organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{2-[(1,3-Benzo­thia­zol-2-yl)sulfanyl­meth­yl]phen­yl}-4-meth­­oxy-5,5-di­methyl­furan-2(5H)-one

aSchool of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
*Correspondence e-mail: youww@smu.edu.cn

(Received 8 May 2012; accepted 17 May 2012; online 23 May 2012)

In the title compound, C21H19NO3S2, the dihedral angles formed between the thia­zole ring and the adjacent benzene ring and the other benzene ring are 1.58 (3) and 76.48 (6)°, respectively. The crystal structure features a weak C—H⋯O inter­action.

Related literature

For the anti-tumor activity of benzothia­zole derivatives, see: Brantley et al. (2004[Brantley, E., Trapani, V., Alley, M. C., Hose, C. D., Bradshaw, T. D., Stevens, M. F. G., Sausville, E. A. & Stinson, S. F. (2004). Drug Metab. Disp. 32, 1392-1401.]) and for their anti-tuberculous properties, see: Palmer et al. (1971[Palmer, P. J., Trigg, R. B. & &Warrington, J. V. (1971). J. Med. Chem. 14, 248-251.]). For fungicidal properties of benzothia­zolines and the preparation of the title compound, see: Zhao et al. (2010[Zhao, P. L., Wang, F., Huang, W., Chen, Q. & Liu, Z. M. (2010). Chin. J. Org. Chem. 30, 1567-1573.]). For general background to furan-2(5H)-ones and their derivatives, see: Iannazzo et al. (2008[Iannazzo, D., Piperno, A., Romeo, G., Romeo, R., Chiacchio, U., Rescifina, A., Balestrieri, E., Macchi, B., Mastino, A. & Cortese, R. (2008). Bioorg. Med. Chem. 16, 9610-9615.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19NO3S2

  • Mr = 397.49

  • Triclinic, [P \overline 1]

  • a = 10.4702 (9) Å

  • b = 10.4851 (9) Å

  • c = 10.5169 (9) Å

  • α = 117.567 (1)°

  • β = 100.398 (1)°

  • γ = 95.257 (1)°

  • V = 986.15 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 292 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2005[Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.]) Tmin = 0.944, Tmax = 0.972

  • 7206 measured reflections

  • 3804 independent reflections

  • 2713 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.109

  • S = 0.90

  • 3804 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.56 3.302 (3) 137
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzothiazole derivatives are well known to exhibit a wide spectrum of biological activities, including fungicidal, anticancer and anti-tuberculous properties. (Brantley et al., 2004; Zhao et al., 2010; Palmer et al., 1971). In addition, furan-2(5H)-one derivatives also have good biological activities (Iannazzo et al., 2008). These findings prompted us to synthesize a new series of benzothiazole derivatives by incorporating furan-2(5H)-one at the 2-position, in the hope of finding molecules showing an improved bioactivity. We present here the X-ray crystallographic analysis of the title compound, (I), which was designed and synthesized in our laboratory.

A view of the molecular structure of the title compound is given in Fig.1. The bond lengths and angles are unremarkable.The dihedral angles formed between the triazole ring and the adjacent benzene ring and the other benzene ring system are 1.58 (3)° and 76.48 (6)°, respectively. One intermolecular C—H···O hydrogen bond exists in the crystal structure (Table 1). Atom C2 in the molecule acts as donor, via the H atom H2, towards O1 of an adjacent molecule (Fig.2). No π-π-stacking interactions are observed in the crystal structure.

Related literature top

For the anti-tumor activity of benzothiazole derivatives, see: Brantley et al. (2004) and for their anti-tuberculous properties, see: Palmer et al. (1971). For fungicidal properties of benzothiazolines and the preparation of the title compound, see: Zhao et al. (2010). For general background to furan-2(5H)-ones and their derivatives, see: Iannazzo et al. (2008).

Experimental top

The title compound was synthesized according to a published procedure (Zhao et al., 2010). Crystals appropriate for X-ray data collection were obtained by slow evaporation of a methanolic solution at 292 K.

Refinement top

All H atoms were initially located in a difference Fourier map. Methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing displacement ellipsoids at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. Hydrogen bonding in the crystal structure of (I). Hydrogen bonds are shown as dashed lines. [Symmetry codes: x - 1, y, z]
3-{2-[(1,3-Benzothiazol-2-yl)sulfanylmethyl]phenyl}-4-methoxy- 5,5-dimethylfuran-2(5H)-one top
Crystal data top
C21H19NO3S2Z = 2
Mr = 397.49F(000) = 416
Triclinic, P1Dx = 1.339 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4702 (9) ÅCell parameters from 2192 reflections
b = 10.4851 (9) Åθ = 2.3–24.6°
c = 10.5169 (9) ŵ = 0.29 mm1
α = 117.567 (1)°T = 292 K
β = 100.398 (1)°Block, colorless
γ = 95.257 (1)°0.20 × 0.20 × 0.10 mm
V = 986.15 (15) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3804 independent reflections
Radiation source: fine-focus sealed tube2713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
phi and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
h = 1112
Tmin = 0.944, Tmax = 0.972k = 1212
7206 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0592P)2]
where P = (Fo2 + 2Fc2)/3
3804 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H19NO3S2γ = 95.257 (1)°
Mr = 397.49V = 986.15 (15) Å3
Triclinic, P1Z = 2
a = 10.4702 (9) ÅMo Kα radiation
b = 10.4851 (9) ŵ = 0.29 mm1
c = 10.5169 (9) ÅT = 292 K
α = 117.567 (1)°0.20 × 0.20 × 0.10 mm
β = 100.398 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3804 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
2713 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.972Rint = 0.040
7206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 0.90Δρmax = 0.25 e Å3
3804 reflectionsΔρmin = 0.22 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3099 (2)1.1296 (2)0.3804 (2)0.0429 (5)
C20.1915 (2)1.1787 (3)0.3934 (3)0.0585 (6)
H20.11011.11390.34390.070*
C30.1987 (3)1.3256 (3)0.4814 (3)0.0749 (8)
H30.12071.36090.49200.090*
C40.3186 (3)1.4226 (3)0.5548 (3)0.0720 (8)
H40.31991.52200.61330.086*
C50.4367 (2)1.3757 (2)0.5435 (3)0.0548 (6)
H50.51721.44180.59440.066*
C60.4325 (2)1.2275 (2)0.4545 (2)0.0401 (5)
C70.5064 (2)1.0231 (2)0.3504 (2)0.0393 (5)
C80.7722 (2)1.0145 (2)0.3745 (2)0.0471 (5)
H8A0.77541.09550.47130.057*
H8B0.83790.95940.38780.057*
C90.80777 (19)1.0755 (2)0.2782 (2)0.0383 (5)
C100.82367 (19)0.9825 (2)0.1364 (2)0.0388 (5)
C110.8548 (2)1.0439 (2)0.0510 (2)0.0468 (5)
H110.86500.98300.04320.056*
C120.8711 (2)1.1929 (3)0.1022 (3)0.0532 (6)
H120.89191.23180.04330.064*
C130.8561 (2)1.2839 (2)0.2417 (3)0.0547 (6)
H130.86741.38470.27750.066*
C140.8244 (2)1.2252 (2)0.3280 (2)0.0486 (6)
H140.81401.28730.42170.058*
C150.8151 (2)0.8231 (2)0.0802 (2)0.0406 (5)
C160.7292 (2)0.7023 (2)0.0266 (2)0.0495 (6)
C170.7745 (2)0.5641 (3)0.0455 (3)0.0630 (7)
C180.9225 (2)0.7703 (3)0.1412 (3)0.0514 (6)
C190.5531 (2)0.8016 (3)0.1034 (3)0.0575 (6)
H19A0.54320.85560.00430.086*
H19B0.46770.76650.17250.086*
H19C0.60860.86470.12350.086*
C200.6809 (3)0.4717 (3)0.0114 (4)0.0940 (10)
H20A0.71970.39230.01110.141*
H20B0.59830.43280.08560.141*
H20C0.66570.53150.08410.141*
C210.8059 (3)0.4778 (3)0.1948 (3)0.0900 (10)
H21A0.86120.54290.21270.135*
H21B0.72500.43340.27180.135*
H21C0.85150.40260.19410.135*
N10.54360 (17)1.16332 (19)0.43437 (18)0.0421 (4)
O11.02066 (17)0.84009 (18)0.2398 (2)0.0706 (5)
O20.89788 (16)0.62095 (17)0.06858 (18)0.0649 (5)
O30.61278 (16)0.67939 (17)0.11829 (18)0.0677 (5)
S10.33515 (6)0.95239 (6)0.28478 (6)0.04817 (18)
S20.60881 (6)0.89569 (6)0.29888 (6)0.04876 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0394 (13)0.0446 (13)0.0388 (11)0.0066 (10)0.0056 (10)0.0175 (10)
C20.0378 (14)0.0557 (16)0.0604 (15)0.0056 (12)0.0000 (12)0.0162 (13)
C30.0425 (16)0.0631 (18)0.091 (2)0.0176 (14)0.0086 (15)0.0167 (16)
C40.0551 (18)0.0436 (15)0.088 (2)0.0149 (13)0.0073 (15)0.0121 (15)
C50.0463 (15)0.0416 (14)0.0616 (15)0.0026 (11)0.0019 (12)0.0184 (12)
C60.0366 (12)0.0418 (13)0.0405 (11)0.0050 (10)0.0064 (10)0.0209 (10)
C70.0413 (13)0.0427 (13)0.0372 (11)0.0079 (10)0.0111 (10)0.0219 (10)
C80.0421 (13)0.0541 (14)0.0441 (12)0.0157 (11)0.0110 (11)0.0221 (11)
C90.0265 (11)0.0390 (12)0.0429 (12)0.0082 (9)0.0058 (9)0.0156 (10)
C100.0283 (11)0.0409 (12)0.0411 (11)0.0097 (9)0.0065 (9)0.0155 (10)
C110.0401 (13)0.0523 (15)0.0461 (13)0.0114 (11)0.0151 (10)0.0206 (11)
C120.0440 (14)0.0568 (16)0.0663 (16)0.0077 (12)0.0170 (12)0.0356 (14)
C130.0479 (15)0.0392 (14)0.0766 (17)0.0115 (11)0.0190 (13)0.0263 (13)
C140.0419 (13)0.0437 (14)0.0487 (13)0.0107 (11)0.0134 (11)0.0124 (11)
C150.0322 (12)0.0388 (12)0.0428 (12)0.0104 (10)0.0084 (10)0.0132 (10)
C160.0387 (13)0.0433 (14)0.0515 (13)0.0124 (11)0.0027 (11)0.0135 (11)
C170.0431 (15)0.0404 (14)0.0751 (17)0.0103 (12)0.0045 (13)0.0104 (13)
C180.0405 (14)0.0442 (15)0.0562 (14)0.0145 (11)0.0076 (12)0.0146 (12)
C190.0451 (15)0.0602 (16)0.0596 (15)0.0165 (12)0.0001 (12)0.0269 (13)
C200.071 (2)0.0528 (18)0.143 (3)0.0068 (16)0.003 (2)0.045 (2)
C210.076 (2)0.0606 (18)0.078 (2)0.0289 (16)0.0061 (16)0.0043 (16)
N10.0396 (11)0.0438 (11)0.0437 (10)0.0062 (9)0.0088 (8)0.0232 (9)
O10.0455 (11)0.0551 (11)0.0751 (12)0.0121 (9)0.0145 (9)0.0129 (10)
O20.0498 (11)0.0427 (10)0.0749 (11)0.0169 (8)0.0066 (9)0.0132 (9)
O30.0483 (11)0.0482 (10)0.0695 (11)0.0112 (8)0.0148 (9)0.0091 (9)
S10.0433 (4)0.0417 (4)0.0459 (3)0.0025 (3)0.0043 (3)0.0141 (3)
S20.0507 (4)0.0436 (4)0.0557 (4)0.0122 (3)0.0204 (3)0.0243 (3)
Geometric parameters (Å, º) top
C1—C21.391 (3)C12—C131.379 (3)
C1—C61.403 (3)C12—H120.9300
C1—S11.729 (2)C13—C141.378 (3)
C2—C31.367 (3)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—C41.377 (3)C15—C161.336 (3)
C3—H30.9300C15—C181.471 (3)
C4—C51.377 (3)C16—O31.334 (3)
C4—H40.9300C16—C171.503 (3)
C5—C61.385 (3)C17—O21.450 (3)
C5—H50.9300C17—C201.517 (4)
C6—N11.397 (3)C17—C211.524 (4)
C7—N11.289 (2)C18—O11.201 (3)
C7—S21.741 (2)C18—O21.360 (3)
C7—S11.754 (2)C19—O31.433 (3)
C8—C91.504 (3)C19—H19A0.9600
C8—S21.820 (2)C19—H19B0.9600
C8—H8A0.9700C19—H19C0.9600
C8—H8B0.9700C20—H20A0.9600
C9—C141.387 (3)C20—H20B0.9600
C9—C101.406 (3)C20—H20C0.9600
C10—C111.390 (3)C21—H21A0.9600
C10—C151.480 (3)C21—H21B0.9600
C11—C121.378 (3)C21—H21C0.9600
C11—H110.9300
C2—C1—C6121.1 (2)C13—C14—C9121.5 (2)
C2—C1—S1129.24 (18)C13—C14—H14119.3
C6—C1—S1109.60 (16)C9—C14—H14119.3
C3—C2—C1117.8 (2)C16—C15—C18105.53 (19)
C3—C2—H2121.1C16—C15—C10134.4 (2)
C1—C2—H2121.1C18—C15—C10120.01 (19)
C2—C3—C4121.6 (2)O3—C16—C15133.6 (2)
C2—C3—H3119.2O3—C16—C17114.12 (19)
C4—C3—H3119.2C15—C16—C17112.3 (2)
C3—C4—C5121.4 (2)O2—C17—C16102.18 (18)
C3—C4—H4119.3O2—C17—C20107.9 (2)
C5—C4—H4119.3C16—C17—C20112.3 (2)
C4—C5—C6118.3 (2)O2—C17—C21107.9 (2)
C4—C5—H5120.8C16—C17—C21112.4 (2)
C6—C5—H5120.8C20—C17—C21113.3 (2)
C5—C6—N1124.9 (2)O1—C18—O2120.9 (2)
C5—C6—C1119.8 (2)O1—C18—C15129.0 (2)
N1—C6—C1115.26 (18)O2—C18—C15110.17 (19)
N1—C7—S2126.65 (17)O3—C19—H19A109.5
N1—C7—S1116.90 (16)O3—C19—H19B109.5
S2—C7—S1116.43 (12)H19A—C19—H19B109.5
C9—C8—S2113.56 (14)O3—C19—H19C109.5
C9—C8—H8A108.9H19A—C19—H19C109.5
S2—C8—H8A108.9H19B—C19—H19C109.5
C9—C8—H8B108.9C17—C20—H20A109.5
S2—C8—H8B108.9C17—C20—H20B109.5
H8A—C8—H8B107.7H20A—C20—H20B109.5
C14—C9—C10118.79 (19)C17—C20—H20C109.5
C14—C9—C8120.27 (18)H20A—C20—H20C109.5
C10—C9—C8120.93 (18)H20B—C20—H20C109.5
C11—C10—C9118.73 (19)C17—C21—H21A109.5
C11—C10—C15119.70 (18)C17—C21—H21B109.5
C9—C10—C15121.48 (18)H21A—C21—H21B109.5
C12—C11—C10121.7 (2)C17—C21—H21C109.5
C12—C11—H11119.2H21A—C21—H21C109.5
C10—C11—H11119.2H21B—C21—H21C109.5
C11—C12—C13119.5 (2)C7—N1—C6109.71 (18)
C11—C12—H12120.3C18—O2—C17109.83 (17)
C13—C12—H12120.3C16—O3—C19119.67 (17)
C14—C13—C12119.9 (2)C1—S1—C788.52 (10)
C14—C13—H13120.1C7—S2—C8101.71 (10)
C12—C13—H13120.1
C6—C1—C2—C30.3 (3)C18—C15—C16—C171.3 (3)
S1—C1—C2—C3177.37 (19)C10—C15—C16—C17175.3 (2)
C1—C2—C3—C40.2 (4)O3—C16—C17—O2178.22 (19)
C2—C3—C4—C50.4 (4)C15—C16—C17—O21.5 (3)
C3—C4—C5—C60.7 (4)O3—C16—C17—C2062.8 (3)
C4—C5—C6—N1178.7 (2)C15—C16—C17—C20117.0 (3)
C4—C5—C6—C10.8 (3)O3—C16—C17—C2166.4 (3)
C2—C1—C6—C50.6 (3)C15—C16—C17—C21113.8 (2)
S1—C1—C6—C5177.46 (16)C16—C15—C18—O1179.5 (2)
C2—C1—C6—N1178.74 (18)C10—C15—C18—O13.3 (4)
S1—C1—C6—N10.6 (2)C16—C15—C18—O20.5 (2)
S2—C8—C9—C14114.53 (19)C10—C15—C18—O2176.70 (18)
S2—C8—C9—C1064.9 (2)S2—C7—N1—C6177.70 (14)
C14—C9—C10—C110.3 (3)S1—C7—N1—C60.6 (2)
C8—C9—C10—C11179.14 (18)C5—C6—N1—C7177.21 (19)
C14—C9—C10—C15176.32 (18)C1—C6—N1—C70.8 (2)
C8—C9—C10—C154.2 (3)O1—C18—O2—C17179.5 (2)
C9—C10—C11—C120.4 (3)C15—C18—O2—C170.5 (3)
C15—C10—C11—C12176.34 (19)C16—C17—O2—C181.1 (3)
C10—C11—C12—C130.0 (3)C20—C17—O2—C18119.7 (2)
C11—C12—C13—C140.4 (3)C21—C17—O2—C18117.5 (2)
C12—C13—C14—C90.4 (3)C15—C16—O3—C194.9 (4)
C10—C9—C14—C130.1 (3)C17—C16—O3—C19174.8 (2)
C8—C9—C14—C13179.52 (19)C2—C1—S1—C7178.2 (2)
C11—C10—C15—C1671.7 (3)C6—C1—S1—C70.26 (14)
C9—C10—C15—C16111.7 (3)N1—C7—S1—C10.19 (15)
C11—C10—C15—C18104.6 (2)S2—C7—S1—C1178.27 (12)
C9—C10—C15—C1872.1 (3)N1—C7—S2—C86.61 (19)
C18—C15—C16—O3178.4 (2)S1—C7—S2—C8175.11 (10)
C10—C15—C16—O35.0 (4)C9—C8—S2—C780.97 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.563.302 (3)137
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H19NO3S2
Mr397.49
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)10.4702 (9), 10.4851 (9), 10.5169 (9)
α, β, γ (°)117.567 (1), 100.398 (1), 95.257 (1)
V3)986.15 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2005)
Tmin, Tmax0.944, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
7206, 3804, 2713
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.109, 0.90
No. of reflections3804
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.563.302 (3)137.2
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors acknowledge financial support from the Science Foundation of the Medical Scientific Research Foundation of Guangdong Province (B2010185), and the Natural Science Foundation of Guangdong Province (No. 10451051501004725)

References

First citationBrantley, E., Trapani, V., Alley, M. C., Hose, C. D., Bradshaw, T. D., Stevens, M. F. G., Sausville, E. A. & Stinson, S. F. (2004). Drug Metab. Disp. 32, 1392–1401.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIannazzo, D., Piperno, A., Romeo, G., Romeo, R., Chiacchio, U., Rescifina, A., Balestrieri, E., Macchi, B., Mastino, A. & Cortese, R. (2008). Bioorg. Med. Chem. 16, 9610–9615.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalmer, P. J., Trigg, R. B. & &Warrington, J. V. (1971). J. Med. Chem. 14, 248–251.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, P. L., Wang, F., Huang, W., Chen, Q. & Liu, Z. M. (2010). Chin. J. Org. Chem. 30, 1567–1573.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds