metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-2-[(Di­methyl­amino)­meth­yl]-1,1′-bis­­(di­phenyl­phosphino­thio­yl)ferrocene di­chloro­methane monsolvate

aLaboratoire de Chimie de Coordination, CNRS UPR8241, 205 route de Narbonne, Toulouse 31077, France
*Correspondence e-mail: daran@lcc-toulouse.fr

(Received 11 May 2012; accepted 16 May 2012; online 26 May 2012)

In the title compound, [Fe(C20H21NPS)(C17H14PS)]·CH2Cl2, both cyclo­penta­dienyl (Cp) rings constituting the ferrocene unit are substituted by a sulfur-protected diphenyl­phosphine. One of the Cp ligands is additionally substituted by a dimethyl­amino­methyl group causing the chirality of the mol­ecule. Surprisingly, although the synthetic procedure yielded the title compound as a racemic mixture, the reported crystal is enanti­omerically pure with the R absolute configuration. The dimethyl­amino group is exo with respect to the Cp ring. Both diphenyl­thio­phosphine groups are trans with respect to the centroid–Fe–centroid direction. Weak intra­molecular C—H⋯S and C—H⋯π inter­actions between symmetry-related mol­ecules are observed. The contribution of the disordered solvent was removed from the refinement using SQUEEZE in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

Related literature

For related 1,1′-bis­(diphenyl­thio­phosphino)ferrocene structures, see: Fang et al. (1995[Fang, Z.-G., Hor, T. S. A., Wen, Y.-S., Liu, L.-K. & Mak, T. C. W. (1995). Polyhedron, 14, 2403-2409.]); Pilloni et al. (1997[Pilloni, G., Longato, B., Bandoli, G. & Corain, B. (1997). J. Chem. Soc. Dalton Trans. pp. 819-824.]) and for a related dimethyl­ethyl­amino­ferrocene structure, see: Mateus et al. (2006[Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297-2310.]). For the chemistry of related ferrocenyl compounds, see: Audin et al. (2010[Audin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2010). C. R. Chim. 13, 890-899.]); Debono et al. (2010[Debono, N., Labande, A., Manoury, E., Daran, J.-C. & Poli, R. (2010). Organometallics, 29, 1879-1882.]); Diab et al. (2008[Diab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186-5189.]); Le Roux et al. (2007[Le Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 1064-1073.]); Malacea et al. (2006a[Malacea, R., Daran, J.-C., Duckett, S. B., Dunne, J. P., Manoury, E., Poli, R. & Withwood, A. C. (2006a). Dalton Trans. pp. 3350-3359.],b[Malacea, R., Manoury, E., Routaboul, L., Daran, J.-C., Poli, R., Dunne, J. P., Withwood, A. C., Godard, C. & Duckett, S. B. (2006b). Eur. J. Inorg. Chem. pp. 1803-1816.]); Routaboul et al. (2005[Routaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685-2690.], 2007[Routaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064-1073.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C20H21NPS)(C17H14PS)]·CH2Cl2

  • Mr = 760.50

  • Orthorhombic, P 21 21 21

  • a = 8.9493 (3) Å

  • b = 16.8206 (7) Å

  • c = 23.7697 (9) Å

  • V = 3578.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 180 K

  • 0.48 × 0.11 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.841, Tmax = 1.0

  • 61147 measured reflections

  • 7854 independent reflections

  • 7097 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.102

  • S = 1.09

  • 7854 reflections

  • 393 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3441 Friedel pairs

  • Flack parameter: 0.043 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C612—H612⋯S6 0.95 2.87 3.367 (3) 114
C113—H113⋯CT3i 0.95 2.84 3.678 (4) 148
Symmetry code: (i) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our group has extensively studied the coordination chemistry (Malacea et al., 2006a, 2006b) and the catalytic properties (Le Roux et al., 2007; Diab et al., 2008; Debono et al., 2010) of various ferrocenyl ligands which can be efficiently synthesized from racemic or enantiomerically pure 2-(diphenylthiophosphino)(hydroxymethyl)ferrocene (Routaboul et al., 2005; Mateus et al., 2006; Routaboul et al., 2007; Le Roux et al., 2007; Audin et al., 2010). The latter may be obtained from 2-(diphenylthiophosphino)(dimethylaminomethyl)ferrocene. This last compound can be efficiently obtained by a one-pot procedure from commercially available dimethylaminomethylferrocene (Mateus et al., 2006). During this synthesis, small amounts of 1,1'-bis(diphenylthiophosphino) 2-dimethylaminomethylferrocene can be observed in the crude materials and isolated by flash chromatography on silicagel. Single crystals suitable for X-ray diffraction analysis could be grown from a dichloromethane solution by slow diffusion of hexane.

In the title compound, both Cp rings constituting the ferrocene unit are substituted by a sulfur protected diphenylphosphine. One of the Cp ligands is additionally substituted by a dimethylaminomethyl group causing the chirality of the molecule. Surprisingly, although the synthetic procedure yielded the title compound as a racemic mixture, the reported crystal is enantiomerically pure with the R absolute configuration (Fig. 1). The dimethylamino moiety is exo with respect to the Cp ring as already observed for the related 2-(diphenylthiophophino)-dimethylaminomethylferrocene (Mateus et al., 2006). The C2—C21—N2 group is bent with respect to the Cp ring making a dihedral angle of 73.8 (3)° and the two methyl groups have rotated around the C21—N2 bond from the idealized bisecting position to minimize the interactions with the corresponding C111—C116 phenyl ring. The two diphenylthiophosphine moieties are trans with respect to the Ct1—Fe—Ct2 centroid direction (Ct1 and Ct2 being the centroids of the C1—C5 and C6—C10 Cp rings, respectively) as it was also observed in the molecular structure of related 1,1-(bisdiphenylthiophosphino)ferrocene (Fang et al.,1995; Pilloni et al., 1997). The P1—Ct1—Ct2—P6 torsion angle is 146.75 (2)°.

The two Cp rings are eclipsed with a twist angle of 0.8 (2)°. There is a weak intramolecular C—H···S interaction (Table 1). Weak intramolecular C—H···S and C—H···π interactions between symmetry related molecules are observed (Table 1).

Related literature top

For related 1,1'-bis(diphenylthiophosphino)ferrocene structures, see: Fang et al. (1995); Pilloni et al. (1997) and for a related dimethylethylaminoferrocene structure, see: Mateus et al. (2006). For the chemistry of related ferrocenyl compounds, see: Audin et al. (2010); Debono et al. (2010); Diab et al. (2008); Le Roux et al. (2007); Malacea et al. (2006a,b); Routaboul et al. (2005, 2007).

Experimental top

In a Schlenk tube, were dissolved, under argon, 13.5 g (55.6 mmol) of N,N-dimethylaminomethylferrocene in 80 ml of dry diethylether. The solution was cooled down to -78°C and 42 ml (67.1 mmol) of a 1.65M n-BuLi solution in hexane were added dropwise. The solution was then stirred 3 h at RT. After cooling back to -78°C again, 27 ml (150 mmol) of freshly distilled chlorodiphenylphosphine were added dropwise. After stirring overnight at RT, water was added slowly under argon. The aqueous phase was then extracted by three fractions of dichloromethane under argon. The organic solutions were dried with sodium sulfate. After evaporation of the solvents, the crude material was dissolved, under argon, in 400 ml of dry dichloromethane in a Schlenk tube. 10.2 g of sulfur (318 mmol) was then added and the solution was kept at reflux for 2 h. The crude material was purified by flash chromatography on silica with pentane then ether as eluent to yield two yellow fractions (first fraction: 0.45 g of 1,1'-bis(diphenylthiophosphino) 2-dimethylaminomethylferrocene (1.2%); second fraction: 23.2 g of 2- (diphenylthiophosphino)dimethylaminomethylferrocene (91%)).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (methyl), 0.99 Å (methylene) with Uiso(H) = 1.2Ueq(aromatic,methylene) and Uiso(H) = 1.5Ueq(methyl).

Some residual electron densities were difficult to modelize and therefore the SQUEEZE function of PLATON (Spek, 2009) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final refinement. There are two cavities of 246 Å3 per unit cell. PLATON estimated that each cavity contains 82 electrons which may correspond to two solvent molecules of dichloromethane as suggested by chemical analyses.

The dimethylamino moiety displays rather large ellipsoids however attempts to modelize a disordered model failed and thus these large ellipsoids reflect rather thermal motion than disorder.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ; Molecular view of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
(R)-2-[(Dimethylamino)methyl]-1,1'-bis(diphenylphosphinothioyl)ferrocene dichloromethane monosolvate top
Crystal data top
[Fe(C20H21NPS)(C17H14PS)]·CH2Cl2F(000) = 1576
Mr = 760.50Dx = 1.412 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9878 reflections
a = 8.9493 (3) Åθ = 2.4–26.6°
b = 16.8206 (7) ŵ = 0.81 mm1
c = 23.7697 (9) ÅT = 180 K
V = 3578.1 (2) Å3Needle, yellow
Z = 40.48 × 0.11 × 0.08 mm
Data collection top
Bruker APEXII
diffractometer
7854 independent reflections
Radiation source: fine-focus sealed tube7097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and ϕ scansθmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.841, Tmax = 1.0k = 2120
61147 measured reflectionsl = 2930
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0472P)2 + 2.2997P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
7854 reflectionsΔρmax = 0.63 e Å3
393 parametersΔρmin = 0.36 e Å3
0 restraintsAbsolute structure: Flack (1983), 3441 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.043 (16)
Crystal data top
[Fe(C20H21NPS)(C17H14PS)]·CH2Cl2V = 3578.1 (2) Å3
Mr = 760.50Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9493 (3) ŵ = 0.81 mm1
b = 16.8206 (7) ÅT = 180 K
c = 23.7697 (9) Å0.48 × 0.11 × 0.08 mm
Data collection top
Bruker APEXII
diffractometer
7854 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
7097 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 1.0Rint = 0.040
61147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.63 e Å3
S = 1.09Δρmin = 0.36 e Å3
7854 reflectionsAbsolute structure: Flack (1983), 3441 Friedel pairs
393 parametersAbsolute structure parameter: 0.043 (16)
0 restraints
Special details top

Experimental. NMR of 1,1'-bis(diphenylthiophosphino) 2-dimethylaminomethylferrocene 1H NMR ((p.p.m.), δ CDCl3): 7.7 (2H, m: Ph); 7.72–7.60 (6H, m: Ph); 7.55–7.40 (8H, m: Ph); 7.40–7.30 (4H, m: Ph); 4.97 (1H, br s: Cp); 4.89 (1H, br s: Cp); 4.78 (1H, br s: Cp); 4.54 (1H, br s: Cp); 4.48 (1H, br s: Cp); 4.25 (1H, br s: Cp); 3.97 (1H, br d(AB), J=10 Hz: CH2); 3.70 (1H, br s: Cp); 2.91 (1H, br d(AB), J=10 Hz: CH2); 1.88 (6H, s: CH3). 13 C NMR (δ (p.p.m.), CDCl3): 134.26 (d, JP—C=87.0 Hz: quat. Ph); 134.22 (d, JP—C=88.3 Hz: quat. Ph); 134.0 (d, JP—C=87.0 Hz: quat. Ph); 133.3 (d, JP—C=85.9 Hz: quat. Ph); 132.0 (d, JP—C=10.7 Hz: Ph); 131.9 (d, JP—C=10.5 Hz: Ph);131.7 (d, JP—C=10.8 Hz: Ph); 131.41 (s, Ph); 131.37 (d, JP—C=12.5 Hz: Ph); 131.3 (s, Ph); 131.2 (d, JP—C=2.9 Hz: Ph); 131.03 (d, JP—C=2.5 Hz: Ph); 128.4 (d, JP—C=12.5 Hz: Ph); 128.2 (d, JP—C=12.5 Hz: Ph); 128.0 (d, JP—C=12.4 Hz: Ph); 127.9 (d, JP—C=12.7 Hz: Ph); 77.9 (br s: Cp); 76.8 (d, JP—C=10.1 Hz: Cp); 76.0 (d, JP—C=12.4 Hz: Cp); 75.8 (d, JP—C=94 Hz: quat Cp); 75.6 (d, JP—C= 9.9 Hz: Cp); 75.3 (d, JP—C=12.3 Hz: Cp); 73.9 (d, JP—C=12.1 Hz: Cp); 72.5 (br d, JP—C=8 Hz: Cp); 56.0 (CH2); 44.5 (N—CH3). 31P NMR (δ (p.p.m.), CDCl3): 40.95; 40,56.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.48389 (4)0.00564 (3)0.606968 (17)0.03074 (11)
P10.23725 (8)0.02734 (5)0.71861 (3)0.02852 (17)
P60.73306 (8)0.07876 (5)0.50958 (3)0.02409 (16)
S10.13593 (10)0.12190 (5)0.68974 (4)0.0406 (2)
S60.89329 (9)0.00330 (5)0.52544 (3)0.03778 (19)
N20.5450 (5)0.1520 (2)0.75679 (14)0.0686 (11)
C10.4171 (3)0.0049 (2)0.68857 (12)0.0325 (7)
C20.5410 (3)0.0577 (2)0.68079 (13)0.0362 (8)
C30.6606 (3)0.0106 (3)0.66053 (13)0.0494 (10)
H30.75800.03000.65250.059*
C40.6152 (4)0.0689 (2)0.65397 (15)0.0462 (9)
H40.67400.11160.64000.055*
C50.4652 (4)0.0730 (2)0.67230 (14)0.0417 (8)
H50.40590.11980.67360.050*
C60.5518 (3)0.04440 (19)0.52950 (12)0.0287 (7)
C70.4279 (3)0.0909 (2)0.54986 (13)0.0335 (7)
H70.42810.14650.55670.040*
C80.3061 (3)0.0388 (2)0.55776 (14)0.0419 (9)
H80.20930.05410.57020.050*
C90.3500 (4)0.0390 (2)0.54446 (15)0.0464 (9)
H90.28930.08520.54680.056*
C100.5022 (4)0.0362 (2)0.52682 (13)0.0400 (7)
H100.56070.08040.51530.048*
C210.5416 (4)0.1420 (2)0.69626 (16)0.0479 (9)
H21A0.63010.16810.67950.057*
H21B0.45110.16800.68090.057*
C220.6886 (8)0.1248 (4)0.7806 (3)0.119 (3)
H22A0.77090.15370.76260.178*
H22B0.70030.06770.77380.178*
H22C0.68990.13500.82120.178*
C230.5062 (9)0.2326 (3)0.7734 (2)0.111 (3)
H23A0.50250.23600.81460.166*
H23B0.40820.24650.75780.166*
H23C0.58160.26970.75910.166*
C1110.2708 (3)0.03238 (19)0.79388 (12)0.0310 (6)
C1120.3919 (3)0.0059 (2)0.81862 (13)0.0402 (7)
H1120.45790.03660.79610.048*
C1130.4166 (4)0.0005 (3)0.87580 (14)0.0468 (8)
H1130.50020.02540.89230.056*
C1140.3207 (4)0.0441 (2)0.90904 (15)0.0482 (9)
H1140.33780.04830.94840.058*
C1150.1988 (4)0.0818 (2)0.88471 (14)0.0446 (8)
H1150.13230.11190.90740.053*
C1160.1741 (4)0.0757 (2)0.82769 (13)0.0362 (7)
H1160.09010.10150.81140.043*
C1210.1326 (3)0.06366 (19)0.70677 (13)0.0327 (7)
C1220.0559 (4)0.0718 (2)0.65611 (15)0.0382 (8)
H1220.05450.02910.63000.046*
C1230.0181 (4)0.1416 (2)0.64376 (17)0.0473 (9)
H1230.06610.14770.60840.057*
C1240.0227 (5)0.2024 (2)0.68224 (19)0.0554 (10)
H1240.07750.24940.67420.067*
C1250.0515 (5)0.1951 (2)0.73201 (18)0.0531 (10)
H1250.04900.23760.75830.064*
C1260.1312 (4)0.1260 (2)0.74514 (15)0.0437 (8)
H1260.18360.12180.77980.052*
C6110.7596 (3)0.17580 (17)0.54128 (11)0.0254 (6)
C6120.8712 (3)0.18721 (19)0.58077 (12)0.0294 (6)
H6120.93240.14390.59200.035*
C6130.8938 (3)0.2616 (2)0.60395 (14)0.0384 (7)
H6130.97030.26910.63120.046*
C6140.8055 (4)0.3256 (2)0.58777 (13)0.0386 (8)
H6140.82160.37670.60370.046*
C6150.6936 (4)0.3142 (2)0.54805 (14)0.0362 (7)
H6150.63270.35780.53700.043*
C6160.6703 (3)0.24041 (18)0.52467 (12)0.0302 (6)
H6160.59400.23310.49740.036*
C6210.7209 (3)0.09785 (17)0.43468 (11)0.0251 (6)
C6220.8041 (4)0.1585 (2)0.41042 (13)0.0357 (7)
H6220.85780.19470.43350.043*
C6230.8085 (4)0.1661 (2)0.35233 (14)0.0438 (9)
H6230.86610.20750.33590.053*
C6240.7316 (4)0.1151 (2)0.31833 (13)0.0414 (8)
H6240.73660.12060.27860.050*
C6250.6461 (4)0.0553 (2)0.34214 (14)0.0427 (8)
H6250.59180.01980.31870.051*
C6260.6398 (3)0.0471 (2)0.39988 (13)0.0359 (7)
H6260.57960.00650.41600.043*
CT10.53980.01380.67120.010*0.00
CT20.42760.01980.54170.010*0.00
CT30.72510.10660.37630.010*0.00
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0273 (2)0.0402 (3)0.0247 (2)0.00255 (18)0.00526 (16)0.01199 (19)
P10.0269 (3)0.0326 (4)0.0260 (4)0.0068 (3)0.0028 (3)0.0074 (3)
P60.0225 (3)0.0311 (4)0.0186 (3)0.0000 (3)0.0010 (3)0.0037 (3)
S10.0450 (5)0.0375 (5)0.0393 (5)0.0162 (4)0.0074 (4)0.0079 (4)
S60.0392 (4)0.0435 (5)0.0306 (4)0.0150 (4)0.0001 (3)0.0075 (4)
N20.111 (3)0.052 (2)0.0427 (19)0.009 (2)0.021 (2)0.0029 (16)
C10.0314 (14)0.0435 (18)0.0228 (14)0.0099 (14)0.0040 (11)0.0127 (15)
C20.0288 (15)0.056 (2)0.0233 (15)0.0050 (14)0.0038 (12)0.0097 (14)
C30.0232 (14)0.096 (3)0.0294 (16)0.0046 (18)0.0022 (12)0.014 (2)
C40.0409 (19)0.055 (2)0.042 (2)0.0176 (18)0.0139 (16)0.0223 (17)
C50.0449 (19)0.0435 (19)0.0366 (18)0.0204 (16)0.0156 (15)0.0192 (15)
C60.0274 (14)0.0397 (18)0.0190 (14)0.0062 (12)0.0039 (11)0.0055 (13)
C70.0269 (14)0.047 (2)0.0269 (15)0.0016 (13)0.0022 (12)0.0104 (14)
C80.0242 (14)0.070 (3)0.0315 (18)0.0044 (15)0.0011 (13)0.0151 (17)
C90.0457 (19)0.058 (2)0.0356 (19)0.0232 (18)0.0044 (15)0.0052 (17)
C100.0461 (19)0.0458 (19)0.0281 (16)0.0050 (16)0.0030 (14)0.0014 (14)
C210.053 (2)0.049 (2)0.042 (2)0.0101 (17)0.0031 (17)0.0139 (17)
C220.142 (6)0.097 (4)0.117 (5)0.001 (4)0.085 (5)0.003 (4)
C230.211 (8)0.043 (3)0.078 (4)0.018 (4)0.048 (5)0.009 (2)
C1110.0295 (14)0.0384 (17)0.0251 (14)0.0022 (13)0.0053 (11)0.0100 (12)
C1120.0368 (15)0.056 (2)0.0275 (15)0.0090 (17)0.0019 (12)0.0102 (16)
C1130.0436 (17)0.063 (2)0.0338 (17)0.0012 (18)0.0049 (14)0.0122 (18)
C1140.053 (2)0.065 (2)0.0275 (17)0.0119 (19)0.0057 (15)0.0090 (16)
C1150.0446 (18)0.056 (2)0.0331 (18)0.0014 (16)0.0114 (15)0.0032 (16)
C1160.0375 (16)0.0403 (18)0.0307 (16)0.0070 (14)0.0034 (13)0.0024 (14)
C1210.0307 (15)0.0344 (17)0.0331 (16)0.0113 (13)0.0077 (12)0.0060 (13)
C1220.0312 (16)0.043 (2)0.0400 (19)0.0041 (14)0.0006 (13)0.0139 (16)
C1230.043 (2)0.046 (2)0.053 (2)0.0045 (17)0.0012 (17)0.0062 (17)
C1240.056 (2)0.042 (2)0.068 (3)0.0078 (18)0.016 (2)0.0063 (19)
C1250.072 (3)0.032 (2)0.055 (2)0.0017 (18)0.024 (2)0.0088 (17)
C1260.058 (2)0.0350 (18)0.0384 (19)0.0098 (17)0.0115 (16)0.0066 (15)
C6110.0224 (13)0.0321 (15)0.0216 (13)0.0020 (12)0.0030 (11)0.0028 (11)
C6120.0263 (14)0.0411 (18)0.0207 (14)0.0001 (13)0.0015 (11)0.0030 (12)
C6130.0309 (15)0.058 (2)0.0269 (16)0.0094 (15)0.0011 (13)0.0027 (15)
C6140.0397 (18)0.045 (2)0.0312 (17)0.0076 (15)0.0041 (13)0.0086 (15)
C6150.0323 (16)0.0357 (18)0.0404 (18)0.0003 (13)0.0070 (13)0.0062 (15)
C6160.0286 (14)0.0381 (17)0.0239 (14)0.0016 (13)0.0012 (12)0.0007 (13)
C6210.0233 (13)0.0324 (16)0.0197 (13)0.0063 (11)0.0023 (10)0.0007 (11)
C6220.0410 (18)0.0376 (18)0.0285 (16)0.0057 (14)0.0035 (13)0.0043 (14)
C6230.050 (2)0.050 (2)0.0310 (17)0.0018 (17)0.0107 (15)0.0144 (16)
C6240.0448 (18)0.056 (2)0.0234 (15)0.0127 (17)0.0026 (14)0.0063 (15)
C6250.0418 (19)0.059 (2)0.0277 (17)0.0059 (16)0.0037 (14)0.0033 (15)
C6260.0334 (15)0.0462 (19)0.0281 (16)0.0073 (14)0.0018 (13)0.0036 (14)
Geometric parameters (Å, º) top
Fe1—CT11.6401 (4)C23—H23B0.9800
Fe1—CT21.6488 (4)C23—H23C0.9800
Fe1—C22.027 (3)C111—C1161.388 (4)
Fe1—C12.030 (3)C111—C1121.391 (4)
Fe1—C32.032 (3)C112—C1131.381 (4)
Fe1—C72.037 (3)C112—H1120.9500
Fe1—C102.038 (3)C113—C1141.378 (5)
Fe1—C62.046 (3)C113—H1130.9500
Fe1—C52.046 (3)C114—C1151.388 (5)
Fe1—C42.050 (3)C114—H1140.9500
Fe1—C92.051 (4)C115—C1161.377 (5)
Fe1—C82.052 (3)C115—H1150.9500
P1—C11.800 (3)C116—H1160.9500
P1—C1111.816 (3)C121—C1261.390 (5)
P1—C1211.816 (3)C121—C1221.393 (5)
P1—S11.9551 (11)C122—C1231.379 (5)
P6—C61.786 (3)C122—H1220.9500
P6—C6211.812 (3)C123—C1241.373 (6)
P6—C6111.813 (3)C123—H1230.9500
P6—S61.9519 (11)C124—C1251.362 (6)
N2—C211.449 (5)C124—H1240.9500
N2—C231.454 (6)C125—C1261.399 (6)
N2—C221.477 (7)C125—H1250.9500
C1—C21.432 (4)C126—H1260.9500
C1—C51.433 (5)C611—C6121.384 (4)
C2—C31.417 (5)C611—C6161.406 (4)
C2—C211.464 (5)C612—C6131.382 (5)
C3—C41.406 (6)C612—H6120.9500
C3—H30.9500C613—C6141.389 (5)
C4—C51.413 (5)C613—H6130.9500
C4—H40.9500C614—C6151.389 (5)
C5—H50.9500C614—H6140.9500
C6—C101.428 (5)C615—C6161.377 (5)
C6—C71.440 (4)C615—H6150.9500
C7—C81.411 (5)C616—H6160.9500
C7—H70.9500C621—C6221.388 (4)
C8—C91.403 (6)C621—C6261.393 (4)
C8—H80.9500C622—C6231.387 (5)
C9—C101.426 (5)C622—H6220.9500
C9—H90.9500C623—C6241.364 (5)
C10—H100.9500C623—H6230.9500
C21—H21A0.9900C624—C6251.385 (5)
C21—H21B0.9900C624—H6240.9500
C22—H22A0.9800C625—C6261.381 (5)
C22—H22B0.9800C625—H6250.9500
C22—H22C0.9800C626—H6260.9500
C23—H23A0.9800
CT1—Fe1—CT2176.82 (3)P6—C6—Fe1127.72 (16)
CT1—Fe1—C237.12 (10)C8—C7—C6107.6 (3)
CT2—Fe1—C2146.06 (10)C8—C7—Fe170.39 (18)
CT1—Fe1—C136.75 (8)C6—C7—Fe169.67 (17)
CT2—Fe1—C1144.12 (8)C8—C7—H7126.2
C2—Fe1—C141.36 (13)C6—C7—H7126.2
CT1—Fe1—C335.63 (9)Fe1—C7—H7125.3
CT2—Fe1—C3145.24 (9)C9—C8—C7109.4 (3)
C2—Fe1—C340.86 (14)C9—C8—Fe170.0 (2)
C1—Fe1—C368.34 (12)C7—C8—Fe169.24 (17)
CT1—Fe1—C7146.69 (10)C9—C8—H8125.3
CT2—Fe1—C736.50 (10)C7—C8—H8125.3
C2—Fe1—C7109.57 (14)Fe1—C8—H8127.1
C1—Fe1—C7124.64 (13)C8—C9—C10107.6 (3)
C3—Fe1—C7125.46 (16)C8—C9—Fe170.0 (2)
CT1—Fe1—C10141.04 (11)C10—C9—Fe169.07 (19)
CT2—Fe1—C1036.33 (10)C8—C9—H9126.2
C2—Fe1—C10159.80 (13)C10—C9—H9126.2
C1—Fe1—C10156.23 (14)Fe1—C9—H9126.3
C3—Fe1—C10122.50 (14)C9—C10—C6108.4 (3)
C7—Fe1—C1068.88 (14)C9—C10—Fe170.1 (2)
CT1—Fe1—C6144.19 (8)C6—C10—Fe169.84 (19)
CT2—Fe1—C636.65 (8)C9—C10—H10125.8
C2—Fe1—C6124.52 (12)C6—C10—H10125.8
C1—Fe1—C6161.71 (14)Fe1—C10—H10125.8
C3—Fe1—C6108.63 (12)N2—C21—C2111.3 (3)
C7—Fe1—C641.32 (12)N2—C21—H21A109.4
C10—Fe1—C640.94 (13)C2—C21—H21A109.4
CT1—Fe1—C535.88 (12)N2—C21—H21B109.4
CT2—Fe1—C5141.48 (12)C2—C21—H21B109.4
C2—Fe1—C569.07 (15)H21A—C21—H21B108.0
C1—Fe1—C541.15 (14)N2—C22—H22A109.5
C3—Fe1—C567.34 (16)N2—C22—H22B109.5
C7—Fe1—C5160.11 (13)H22A—C22—H22B109.5
C10—Fe1—C5119.54 (15)N2—C22—H22C109.5
C6—Fe1—C5155.96 (13)H22A—C22—H22C109.5
CT1—Fe1—C436.47 (11)H22B—C22—H22C109.5
CT2—Fe1—C4140.93 (11)N2—C23—H23A109.5
C2—Fe1—C469.38 (15)N2—C23—H23B109.5
C1—Fe1—C469.18 (13)H23A—C23—H23B109.5
C3—Fe1—C440.30 (17)N2—C23—H23C109.5
C7—Fe1—C4159.20 (13)H23A—C23—H23C109.5
C10—Fe1—C4104.61 (15)H23B—C23—H23C109.5
C6—Fe1—C4121.01 (13)C116—C111—C112118.9 (3)
C5—Fe1—C440.36 (13)C116—C111—P1119.5 (2)
CT1—Fe1—C9141.26 (10)C112—C111—P1121.6 (2)
CT2—Fe1—C936.16 (10)C113—C112—C111120.3 (3)
C2—Fe1—C9158.85 (14)C113—C112—H112119.8
C1—Fe1—C9121.19 (13)C111—C112—H112119.8
C3—Fe1—C9157.44 (17)C114—C113—C112120.4 (3)
C7—Fe1—C968.37 (15)C114—C113—H113119.8
C10—Fe1—C940.83 (14)C112—C113—H113119.8
C6—Fe1—C968.80 (12)C113—C114—C115119.6 (3)
C5—Fe1—C9105.38 (16)C113—C114—H114120.2
C4—Fe1—C9120.38 (17)C115—C114—H114120.2
CT1—Fe1—C8145.23 (9)C116—C115—C114120.2 (3)
CT2—Fe1—C835.66 (9)C116—C115—H115119.9
C2—Fe1—C8124.85 (15)C114—C115—H115119.9
C1—Fe1—C8108.53 (12)C115—C116—C111120.6 (3)
C3—Fe1—C8161.71 (18)C115—C116—H116119.7
C7—Fe1—C840.37 (13)C111—C116—H116119.7
C10—Fe1—C867.88 (15)C126—C121—C122119.2 (3)
C6—Fe1—C868.33 (12)C126—C121—P1122.6 (3)
C5—Fe1—C8123.01 (14)C122—C121—P1118.1 (2)
C4—Fe1—C8157.15 (16)C123—C122—C121120.3 (3)
C9—Fe1—C839.98 (15)C123—C122—H122119.9
C1—P1—C111104.65 (13)C121—C122—H122119.9
C1—P1—C121102.87 (15)C124—C123—C122120.4 (4)
C111—P1—C121106.09 (14)C124—C123—H123119.8
C1—P1—S1116.46 (11)C122—C123—H123119.8
C111—P1—S1112.61 (11)C125—C124—C123119.8 (4)
C121—P1—S1113.08 (10)C125—C124—H124120.1
C6—P6—C621105.26 (14)C123—C124—H124120.1
C6—P6—C611107.47 (14)C124—C125—C126121.2 (4)
C621—P6—C611104.87 (13)C124—C125—H125119.4
C6—P6—S6113.92 (11)C126—C125—H125119.4
C621—P6—S6110.44 (9)C121—C126—C125119.0 (4)
C611—P6—S6114.13 (10)C121—C126—H126120.5
C21—N2—C23112.0 (4)C125—C126—H126120.5
C21—N2—C22111.3 (5)C612—C611—C616119.6 (3)
C23—N2—C22113.1 (5)C612—C611—P6120.1 (2)
C2—C1—C5107.4 (3)C616—C611—P6120.3 (2)
C2—C1—P1127.8 (3)C613—C612—C611120.1 (3)
C5—C1—P1124.6 (3)C613—C612—H612120.0
C2—C1—Fe169.20 (17)C611—C612—H612120.0
C5—C1—Fe170.05 (17)C612—C613—C614120.5 (3)
P1—C1—Fe1129.88 (15)C612—C613—H613119.7
C3—C2—C1106.4 (3)C614—C613—H613119.7
C3—C2—C21128.6 (3)C613—C614—C615119.5 (3)
C1—C2—C21124.8 (3)C613—C614—H614120.3
C3—C2—Fe169.78 (19)C615—C614—H614120.3
C1—C2—Fe169.44 (17)C616—C615—C614120.5 (3)
C21—C2—Fe1129.5 (2)C616—C615—H615119.8
C4—C3—C2110.6 (3)C614—C615—H615119.8
C4—C3—Fe170.5 (2)C615—C616—C611119.9 (3)
C2—C3—Fe169.36 (17)C615—C616—H616120.1
C4—C3—H3124.7C611—C616—H616120.1
C2—C3—H3124.7C622—C621—C626118.9 (3)
Fe1—C3—H3127.0C622—C621—P6120.4 (2)
C3—C4—C5106.6 (3)C626—C621—P6120.4 (2)
C3—C4—Fe169.17 (19)C623—C622—C621119.7 (3)
C5—C4—Fe169.69 (19)C623—C622—H622120.1
C3—C4—H4126.7C621—C622—H622120.1
C5—C4—H4126.7C624—C623—C622121.2 (3)
Fe1—C4—H4126.0C624—C623—H623119.4
C4—C5—C1108.9 (3)C622—C623—H623119.4
C4—C5—Fe169.95 (19)C623—C624—C625119.6 (3)
C1—C5—Fe168.80 (17)C623—C624—H624120.2
C4—C5—H5125.5C625—C624—H624120.2
C1—C5—H5125.5C626—C625—C624120.1 (3)
Fe1—C5—H5127.3C626—C625—H625120.0
C10—C6—C7106.9 (3)C624—C625—H625120.0
C10—C6—P6125.3 (2)C625—C626—C621120.5 (3)
C7—C6—P6127.8 (2)C625—C626—H626119.7
C10—C6—Fe169.22 (18)C621—C626—H626119.7
C7—C6—Fe169.01 (17)
C1—CT1—CT2—C80.3 (3)C5—CT1—CT2—C91.8 (2)
C2—CT1—CT2—C70.1 (2)C1—C2—C21—N271.2 (4)
C3—CT1—CT2—C60.6 (3)C3—C2—C21—N2102.8 (4)
C4—CT1—CT2—C101.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C612—H612···S60.952.873.367 (3)114
C113—H113···CT3i0.952.843.678 (4)148
Symmetry code: (i) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C20H21NPS)(C17H14PS)]·CH2Cl2
Mr760.50
Crystal system, space groupOrthorhombic, P212121
Temperature (K)180
a, b, c (Å)8.9493 (3), 16.8206 (7), 23.7697 (9)
V3)3578.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.48 × 0.11 × 0.08
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.841, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
61147, 7854, 7097
Rint0.040
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.102, 1.09
No. of reflections7854
No. of parameters393
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.36
Absolute structureFlack (1983), 3441 Friedel pairs
Absolute structure parameter0.043 (16)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C612—H612···S60.952.873.367 (3)114.1
C113—H113···CT3i0.952.843.678 (4)147.9
Symmetry code: (i) x+3/2, y, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAudin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2010). C. R. Chim. 13, 890–899.  CrossRef CAS Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDebono, N., Labande, A., Manoury, E., Daran, J.-C. & Poli, R. (2010). Organometallics, 29, 1879–1882.  Web of Science CSD CrossRef CAS Google Scholar
First citationDiab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186–5189.  Web of Science CrossRef CAS Google Scholar
First citationFang, Z.-G., Hor, T. S. A., Wen, Y.-S., Liu, L.-K. & Mak, T. C. W. (1995). Polyhedron, 14, 2403–2409.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLe Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 1064–1073.  Web of Science CrossRef Google Scholar
First citationMalacea, R., Daran, J.-C., Duckett, S. B., Dunne, J. P., Manoury, E., Poli, R. & Withwood, A. C. (2006a). Dalton Trans. pp. 3350–3359.  Web of Science CSD CrossRef Google Scholar
First citationMalacea, R., Manoury, E., Routaboul, L., Daran, J.-C., Poli, R., Dunne, J. P., Withwood, A. C., Godard, C. & Duckett, S. B. (2006b). Eur. J. Inorg. Chem. pp. 1803–1816.  Web of Science CSD CrossRef Google Scholar
First citationMateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310.  Web of Science CSD CrossRef CAS Google Scholar
First citationPilloni, G., Longato, B., Bandoli, G. & Corain, B. (1997). J. Chem. Soc. Dalton Trans. pp. 819–824.  CSD CrossRef Web of Science Google Scholar
First citationRoutaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685–2690.  Web of Science CrossRef CAS Google Scholar
First citationRoutaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064–1073.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds