metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(3-chloro­pentane-2,4-dionato-κ2O,O′)iron(III)

aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SI-1000 Ljubljana, Slovenia, and bCO EN–FIST, Dunajska 156, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: franc.perdih@fkkt.uni-lj.si

(Received 30 April 2012; accepted 21 May 2012; online 26 May 2012)

In the title compound, [Fe(C5H6ClO2)3], the FeIII cation is situated on a twofold rotation axis and is coordinated by six O atoms from three 3-chloro­pentane-2,4-dionate ligands in a slightly distorted octa­hedral environment. Fe—O bond lengths are in the range 1.9818 (18)–1.9957 (18) Å. The trans O—Fe—O angles are 169.06 (13) and 171.54 (8)°, whereas the corresponding cis angles are in the range 84.81 (10)–100.68 (12)°. In the crystal, mol­ecules are linked via C—H⋯Cl inter­actions.

Related literature

For applications of metal complexes with β-diketonate ligands, see: Bray et al. (2007[Bray, D. J., Clegg, J. K., Lindoy, L. F. & Schilter, D. (2007). Adv. Inorg. Chem. 59, 1-37.]); Garibay et al. (2009[Garibay, S. J., Stork, J. R. & Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335-378.]); Perdih (2011[Perdih, F. (2011). Acta Cryst. E67, m1697.]); Schröder et al. (2011[Schröder, K., Join, B., Amali, A. J., Junge, K., Ribas, X., Costas, M. & Beller, M. (2011). Angew. Chem. Int. Ed. 50, 1425-1429.]). For related structures, see: Iball & Morgan (1967[Iball, J. & Morgan, C. H. (1967). Acta Cryst. 23, 239-244.]); Perdih (2012[Perdih, F. (2012). Acta Cryst. E68, m806.]); Pfluger & Haradem (1983[Pfluger, C. E. & Haradem, P. S. (1983). Inorg. Chim. Acta, 69, 141-146.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H6ClO2)3]

  • Mr = 456.49

  • Monoclinic, C 2/c

  • a = 15.7745 (4) Å

  • b = 9.5424 (2) Å

  • c = 12.9833 (3) Å

  • β = 100.610 (1)°

  • V = 1920.92 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.13 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.749, Tmax = 0.857

  • 4155 measured reflections

  • 2155 independent reflections

  • 1927 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.07

  • 2155 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯Cl1i 0.96 2.78 3.642 (3) 150
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

β-Diketonates have been proven to be versatile ligands for various metal ions. They can be easily derivatized, thus modifying the electronic and steric nature of these ligands to design suitable structure/function relationships (Bray et al., 2007; Garibay et al., 2009; Perdih (2011). Metal-organic frameworks are considered as promising materials for many applications mostly due to interesting porosity properties. Besides the potential applications as gas storage other applications such as molecular sensing, ion exchange, catalysis, optics and magnetism have received considerable attention (Bray et al., 2007; Garibay et al., 2009). Particularly interesting is the metal-ligand coordination with applications in organic synthesis, where iron β-diketonate compounds showed great applicability. Reasons for this are the natural abundance of this metal and also it's biocompatibility, both of which are essential for the development of sustainable chemical catalysis (Schröder et al., 2011).

In the title molecule (Fig. 1), the iron(III) cation is situated on a twofold axis, and is surrounded by six O atoms from three 3-chloropentane-2,4-dionate ligands in a slightly distorted octahedral environment. Fe—O bond lengths are in the range of 1.9818 (18)–1.9957 (18) Å, trans O—Fe—O angles are 169.06 (13)° and 171.54 (8)°, and cis angles are in the range of 84.81 (10)°–100.68 (12)°. These bond lengths are similar as for example in Fe(acac)3 (Iball & Morgan, 1967). The title compound is isostructural with the corresponding aluminium(III) compound (Perdih, 2012). The displacement of the metal atom is best described by a bending of a chelate ligand about the "bite" atoms. The angles between the O—Fe—O and the ligand chelate mean planes are 0.78° and 12.68°. For comparison these values are 1.40°, 10.13° and 11.98° in Fe(hfac)3 (hfac = hexafluoroacetylacetonate) (Pfluger & Haradem, 1983) and 0.05°, 3.24° and 10.60° in Fe(acac)3 (Ibell & Morgan, 1967). A 1-D framework is achieved due to weak intermolecular C6–H6A···Cl1 (–x + 1/2, –y + 1/2, –z + 1) interactions where one 3-chloropentane-2,4-dionate ligand acts as a hydrogen-bond donors and two ligands are hydrogen-bond acceptors (Fig. 2).

Related literature top

For applications of metal complexes with β-diketonate ligands, see: Bray et al. (2007); Garibay et al. (2009); Perdih (2011); Schröder et al. (2011). For related structures, see: Iball & Morgan (1967); Perdih (2012); Pfluger & Haradem (1983).

Experimental top

To a clear solution of FeCl3. H2O (2 mmol, 0.54 g) in water (15 ml) a solution of 3-chloropentane-2,4-dione (6 mmol, 0.81 g) in methanol (5 ml) was added while stirring. Afterwards 1 M NaOH (6 ml) was slowly added and the resulting solution was stirred at 70°C for 15 minutes. After cooling to room temperature the deep red product was filtrated, washed with water (20 ml), and subsequently air-dried. Yield: 0.65 g, 71%. Crystals suitable for X-ray analysis were obtained by recrystallization from ethanol.

Refinement top

All H atoms were initially located in a difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.96 Å, and with Uiso(H) = 1.5Ueq(C). To improve the refinement results, two reflections with too high value of δ(F2)/e.s.d. and with Fo2 < Fc2 were deleted from the refinement.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex showing displacement ellipsoids at the 30% probability level. Symmetry code: i = –x + 1, y, –z + 3/2.
[Figure 2] Fig. 2. 1D infinte chain with dashed lines indicating intermolecular C6—H6A···Cl1 hydrogen bonding. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Symmetry code: ii = –x + 1/2, –y + 1/2, –z + 1.
Tris(3-chloropentane-2,4-dionato-κ2O,O')iron(III) top
Crystal data top
[Fe(C5H6ClO2)3]F(000) = 932
Mr = 456.49Dx = 1.578 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2278 reflections
a = 15.7745 (4) Åθ = 2.6–27.5°
b = 9.5424 (2) ŵ = 1.23 mm1
c = 12.9833 (3) ÅT = 293 K
β = 100.610 (1)°Prism, red
V = 1920.92 (8) Å30.25 × 0.25 × 0.13 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2155 independent reflections
Radiation source: fine-focus sealed tube1927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 0.055 pixels mm-1θmax = 27.4°, θmin = 3.9°
ω scansh = 2020
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.749, Tmax = 0.857l = 1616
4155 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0748P)2 + 1.6605P]
where P = (Fo2 + 2Fc2)/3
2155 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Fe(C5H6ClO2)3]V = 1920.92 (8) Å3
Mr = 456.49Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.7745 (4) ŵ = 1.23 mm1
b = 9.5424 (2) ÅT = 293 K
c = 12.9833 (3) Å0.25 × 0.25 × 0.13 mm
β = 100.610 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2155 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1927 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.857Rint = 0.012
4155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.07Δρmax = 0.88 e Å3
2155 reflectionsΔρmin = 0.62 e Å3
118 parameters
Special details top

Experimental. 192 frames in 5 sets of ω scans. Rotation/frame = 2.0 °. Crystal-detector distance = 25.00 mm. Measuring time = 60 s/°.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50.20825 (5)0.750.04488 (18)
Cl10.20617 (6)0.40123 (14)0.58549 (12)0.1198 (5)
Cl20.50.33055 (10)0.750.0684 (3)
O10.38591 (12)0.2280 (2)0.79173 (16)0.0642 (5)
O20.45438 (12)0.3417 (2)0.63475 (15)0.0593 (4)
O30.46568 (12)0.05417 (17)0.64737 (13)0.0528 (4)
C10.2404 (2)0.2638 (6)0.7991 (4)0.0987 (13)
H1A0.2610.24360.87180.148*
H1B0.20420.18850.76770.148*
H1C0.20770.34930.79280.148*
C20.31593 (17)0.2797 (3)0.7439 (3)0.0622 (7)
C30.30871 (17)0.3467 (3)0.6477 (3)0.0680 (8)
C40.37767 (19)0.3776 (3)0.5971 (2)0.0613 (7)
C50.3663 (3)0.4565 (4)0.4949 (3)0.0931 (12)
H5A0.42170.47380.4770.14*
H5B0.3380.54410.5020.14*
H5C0.33180.40180.44070.14*
C60.44210 (19)0.1585 (3)0.5553 (2)0.0621 (6)
H6A0.41890.09460.50010.093*
H6B0.39860.22510.56490.093*
H6C0.49060.2070.53710.093*
C70.47040 (14)0.0786 (2)0.65475 (17)0.0450 (5)
C80.50.1469 (3)0.750.0458 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0379 (3)0.0458 (3)0.0498 (3)00.00487 (18)0
Cl10.0618 (5)0.1015 (7)0.1759 (12)0.0164 (5)0.0313 (6)0.0217 (8)
Cl20.0768 (6)0.0450 (5)0.0797 (6)00.0049 (5)0
O10.0414 (9)0.0889 (14)0.0627 (11)0.0061 (9)0.0104 (8)0.0053 (10)
O20.0604 (10)0.0518 (10)0.0645 (10)0.0054 (8)0.0086 (8)0.0092 (8)
O30.0610 (10)0.0481 (9)0.0457 (8)0.0038 (7)0.0005 (7)0.0015 (7)
C10.0466 (17)0.135 (4)0.119 (3)0.0057 (19)0.0246 (18)0.012 (3)
C20.0405 (12)0.0661 (16)0.0778 (17)0.0025 (11)0.0050 (11)0.0189 (13)
C30.0476 (13)0.0521 (14)0.095 (2)0.0087 (11)0.0113 (13)0.0039 (14)
C40.0675 (16)0.0383 (11)0.0687 (15)0.0023 (10)0.0117 (12)0.0008 (11)
C50.115 (3)0.0650 (19)0.085 (2)0.0019 (19)0.019 (2)0.0217 (17)
C60.0720 (17)0.0623 (15)0.0495 (13)0.0082 (13)0.0049 (11)0.0076 (11)
C70.0369 (10)0.0515 (12)0.0462 (11)0.0034 (8)0.0066 (8)0.0030 (9)
C80.0390 (14)0.0463 (16)0.0520 (16)00.0079 (12)0
Geometric parameters (Å, º) top
Fe1—O1i1.9818 (18)C1—H1C0.96
Fe1—O11.9818 (18)C2—C31.388 (5)
Fe1—O31.9912 (17)C3—C41.402 (4)
Fe1—O3i1.9912 (17)C4—C51.507 (4)
Fe1—O2i1.9957 (18)C5—H5A0.96
Fe1—O21.9957 (18)C5—H5B0.96
Cl1—C31.749 (3)C5—H5C0.96
Cl2—C81.753 (3)C6—C71.495 (3)
O1—C21.263 (3)C6—H6A0.96
O2—C41.266 (3)C6—H6B0.96
O3—C71.271 (3)C6—H6C0.96
C1—C21.507 (5)C7—C81.400 (3)
C1—H1A0.96C8—C7i1.400 (3)
C1—H1B0.96
O1i—Fe1—O1169.06 (13)C3—C2—C1122.2 (3)
O1i—Fe1—O392.07 (8)C2—C3—C4125.2 (2)
O1—Fe1—O396.00 (9)C2—C3—Cl1117.9 (2)
O1i—Fe1—O3i96.00 (9)C4—C3—Cl1116.9 (2)
O1—Fe1—O3i92.07 (8)O2—C4—C3122.1 (3)
O3—Fe1—O3i84.81 (10)O2—C4—C5115.2 (3)
O1i—Fe1—O2i85.63 (8)C3—C4—C5122.7 (3)
O1—Fe1—O2i87.39 (8)C4—C5—H5A109.5
O3—Fe1—O2i171.54 (8)C4—C5—H5B109.5
O3i—Fe1—O2i87.33 (8)H5A—C5—H5B109.5
O1i—Fe1—O287.39 (8)C4—C5—H5C109.5
O1—Fe1—O285.63 (8)H5A—C5—H5C109.5
O3—Fe1—O287.33 (8)H5B—C5—H5C109.5
O3i—Fe1—O2171.54 (8)C7—C6—H6A109.5
O2i—Fe1—O2100.68 (12)C7—C6—H6B109.5
C2—O1—Fe1131.2 (2)H6A—C6—H6B109.5
C4—O2—Fe1130.47 (19)C7—C6—H6C109.5
C7—O3—Fe1132.86 (15)H6A—C6—H6C109.5
C2—C1—H1A109.5H6B—C6—H6C109.5
C2—C1—H1B109.5O3—C7—C8122.4 (2)
H1A—C1—H1B109.5O3—C7—C6116.0 (2)
C2—C1—H1C109.5C8—C7—C6121.6 (2)
H1A—C1—H1C109.5C7—C8—C7i124.5 (3)
H1B—C1—H1C109.5C7—C8—Cl2117.75 (16)
O1—C2—C3122.8 (3)C7i—C8—Cl2117.75 (16)
O1—C2—C1115.0 (3)
O1i—Fe1—O1—C264.1 (3)C1—C2—C3—C4173.3 (3)
O3—Fe1—O1—C273.3 (3)O1—C2—C3—Cl1175.1 (2)
O3i—Fe1—O1—C2158.3 (3)C1—C2—C3—Cl15.2 (4)
O2i—Fe1—O1—C2114.5 (3)Fe1—O2—C4—C313.5 (4)
O2—Fe1—O1—C213.6 (3)Fe1—O2—C4—C5167.0 (2)
O1i—Fe1—O2—C4170.7 (2)C2—C3—C4—O22.2 (5)
O1—Fe1—O2—C417.7 (2)Cl1—C3—C4—O2179.3 (2)
O3—Fe1—O2—C478.5 (2)C2—C3—C4—C5177.2 (3)
O2i—Fe1—O2—C4104.2 (2)Cl1—C3—C4—C51.3 (4)
O1i—Fe1—O3—C793.7 (2)Fe1—O3—C7—C84.1 (3)
O1—Fe1—O3—C793.7 (2)Fe1—O3—C7—C6176.07 (17)
O3i—Fe1—O3—C72.14 (17)O3—C7—C8—C7i2.01 (16)
O2—Fe1—O3—C7179.0 (2)C6—C7—C8—C7i178.2 (2)
Fe1—O1—C2—C35.3 (4)O3—C7—C8—Cl2177.99 (16)
Fe1—O1—C2—C1174.9 (2)C6—C7—C8—Cl21.8 (2)
O1—C2—C3—C46.4 (5)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cl1ii0.962.783.642 (3)150
Symmetry code: (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C5H6ClO2)3]
Mr456.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.7745 (4), 9.5424 (2), 12.9833 (3)
β (°) 100.610 (1)
V3)1920.92 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.25 × 0.25 × 0.13
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.749, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
4155, 2155, 1927
Rint0.012
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.07
No. of reflections2155
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.62

Computer programs: COLLECT (Hooft, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cl1i0.962.783.642 (3)149.8
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

The author thanks the Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 and X–2000.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBray, D. J., Clegg, J. K., Lindoy, L. F. & Schilter, D. (2007). Adv. Inorg. Chem. 59, 1–37.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGaribay, S. J., Stork, J. R. & Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335–378.  Web of Science CrossRef CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationIball, J. & Morgan, C. H. (1967). Acta Cryst. 23, 239–244.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPerdih, F. (2011). Acta Cryst. E67, m1697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerdih, F. (2012). Acta Cryst. E68, m806.  CSD CrossRef IUCr Journals Google Scholar
First citationPfluger, C. E. & Haradem, P. S. (1983). Inorg. Chim. Acta, 69, 141–146.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchröder, K., Join, B., Amali, A. J., Junge, K., Ribas, X., Costas, M. & Beller, M. (2011). Angew. Chem. Int. Ed. 50, 1425–1429.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds