with β-diketonate ligands, see: Bray et al. (2007[Bray, D. J., Clegg, J. K., Lindoy, L. F. & Schilter, D. (2007). Adv. Inorg. Chem. 59, 1-37.]); Garibay et al. (2009[Garibay, S. J., Stork, J. R. & Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335-378.]); Lichtenberger et al. (2010[Lichtenberger, R., Baumann, S. O., Bendova, M., Puchberger, M. & Schubert, U. (2010). Monatsh. Chem. 141, 717-727.]); Perdih (2011[Perdih, F. (2011). Acta Cryst. E67, m1697.]); Vreshch et al. (2004[Vreshch, V. D., Lysenko, A. B., Chernega, A. N., Howard, J. A. K., Krautscheid, H., Sieler, J. & Domasevitch, K. V. (2004). Dalton Trans. pp. 2899-2903.]); Wu & Wang (2009[Wu, H.-B. & Wang, Q.-M. (2009). Angew. Chem. Int. Ed. 48, 7343-7345.]). For related structures, see: Hon & Pfluger (1973[Hon, P. K. & Pfluger, C. E. (1973). J. Coord. Chem. 3, 67-76.]); Perdih (2012[Perdih, F. (2012). Acta Cryst. E68, m807.]).

[Scheme 1]

Experimental

Crystal data
  • [Al(C5H6ClO2)3]

  • Mr = 427.62

  • Monoclinic, C 2/c

  • a = 12.8790 (3) Å

  • b = 9.9086 (2) Å

  • c = 15.5311 (4) Å

  • β = 106.368 (2)°

  • V = 1901.64 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.33 × 0.25 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.838, Tmax = 0.957

  • 3916 measured reflections

  • 2156 independent reflections

  • 1759 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.05

  • 2156 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯Cl1i 0.96 2.94 3.796 (2) 149
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

β-Diketonates have been proven to be versatile ligands for various metal ions. They can be easily derivatized, thus modifying the electronic and steric nature of these ligands to design suitable structure/function relationships (Bray et al., 2007; Garibay et al., 2009; Perdih, 2011). β-Diketonate compounds of aluminium have received great attention due to the promise of the construction of cages (Vreshch et al., 2004; Wu & Wang, 2009). Besides that, aluminium β-diketonates and malonates can be good precursors in metal-organic chemical vapour deposition (MOCVD) (Bray et al., 2007; Garibay et al., 2009; Lichtenberger et al., 2010).

In the title molecule (Fig. 1), the aluminium(III) cation is situated on a twofold axis, and is surrounded by six O atoms from three 3-chloropentane-2,4-dionate ligands in a octahedral environment. The geometry around aluminium is close to the orthogonallity as can be seen from the angles. The Al—O bond lengths are in the range 1.8741 (14)–1.8772 (14) Å and are similar as for example in Al(acac)3 (Hon & Pfluger, 1973). The displacement of the metal atom is best described by a bending of a chelate ligand about the "bite" atoms. The angles between the O—Al—O and the ligand chelate mean planes are 0.38° and 1.72°. For comparison these values are 0.78° and 12.68° in the isostructural iron(III) compound (Perdih, 2012). A 1-D framework is achieved due to intermolecular C6–H6A···Cl1 (–x + 1/2, –y + 1/2, –z) contacts (Fig. 2).

Related literature top

For applications of metal complexes with β-diketonate ligands, see: Bray et al. (2007); Garibay et al. (2009); Lichtenberger et al. (2010; Perdih (2011); Vreshch et al. (2004); Wu & Wang (2009). For related structures, see: Hon & Pfluger (1973); Perdih (2012).

Experimental top

To a clear solution of Al2(SO4)3.18H2O (1 mmol, 0.67 g) in water (15 ml) a solution of 3-chloropentane-2,4-dione (6 mmol, 0.81 g) in methanol (5 ml) was added while stirring. Afterwards 1 M NaOH (6 ml) was slowly added and the resulting solution was stirred at 70°C for 15 minutes. After cooling to room temperature the light pink product was filtrated, washed with water (20 ml), and subsequently air-dried. Yield: 0.60 g, 70%. Crystals suitable for X-ray analysis were obtained by recrystallization from ethanol.

Refinement top

All H atoms were initially located in a difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.96 Å, and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex showing displacement ellipsoids at the 30% probability level. Symmetry code: i = –x + 1, y, –z + 1/2.
[Figure 2] Fig. 2. 1D infinte chain with dashed lines indicating intermolecular C6—H6A···Cl1 hydrogen bonding. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Symmetry code: ii = –x + 1/2, –y + 1/2, –z.
Tris(3-chloropentane-2,4-dionato-κ2O,O')aluminium top
Crystal data top
[Al(C5H6ClO2)3]F(000) = 880
Mr = 427.62Dx = 1.494 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2269 reflections
a = 12.8790 (3) Åθ = 2.6–27.5°
b = 9.9086 (2) ŵ = 0.56 mm1
c = 15.5311 (4) ÅT = 293 K
β = 106.368 (2)°Plate, pink
V = 1901.64 (8) Å30.33 × 0.25 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2156 independent reflections
Graphite monochromator1759 reflections with I > 2σ(I)
Detector resolution: 0.055 pixels mm-1Rint = 0.014
ω scansθmax = 27.5°, θmin = 5.6°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1616
Tmin = 0.838, Tmax = 0.957k = 1012
3916 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0632P)2 + 1.1678P]
where P = (Fo2 + 2Fc2)/3
2156 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Al(C5H6ClO2)3]V = 1901.64 (8) Å3
Mr = 427.62Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.8790 (3) ŵ = 0.56 mm1
b = 9.9086 (2) ÅT = 293 K
c = 15.5311 (4) Å0.33 × 0.25 × 0.08 mm
β = 106.368 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2156 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1759 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.957Rint = 0.014
3916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
2156 reflectionsΔρmin = 0.34 e Å3
118 parameters
Special details top

Experimental. 211 frames in 5 sets of ω scans. Rotation/frame = 2.0 °. Crystal-detector distance = 25.00 mm. Measuring time = 55 s/°.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.50.15245 (8)0.250.0454 (2)
Cl10.36200 (7)0.39260 (8)0.04272 (5)0.0995 (3)
Cl20.50.35153 (8)0.250.0799 (3)
O10.39394 (11)0.28432 (14)0.20496 (10)0.0575 (4)
O20.53620 (11)0.15368 (15)0.14118 (9)0.0565 (4)
O30.39461 (10)0.01885 (13)0.20911 (9)0.0527 (3)
C10.2712 (2)0.4373 (3)0.1141 (2)0.0824 (8)
H1A0.20950.40250.06940.124*
H1B0.2920.52230.09450.124*
H1C0.25320.44960.16950.124*
C20.36336 (15)0.33939 (18)0.12819 (15)0.0558 (5)
C30.41130 (17)0.3110 (2)0.06059 (14)0.0587 (5)
C40.49653 (15)0.2202 (2)0.06969 (12)0.0529 (4)
C50.5460 (2)0.1956 (3)0.00518 (15)0.0756 (7)
H5A0.60940.14060.0160.113*
H5B0.56560.28030.02620.113*
H5C0.49470.15020.05340.113*
C60.29806 (17)0.1843 (2)0.17442 (17)0.0671 (6)
H6A0.23930.12140.1560.101*
H6B0.28520.24390.21910.101*
H6C0.30340.23590.12350.101*
C70.40167 (15)0.10871 (18)0.21301 (11)0.0468 (4)
C80.50.1744 (3)0.250.0493 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0412 (4)0.0466 (4)0.0457 (4)00.0078 (3)0
Cl10.1147 (6)0.0930 (5)0.0719 (4)0.0188 (4)0.0043 (4)0.0304 (3)
Cl20.0779 (6)0.0479 (4)0.0966 (6)00.0039 (4)0
O10.0517 (7)0.0531 (8)0.0671 (8)0.0097 (6)0.0155 (6)0.0005 (6)
O20.0512 (7)0.0686 (8)0.0482 (7)0.0139 (6)0.0116 (5)0.0076 (6)
O30.0422 (6)0.0522 (7)0.0565 (7)0.0005 (5)0.0021 (5)0.0059 (6)
C10.0621 (13)0.0577 (12)0.114 (2)0.0167 (11)0.0029 (13)0.0025 (13)
C20.0430 (9)0.0406 (9)0.0739 (13)0.0008 (7)0.0002 (8)0.0001 (8)
C30.0546 (11)0.0536 (10)0.0573 (11)0.0005 (9)0.0015 (8)0.0105 (9)
C40.0461 (9)0.0589 (10)0.0483 (9)0.0071 (8)0.0043 (7)0.0034 (8)
C50.0700 (14)0.1046 (19)0.0528 (11)0.0003 (14)0.0182 (10)0.0051 (12)
C60.0496 (11)0.0674 (13)0.0775 (14)0.0105 (10)0.0066 (10)0.0102 (11)
C70.0457 (9)0.0526 (10)0.0400 (8)0.0046 (7)0.0088 (7)0.0045 (7)
C80.0512 (14)0.0484 (13)0.0443 (12)00.0072 (10)0
Geometric parameters (Å, º) top
Al1—O31.8741 (14)C1—H1C0.96
Al1—O3i1.8741 (14)C2—C31.389 (3)
Al1—O2i1.8756 (13)C3—C41.395 (3)
Al1—O21.8756 (13)C4—C51.495 (3)
Al1—O1i1.8772 (14)C5—H5A0.96
Al1—O11.8772 (14)C5—H5B0.96
Cl1—C31.748 (2)C5—H5C0.96
Cl2—C81.755 (3)C6—C71.500 (3)
O1—C21.269 (3)C6—H6A0.96
O2—C41.268 (2)C6—H6B0.96
O3—C71.267 (2)C6—H6C0.96
C1—C21.500 (3)C7—C81.396 (2)
C1—H1A0.96C8—C7i1.396 (2)
C1—H1B0.96
O3—Al1—O3i90.12 (8)C3—C2—C1121.5 (2)
O3—Al1—O2i88.26 (6)C2—C3—C4123.97 (18)
O3i—Al1—O2i92.26 (6)C2—C3—Cl1118.44 (16)
O3—Al1—O292.26 (6)C4—C3—Cl1117.59 (17)
O3i—Al1—O288.26 (6)O2—C4—C3122.35 (18)
O2i—Al1—O2179.26 (10)O2—C4—C5116.20 (19)
O3—Al1—O1i178.02 (6)C3—C4—C5121.44 (19)
O3i—Al1—O1i89.08 (6)C4—C5—H5A109.5
O2i—Al1—O1i89.96 (6)C4—C5—H5B109.5
O2—Al1—O1i89.53 (7)H5A—C5—H5B109.5
O3—Al1—O189.08 (6)C4—C5—H5C109.5
O3i—Al1—O1178.02 (6)H5A—C5—H5C109.5
O2i—Al1—O189.53 (7)H5B—C5—H5C109.5
O2—Al1—O189.96 (6)C7—C6—H6A109.5
O1i—Al1—O191.78 (9)C7—C6—H6B109.5
C2—O1—Al1130.55 (13)H6A—C6—H6B109.5
C4—O2—Al1130.63 (13)C7—C6—H6C109.5
C7—O3—Al1130.76 (12)H6A—C6—H6C109.5
C2—C1—H1A109.5H6B—C6—H6C109.5
C2—C1—H1B109.5O3—C7—C8121.98 (17)
H1A—C1—H1B109.5O3—C7—C6115.78 (17)
C2—C1—H1C109.5C8—C7—C6122.24 (19)
H1A—C1—H1C109.5C7i—C8—C7124.4 (2)
H1B—C1—H1C109.5C7i—C8—Cl2117.82 (12)
O1—C2—C3122.47 (17)C7—C8—Cl2117.82 (12)
O1—C2—C1116.0 (2)
O3—Al1—O1—C289.43 (17)C1—C2—C3—C4179.5 (2)
O2i—Al1—O1—C2177.70 (17)O1—C2—C3—Cl1179.76 (15)
O2—Al1—O1—C22.83 (18)C1—C2—C3—Cl10.1 (3)
O1i—Al1—O1—C292.36 (17)Al1—O2—C4—C30.2 (3)
O3—Al1—O2—C487.74 (18)Al1—O2—C4—C5179.99 (15)
O3i—Al1—O2—C4177.79 (18)C2—C3—C4—O21.3 (3)
O1i—Al1—O2—C493.12 (18)Cl1—C3—C4—O2178.31 (15)
O1—Al1—O2—C41.34 (18)C2—C3—C4—C5179.0 (2)
O3i—Al1—O3—C71.05 (13)Cl1—C3—C4—C51.4 (3)
O2i—Al1—O3—C791.21 (17)Al1—O3—C7—C82.0 (3)
O2—Al1—O3—C789.32 (16)Al1—O3—C7—C6178.65 (13)
O1—Al1—O3—C7179.24 (16)O3—C7—C8—C7i1.01 (12)
Al1—O1—C2—C32.7 (3)C6—C7—C8—C7i179.72 (19)
Al1—O1—C2—C1176.98 (15)O3—C7—C8—Cl2178.99 (12)
O1—C2—C3—C40.2 (3)C6—C7—C8—Cl20.28 (19)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cl1ii0.962.943.796 (2)149
Symmetry code: (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Al(C5H6ClO2)3]
Mr427.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.8790 (3), 9.9086 (2), 15.5311 (4)
β (°) 106.368 (2)
V3)1901.64 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.33 × 0.25 × 0.08
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.838, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
3916, 2156, 1759
Rint0.014
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.05
No. of reflections2156
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.34

Computer programs: COLLECT (Hooft, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cl1i0.962.943.796 (2)149.2
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The author thanks the Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 and X–2000.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBray, D. J., Clegg, J. K., Lindoy, L. F. & Schilter, D. (2007). Adv. Inorg. Chem. 59, 1–37.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGaribay, S. J., Stork, J. R. & Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335–378.  Web of Science CrossRef CAS Google Scholar
First citationHon, P. K. & Pfluger, C. E. (1973). J. Coord. Chem. 3, 67–76.  CrossRef CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLichtenberger, R., Baumann, S. O., Bendova, M., Puchberger, M. & Schubert, U. (2010). Monatsh. Chem. 141, 717–727.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPerdih, F. (2011). Acta Cryst. E67, m1697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerdih, F. (2012). Acta Cryst. E68, m807.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVreshch, V. D., Lysenko, A. B., Chernega, A. N., Howard, J. A. K., Krautscheid, H., Sieler, J. & Domasevitch, K. V. (2004). Dalton Trans. pp. 2899–2903.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H.-B. & Wang, Q.-M. (2009). Angew. Chem. Int. Ed. 48, 7343–7345.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds