metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ3-benzene-1,3-di­carboxyl­ato-κ4O1:O1′:O3,O3′)bis­­(pyridine-κN)cobalt(II)]

aSchool of Environment and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi Province, People's Republic of China
*Correspondence e-mail: xiefengxia2010@126.com

(Received 31 March 2012; accepted 4 May 2012; online 12 May 2012)

In the asymmetric unit of the title polymeric compound, [Co(C8H4O4)(C5H5N)2]n, there are two crystallographically independent CoII atoms, each of which is six-coordinated in a distorted octa­hedral geometry by four O atoms from benzene­dicarboxyl­ate anions and two N atoms from pyridine ligands. The benzene­dicarboxyl­ate dianions bridge the CoII atoms into a tape running along the b axis. C—H⋯O hydrogen bonds are observed in the tape and between the tapes.

Related literature

For the synthesis and related structures, see: Abourahma et al. (2003[Abourahma, H., Bodwell, G. J., Lu, J., Moulton, B., Pottie, I. R., Walsh, R. B. & Zaworotko, M. J. (2003). Cryst. Growth Des. 4, 513-519.]). For compounds with metal-organic framework structures, see: Yan et al. (1996[Yan, C. W., Li, Y. T. & Liao, D. Z. (1996). Chin. J. Appl. Chem. 3, 60-64.]); Rosi et al. (2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]); Jung et al. (2000[Jung, S. S., Dongmok, W., Hyoyoung, L., Sung, I. J., Jinho, O., Young, J. J. & Kimoon, K. (2000). Nature, 404, 982-986.]); Chen et al. (2010[Chen, S. C., Yu, R. M., Zhao, Z. G., Chen, S. M., Zhang, Q. S., Wu, X. Y., Wang, F. & Lu, C. Z. (2010). Cryst. Growth Des. 10, 1155-1160.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H4O4)(C5H5N)2]

  • Mr = 381.24

  • Monoclinic, C 2/c

  • a = 26.7189 (18) Å

  • b = 10.1226 (7) Å

  • c = 24.7622 (17) Å

  • β = 96.421 (1)°

  • V = 6655.3 (8) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 294 K

  • 0.30 × 0.25 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.742, Tmax = 0.833

  • 18265 measured reflections

  • 5862 independent reflections

  • 4733 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.142

  • S = 1.08

  • 5862 reflections

  • 451 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O8i 0.93 2.58 3.494 (5) 167
C11—H11⋯O4ii 0.93 2.54 3.461 (5) 171
C19—H19⋯O8iii 0.93 2.60 3.348 (7) 138
C23—H23⋯O3iv 0.93 2.53 3.213 (5) 130
C28—H28⋯O7v 0.93 2.55 3.313 (6) 139
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x+1, -y, -z+2; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (v) [-x+1, y+1, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During the last two decades, metal-organic frameworks (MOFs) have been developed rapidly due to their versatile structural diversities and their extensive potential applications in gas adsorptions, catalysis, magnetism and photochemistry (Rosi et al., 2003; Jung et al., 2000; Yan et al., 1996; Chen et al., 2010). Multi-carboxyl ligands, such as pyridine-2,5-dicarboxylic acid, isophthalic acid, 1,3,5-benzenetricarboxylic acid and 1,3,5-cyclohexanetricarboxylic acid, act as a three-connected node in conjunction with transition metals or lanthanide metals. These metals act as a six-connected node and then construct a 3,6-connecting rutile net.

In the crystal, the title cobalt(II) complex forms chains running along the b axis. As shown in Fig. 1, the coordination geometry around the Co(II) atom is a slightly distorted octahedron. In the octahedron unit, the axial positions are occupied by N atoms from pyridine ligands and the equatorial sites by O atoms from the 1,3-benzenedicarboxylate dianions. The octahedral coordination sphere of the cobalt(II) cation is slightly distorted with distances in the range of 2.019 (3) to 2.302 (3) Å.

Related literature top

For the synthesis and related structures, see: Abourahma et al. (2003). For applications of metal–organic frameworks, see: Yan et al. (1996); Rosi et al. (2003); Jung et al. (2000); Chen et al. (2010).

Experimental top

Purple crystals of the title compound were obtained from slow diffusion of ethanol(6 mL) of 1,3-H2bdc (83.0 mg, 0.5 mmol) and pyridine (0.15 ml) into an aqueous solution (3 ml) of cobalt chloride (119.4 mg, 0.5 mmol).

Refinement top

All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions (C—H = 0.93 Å), with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A part of the polymeric structure of the title compound. Displacement ellipsoids are drawn at the 25% probability level. [Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z.]
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the b axis.
Poly[(µ3-benzene-1,3-dicarboxylato- κ4O1:O1':O3,O3')bis(pyridine- κN)cobalt(II)] top
Crystal data top
[Co(C8H4O4)(C5H5N)2]F(000) = 3120
Mr = 381.24Dx = 1.522 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2813 reflections
a = 26.7189 (18) Åθ = 2.3–23.0°
b = 10.1226 (7) ŵ = 1.06 mm1
c = 24.7622 (17) ÅT = 294 K
β = 96.421 (1)°Block, purple
V = 6655.3 (8) Å30.30 × 0.25 × 0.18 mm
Z = 16
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5862 independent reflections
Radiation source: fine-focus sealed tube4733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3131
Tmin = 0.742, Tmax = 0.833k = 1012
18265 measured reflectionsl = 2629
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0766P)2 + 0.0224P]
where P = (Fo2 + 2Fc2)/3
5862 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Co(C8H4O4)(C5H5N)2]V = 6655.3 (8) Å3
Mr = 381.24Z = 16
Monoclinic, C2/cMo Kα radiation
a = 26.7189 (18) ŵ = 1.06 mm1
b = 10.1226 (7) ÅT = 294 K
c = 24.7622 (17) Å0.30 × 0.25 × 0.18 mm
β = 96.421 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5862 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4733 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.833Rint = 0.043
18265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.08Δρmax = 0.61 e Å3
5862 reflectionsΔρmin = 0.32 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.35527 (2)0.18383 (5)0.93942 (2)0.03237 (18)
Co20.39249 (2)0.51173 (5)0.84317 (2)0.02943 (17)
O40.35636 (11)0.9743 (3)0.93314 (11)0.0402 (7)
O30.32957 (10)1.0611 (3)1.00560 (11)0.0392 (7)
O60.39712 (11)0.3391 (2)0.79982 (11)0.0388 (7)
O80.39911 (11)0.2787 (3)0.84887 (11)0.0429 (7)
O70.40607 (11)0.3629 (3)0.76863 (12)0.0433 (7)
O50.38365 (13)0.2080 (3)0.86745 (12)0.0542 (9)
O10.38119 (11)0.4917 (3)0.92200 (11)0.0390 (7)
O20.34045 (10)0.3598 (2)0.97351 (12)0.0395 (7)
N20.27837 (13)0.1840 (3)0.89985 (13)0.0381 (8)
N10.43006 (13)0.1840 (3)0.98289 (15)0.0437 (9)
N40.31207 (13)0.5260 (4)0.82074 (14)0.0426 (9)
N30.47206 (12)0.4904 (3)0.86490 (13)0.0352 (8)
C290.57532 (19)0.4548 (6)0.8862 (2)0.0676 (16)
H290.60990.44270.89350.081*
C220.24213 (16)0.2616 (4)0.91632 (17)0.0419 (10)
H220.25060.31790.94560.050*
C230.19321 (17)0.2620 (5)0.89223 (18)0.0487 (12)
H230.16950.31810.90480.058*
C250.21609 (19)0.0967 (5)0.83247 (19)0.0544 (13)
H250.20800.03810.80390.065*
C260.26455 (18)0.1030 (5)0.85853 (18)0.0486 (12)
H260.28880.04760.84650.058*
C360.28471 (17)0.4256 (5)0.79786 (19)0.0524 (12)
H360.30130.34710.79200.063*
C240.17994 (18)0.1788 (5)0.8495 (2)0.0536 (13)
H240.14720.17770.83240.064*
C320.28686 (19)0.6354 (6)0.8290 (2)0.0608 (14)
H320.30470.70690.84490.073*
C340.2091 (2)0.5456 (7)0.7917 (2)0.0711 (17)
H340.17460.55260.78200.085*
C170.43602 (19)0.2021 (5)1.0365 (2)0.0618 (14)
H170.40740.21911.05350.074*
C210.47211 (19)0.1616 (5)0.9598 (2)0.0589 (14)
H210.46950.14990.92230.071*
C180.4813 (2)0.1976 (6)1.0685 (2)0.0733 (17)
H180.48320.21051.10580.088*
C330.2356 (2)0.6492 (7)0.8152 (2)0.0787 (19)
H330.21950.72800.82190.094*
C190.5237 (2)0.1736 (6)1.0439 (3)0.0759 (18)
H190.55500.17001.06440.091*
C350.23382 (19)0.4310 (6)0.7825 (2)0.0670 (16)
H350.21660.35880.76640.080*
C200.5197 (2)0.1550 (6)0.9892 (3)0.0762 (18)
H200.54810.13810.97180.091*
C100.41050 (13)0.1095 (4)0.78952 (15)0.0283 (8)
C120.41443 (14)0.1281 (4)0.77838 (15)0.0299 (9)
C90.39595 (14)0.2272 (4)0.82185 (16)0.0300 (9)
C110.40432 (14)0.0177 (3)0.80902 (16)0.0285 (9)
H110.39330.02920.84300.034*
C40.32940 (14)0.8249 (4)0.99897 (15)0.0286 (9)
C10.35306 (13)0.4719 (4)0.95844 (15)0.0265 (8)
C70.29152 (15)0.6799 (4)1.05964 (16)0.0370 (10)
H70.27350.66751.08930.044*
C160.42825 (16)0.1257 (4)0.73977 (17)0.0396 (10)
H160.43280.21040.72660.048*
C20.33449 (13)0.5891 (4)0.98750 (15)0.0250 (8)
C130.40588 (14)0.2644 (4)0.79965 (17)0.0335 (9)
C80.30677 (14)0.5715 (4)1.03103 (16)0.0316 (9)
H80.29830.48671.04120.038*
C60.30321 (15)0.8062 (4)1.04375 (16)0.0346 (9)
H60.29350.87881.06310.041*
C30.34509 (13)0.7163 (3)0.97101 (15)0.0254 (8)
H30.36280.72880.94110.030*
C140.43154 (16)0.1094 (4)0.72835 (17)0.0427 (11)
H140.43790.18240.70730.051*
C150.43943 (18)0.0167 (4)0.70894 (19)0.0496 (12)
H150.45200.02830.67570.059*
C50.33932 (14)0.9617 (4)0.97830 (17)0.0307 (9)
C270.50228 (17)0.4938 (5)0.8263 (2)0.0554 (13)
H270.48790.50930.79090.067*
C310.49385 (18)0.4702 (5)0.91487 (19)0.0530 (13)
H310.47360.46840.94310.064*
C300.54507 (19)0.4515 (6)0.9272 (2)0.0721 (17)
H300.55880.43690.96290.087*
C280.55390 (18)0.4760 (6)0.8348 (2)0.0663 (16)
H280.57340.47850.80600.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0451 (3)0.0139 (3)0.0399 (3)0.0011 (2)0.0127 (3)0.0004 (2)
Co20.0387 (3)0.0160 (3)0.0339 (3)0.0021 (2)0.0057 (2)0.0004 (2)
O40.0606 (19)0.0169 (15)0.0462 (18)0.0034 (13)0.0202 (15)0.0024 (12)
O30.0546 (18)0.0159 (15)0.0494 (18)0.0012 (13)0.0154 (14)0.0031 (12)
O60.0606 (19)0.0138 (15)0.0427 (17)0.0007 (13)0.0092 (14)0.0001 (12)
O80.072 (2)0.0198 (15)0.0373 (17)0.0019 (14)0.0099 (15)0.0027 (12)
O70.064 (2)0.0174 (15)0.0489 (18)0.0039 (14)0.0072 (15)0.0051 (13)
O50.093 (3)0.0279 (17)0.0487 (19)0.0023 (16)0.0386 (18)0.0011 (14)
O10.0536 (18)0.0273 (16)0.0394 (17)0.0028 (13)0.0192 (14)0.0009 (12)
O20.0552 (18)0.0103 (14)0.0563 (19)0.0009 (12)0.0202 (14)0.0029 (12)
N20.051 (2)0.027 (2)0.037 (2)0.0022 (16)0.0069 (16)0.0002 (15)
N10.044 (2)0.030 (2)0.057 (2)0.0025 (16)0.0100 (18)0.0032 (17)
N40.044 (2)0.046 (2)0.038 (2)0.0050 (18)0.0057 (17)0.0056 (17)
N30.041 (2)0.0278 (19)0.037 (2)0.0022 (15)0.0066 (16)0.0014 (14)
C290.039 (3)0.089 (5)0.074 (4)0.000 (3)0.002 (3)0.019 (3)
C220.056 (3)0.031 (2)0.041 (2)0.000 (2)0.015 (2)0.0032 (19)
C230.048 (3)0.051 (3)0.049 (3)0.004 (2)0.014 (2)0.001 (2)
C250.070 (3)0.049 (3)0.044 (3)0.002 (3)0.005 (2)0.010 (2)
C260.064 (3)0.037 (3)0.045 (3)0.003 (2)0.008 (2)0.006 (2)
C360.049 (3)0.050 (3)0.059 (3)0.006 (2)0.005 (2)0.017 (2)
C240.048 (3)0.059 (4)0.052 (3)0.006 (2)0.002 (2)0.008 (2)
C320.056 (3)0.071 (4)0.053 (3)0.020 (3)0.006 (2)0.015 (3)
C340.043 (3)0.116 (6)0.054 (3)0.011 (3)0.002 (3)0.003 (3)
C170.049 (3)0.069 (4)0.068 (4)0.010 (3)0.007 (3)0.017 (3)
C210.053 (3)0.053 (3)0.073 (4)0.003 (3)0.017 (3)0.002 (3)
C180.069 (4)0.080 (5)0.068 (4)0.007 (3)0.007 (3)0.016 (3)
C330.065 (4)0.112 (6)0.058 (4)0.037 (4)0.002 (3)0.015 (3)
C190.054 (3)0.067 (4)0.102 (5)0.014 (3)0.013 (3)0.003 (4)
C350.049 (3)0.080 (4)0.071 (4)0.021 (3)0.000 (3)0.015 (3)
C200.045 (3)0.077 (5)0.108 (5)0.004 (3)0.017 (3)0.002 (4)
C100.030 (2)0.019 (2)0.037 (2)0.0010 (16)0.0054 (17)0.0022 (16)
C120.035 (2)0.020 (2)0.035 (2)0.0008 (17)0.0040 (17)0.0029 (16)
C90.030 (2)0.021 (2)0.038 (2)0.0015 (16)0.0028 (17)0.0032 (17)
C110.036 (2)0.018 (2)0.033 (2)0.0034 (16)0.0089 (17)0.0002 (16)
C40.032 (2)0.016 (2)0.038 (2)0.0018 (16)0.0020 (17)0.0015 (16)
C10.030 (2)0.015 (2)0.033 (2)0.0012 (15)0.0026 (17)0.0017 (15)
C70.047 (2)0.028 (2)0.039 (2)0.0022 (19)0.0186 (19)0.0029 (18)
C160.053 (3)0.021 (2)0.048 (3)0.0043 (19)0.015 (2)0.0039 (18)
C20.0246 (18)0.0172 (19)0.032 (2)0.0039 (15)0.0003 (15)0.0012 (15)
C130.036 (2)0.020 (2)0.045 (3)0.0055 (17)0.0048 (18)0.0055 (18)
C80.038 (2)0.017 (2)0.041 (2)0.0020 (17)0.0071 (18)0.0079 (16)
C60.045 (2)0.025 (2)0.035 (2)0.0054 (18)0.0122 (18)0.0048 (17)
C30.0260 (19)0.0180 (19)0.032 (2)0.0002 (15)0.0046 (16)0.0012 (15)
C140.056 (3)0.031 (3)0.044 (3)0.002 (2)0.016 (2)0.0073 (19)
C150.074 (3)0.032 (3)0.048 (3)0.005 (2)0.032 (2)0.005 (2)
C50.033 (2)0.014 (2)0.046 (2)0.0025 (16)0.0031 (18)0.0012 (16)
C270.048 (3)0.078 (4)0.041 (3)0.005 (3)0.007 (2)0.004 (2)
C310.049 (3)0.067 (4)0.043 (3)0.002 (2)0.006 (2)0.006 (2)
C300.054 (3)0.103 (5)0.054 (3)0.002 (3)0.015 (3)0.018 (3)
C280.047 (3)0.085 (4)0.069 (4)0.001 (3)0.018 (3)0.013 (3)
Geometric parameters (Å, º) top
Co1—O52.028 (3)C32—H320.9300
Co1—O22.029 (3)C34—C331.358 (8)
Co1—O4i2.127 (3)C34—C351.366 (8)
Co1—N12.161 (4)C34—H340.9300
Co1—N22.175 (3)C17—C181.371 (7)
Co1—O3i2.225 (3)C17—H170.9300
Co2—O12.019 (3)C21—C201.394 (7)
Co2—O62.062 (3)C21—H210.9300
Co2—O8ii2.132 (3)C18—C191.366 (8)
Co2—N32.145 (3)C18—H180.9300
Co2—N42.163 (4)C33—H330.9300
Co2—O7ii2.302 (3)C19—C201.360 (8)
O4—C51.260 (5)C19—H190.9300
O4—Co1ii2.127 (3)C35—H350.9300
O3—C51.256 (4)C20—H200.9300
O3—Co1ii2.225 (3)C10—C161.378 (5)
O6—C91.259 (4)C10—C111.391 (5)
O8—C131.261 (5)C10—C91.511 (5)
O8—Co2i2.132 (3)C12—C141.381 (5)
O7—C131.260 (5)C12—C111.394 (5)
O7—Co2i2.302 (3)C12—C131.503 (5)
O5—C91.227 (5)C11—H110.9300
O1—C11.253 (4)C4—C31.389 (5)
O2—C11.252 (4)C4—C61.389 (5)
N2—C261.331 (5)C4—C51.510 (5)
N2—C221.345 (5)C1—C21.500 (5)
N1—C171.332 (6)C7—C61.384 (5)
N1—C211.336 (6)C7—C81.391 (5)
N4—C321.324 (6)C7—H70.9300
N4—C361.340 (6)C16—C151.393 (6)
N3—C271.319 (5)C16—H160.9300
N3—C311.323 (5)C2—C81.386 (5)
C29—C281.352 (7)C2—C31.390 (5)
C29—C301.368 (7)C8—H80.9300
C29—H290.9300C6—H60.9300
C22—C231.375 (6)C3—H30.9300
C22—H220.9300C14—C151.389 (6)
C23—C241.367 (6)C14—H140.9300
C23—H230.9300C15—H150.9300
C25—C241.376 (6)C5—Co1ii2.501 (4)
C25—C261.382 (6)C27—C281.384 (6)
C25—H250.9300C27—H270.9300
C26—H260.9300C31—C301.382 (6)
C36—C351.371 (6)C31—H310.9300
C36—H360.9300C30—H300.9300
C24—H240.9300C28—H280.9300
C32—C331.382 (7)
O5—Co1—O2111.67 (12)C18—C17—H17117.6
O5—Co1—O4i92.66 (11)N1—C21—C20123.1 (5)
O2—Co1—O4i155.61 (11)N1—C21—H21118.5
O5—Co1—N191.25 (14)C20—C21—H21118.5
O2—Co1—N190.28 (13)C19—C18—C17118.1 (6)
O4i—Co1—N191.02 (12)C19—C18—H18120.9
O5—Co1—N291.79 (13)C17—C18—H18120.9
O2—Co1—N288.19 (12)C34—C33—C32118.8 (6)
O4i—Co1—N289.29 (12)C34—C33—H33120.6
N1—Co1—N2176.93 (13)C32—C33—H33120.6
O5—Co1—O3i152.97 (11)C20—C19—C18119.4 (5)
O2—Co1—O3i95.36 (10)C20—C19—H19120.3
O4i—Co1—O3i60.33 (10)C18—C19—H19120.3
N1—Co1—O3i88.73 (12)C34—C35—C36118.0 (6)
N2—Co1—O3i88.77 (11)C34—C35—H35121.0
O1—Co2—O6116.27 (11)C36—C35—H35121.0
O1—Co2—O8ii93.21 (11)C19—C20—C21118.6 (5)
O6—Co2—O8ii150.27 (11)C19—C20—H20120.7
O1—Co2—N389.92 (12)C21—C20—H20120.7
O6—Co2—N385.98 (12)C16—C10—C11119.1 (3)
O8ii—Co2—N390.61 (12)C16—C10—C9120.9 (3)
O1—Co2—N490.19 (12)C11—C10—C9119.9 (3)
O6—Co2—N492.22 (13)C14—C12—C11118.9 (4)
O8ii—Co2—N491.34 (13)C14—C12—C13121.2 (4)
N3—Co2—N4178.04 (14)C11—C12—C13119.9 (3)
O1—Co2—O7ii152.23 (10)O5—C9—O6124.3 (4)
O6—Co2—O7ii91.47 (10)O5—C9—C10118.3 (3)
O8ii—Co2—O7ii59.03 (10)O6—C9—C10117.4 (3)
N3—Co2—O7ii90.91 (12)C10—C11—C12121.0 (4)
N4—Co2—O7ii89.92 (12)C10—C11—H11119.5
C5—O4—Co1ii91.5 (2)C12—C11—H11119.5
C5—O3—Co1ii87.2 (2)C3—C4—C6119.8 (3)
C9—O6—Co2122.1 (3)C3—C4—C5118.9 (3)
C13—O8—Co2i94.0 (2)C6—C4—C5121.3 (3)
C13—O7—Co2i86.3 (2)O2—C1—O1124.2 (3)
C9—O5—Co1173.3 (3)O2—C1—C2117.3 (3)
C1—O1—Co2151.5 (3)O1—C1—C2118.4 (3)
C1—O2—Co1126.9 (3)C6—C7—C8119.7 (4)
C26—N2—C22116.5 (4)C6—C7—H7120.1
C26—N2—Co1120.9 (3)C8—C7—H7120.1
C22—N2—Co1122.7 (3)C10—C16—C15120.8 (4)
C17—N1—C21116.0 (4)C10—C16—H16119.6
C17—N1—Co1119.8 (3)C15—C16—H16119.6
C21—N1—Co1124.2 (3)C8—C2—C3119.4 (3)
C32—N4—C36115.9 (4)C8—C2—C1120.4 (3)
C32—N4—Co2121.6 (3)C3—C2—C1120.2 (3)
C36—N4—Co2122.5 (3)O7—C13—O8120.6 (4)
C27—N3—C31116.2 (4)O7—C13—C12120.2 (4)
C27—N3—Co2119.0 (3)O8—C13—C12119.2 (4)
C31—N3—Co2124.8 (3)C2—C8—C7120.5 (3)
C28—C29—C30118.7 (5)C2—C8—H8119.8
C28—C29—H29120.7C7—C8—H8119.8
C30—C29—H29120.7C7—C6—C4120.2 (4)
N2—C22—C23123.5 (4)C7—C6—H6119.9
N2—C22—H22118.2C4—C6—H6119.9
C23—C22—H22118.2C4—C3—C2120.3 (3)
C24—C23—C22119.0 (4)C4—C3—H3119.9
C24—C23—H23120.5C2—C3—H3119.9
C22—C23—H23120.5C12—C14—C15121.0 (4)
C24—C25—C26118.8 (4)C12—C14—H14119.5
C24—C25—H25120.6C15—C14—H14119.5
C26—C25—H25120.6C14—C15—C16119.2 (4)
N2—C26—C25123.5 (4)C14—C15—H15120.4
N2—C26—H26118.2C16—C15—H15120.4
C25—C26—H26118.2O3—C5—O4120.9 (4)
N4—C36—C35124.3 (5)O3—C5—C4119.8 (4)
N4—C36—H36117.8O4—C5—C4119.2 (3)
C35—C36—H36117.8N3—C27—C28124.5 (5)
C23—C24—C25118.6 (5)N3—C27—H27117.7
C23—C24—H24120.7C28—C27—H27117.7
C25—C24—H24120.7N3—C31—C30123.4 (4)
N4—C32—C33123.7 (5)N3—C31—H31118.3
N4—C32—H32118.2C30—C31—H31118.3
C33—C32—H32118.2C29—C30—C31119.0 (5)
C33—C34—C35119.2 (5)C29—C30—H30120.5
C33—C34—H34120.4C31—C30—H30120.5
C35—C34—H34120.4C29—C28—C27118.3 (5)
N1—C17—C18124.8 (5)C29—C28—H28120.9
N1—C17—H17117.6C27—C28—H28120.9
O1—Co2—O6—C94.0 (3)N4—C32—C33—C340.2 (9)
O8ii—Co2—O6—C9168.1 (3)C17—C18—C19—C200.1 (9)
N3—Co2—O6—C983.9 (3)C33—C34—C35—C360.3 (8)
N4—Co2—O6—C995.3 (3)N4—C36—C35—C340.8 (8)
O7ii—Co2—O6—C9174.7 (3)C18—C19—C20—C210.2 (9)
O6—Co2—O1—C180.0 (5)N1—C21—C20—C190.8 (9)
O8ii—Co2—O1—C1103.9 (5)Co2—O6—C9—O512.9 (6)
N3—Co2—O1—C1165.5 (5)Co2—O6—C9—C10167.4 (2)
N4—Co2—O1—C112.5 (5)C16—C10—C9—O5175.1 (4)
O7ii—Co2—O1—C1102.7 (5)C11—C10—C9—O57.2 (6)
O5—Co1—O2—C110.1 (4)C16—C10—C9—O65.2 (6)
O4i—Co1—O2—C1174.5 (3)C11—C10—C9—O6172.5 (3)
N1—Co1—O2—C181.4 (3)C16—C10—C11—C121.8 (6)
N2—Co1—O2—C1101.3 (3)C9—C10—C11—C12175.9 (3)
O3i—Co1—O2—C1170.2 (3)C14—C12—C11—C101.0 (6)
O5—Co1—N2—C2652.8 (3)C13—C12—C11—C10178.1 (3)
O2—Co1—N2—C26164.4 (3)Co1—O2—C1—O16.7 (6)
O4i—Co1—N2—C2639.8 (3)Co1—O2—C1—C2175.5 (2)
O3i—Co1—N2—C26100.2 (3)Co2—O1—C1—O284.0 (6)
O5—Co1—N2—C22129.2 (3)Co2—O1—C1—C298.2 (5)
O2—Co1—N2—C2217.6 (3)C11—C10—C16—C150.7 (6)
O4i—Co1—N2—C22138.2 (3)C9—C10—C16—C15177.0 (4)
O3i—Co1—N2—C2277.8 (3)O2—C1—C2—C83.3 (5)
O5—Co1—N1—C17164.0 (4)O1—C1—C2—C8174.7 (4)
O2—Co1—N1—C1752.3 (4)O2—C1—C2—C3176.9 (3)
O4i—Co1—N1—C17103.4 (4)O1—C1—C2—C35.2 (5)
O3i—Co1—N1—C1743.1 (4)Co2i—O7—C13—O80.4 (4)
O5—Co1—N1—C2118.8 (4)Co2i—O7—C13—C12178.8 (3)
O2—Co1—N1—C21130.4 (4)Co2i—O8—C13—O70.4 (4)
O4i—Co1—N1—C2173.9 (4)Co2i—O8—C13—C12178.8 (3)
O3i—Co1—N1—C21134.2 (4)C14—C12—C13—O711.9 (6)
O1—Co2—N4—C3276.4 (4)C11—C12—C13—O7167.1 (4)
O6—Co2—N4—C32167.3 (4)C14—C12—C13—O8167.3 (4)
O8ii—Co2—N4—C3216.8 (4)C11—C12—C13—O813.6 (6)
O7ii—Co2—N4—C3275.9 (4)C3—C2—C8—C72.9 (6)
O1—Co2—N4—C36103.6 (3)C1—C2—C8—C7177.0 (4)
O6—Co2—N4—C3612.7 (3)C6—C7—C8—C21.4 (6)
O8ii—Co2—N4—C36163.2 (3)C8—C7—C6—C40.9 (6)
O7ii—Co2—N4—C36104.2 (3)C3—C4—C6—C71.8 (6)
O1—Co2—N3—C27179.2 (3)C5—C4—C6—C7175.5 (4)
O6—Co2—N3—C2762.8 (3)C6—C4—C3—C20.3 (6)
O8ii—Co2—N3—C2787.6 (3)C5—C4—C3—C2177.0 (3)
O7ii—Co2—N3—C2728.6 (3)C8—C2—C3—C42.0 (5)
O1—Co2—N3—C311.1 (4)C1—C2—C3—C4177.8 (3)
O6—Co2—N3—C31115.3 (4)C11—C12—C14—C151.0 (6)
O8ii—Co2—N3—C3194.3 (4)C13—C12—C14—C15179.9 (4)
O7ii—Co2—N3—C31153.3 (4)C12—C14—C15—C162.2 (7)
C26—N2—C22—C231.2 (6)C10—C16—C15—C141.3 (7)
Co1—N2—C22—C23179.3 (3)Co1ii—O3—C5—O40.1 (4)
N2—C22—C23—C240.7 (7)Co1ii—O3—C5—C4178.6 (3)
C22—N2—C26—C250.6 (6)Co1ii—O4—C5—O30.1 (4)
Co1—N2—C26—C25178.7 (3)Co1ii—O4—C5—C4178.6 (3)
C24—C25—C26—N20.5 (7)C3—C4—C5—O3173.6 (3)
C32—N4—C36—C350.7 (7)C6—C4—C5—O39.1 (6)
Co2—N4—C36—C35179.3 (4)C3—C4—C5—O47.9 (6)
C22—C23—C24—C250.5 (7)C6—C4—C5—O4169.4 (4)
C26—C25—C24—C231.0 (7)C31—N3—C27—C280.9 (7)
C36—N4—C32—C330.2 (7)Co2—N3—C27—C28177.3 (4)
Co2—N4—C32—C33179.8 (4)C27—N3—C31—C300.8 (7)
C21—N1—C17—C180.9 (8)Co2—N3—C31—C30177.3 (4)
Co1—N1—C17—C18176.6 (4)C28—C29—C30—C310.1 (9)
C17—N1—C21—C201.1 (7)N3—C31—C30—C290.5 (9)
Co1—N1—C21—C20176.3 (4)C30—C29—C28—C270.2 (9)
N1—C17—C18—C190.4 (9)N3—C27—C28—C290.7 (9)
C35—C34—C33—C320.1 (9)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O8ii0.932.583.494 (5)167
C11—H11···O4i0.932.543.461 (5)171
C19—H19···O8iii0.932.603.348 (7)138
C23—H23···O3iv0.932.533.213 (5)130
C28—H28···O7v0.932.553.313 (6)139
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y, z+2; (iv) x+1/2, y+3/2, z+2; (v) x+1, y+1, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C8H4O4)(C5H5N)2]
Mr381.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)26.7189 (18), 10.1226 (7), 24.7622 (17)
β (°) 96.421 (1)
V3)6655.3 (8)
Z16
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.30 × 0.25 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.742, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
18265, 5862, 4733
Rint0.043
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.142, 1.08
No. of reflections5862
No. of parameters451
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.32

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O8i0.932.583.494 (5)167
C11—H11···O4ii0.932.543.461 (5)171
C19—H19···O8iii0.932.603.348 (7)138
C23—H23···O3iv0.932.533.213 (5)130
C28—H28···O7v0.932.553.313 (6)139
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y, z+2; (iv) x+1/2, y+3/2, z+2; (v) x+1, y+1, z+3/2.
 

Acknowledgements

This work was supported by the Doctor Innovation Foundation of Xi'an Polytechnic University of China (grant No. BS0902).

References

First citationAbourahma, H., Bodwell, G. J., Lu, J., Moulton, B., Pottie, I. R., Walsh, R. B. & Zaworotko, M. J. (2003). Cryst. Growth Des. 4, 513–519.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S. C., Yu, R. M., Zhao, Z. G., Chen, S. M., Zhang, Q. S., Wu, X. Y., Wang, F. & Lu, C. Z. (2010). Cryst. Growth Des. 10, 1155–1160.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJung, S. S., Dongmok, W., Hyoyoung, L., Sung, I. J., Jinho, O., Young, J. J. & Kimoon, K. (2000). Nature, 404, 982–986.  PubMed Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, C. W., Li, Y. T. & Liao, D. Z. (1996). Chin. J. Appl. Chem. 3, 60–64.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds