organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Bi­cyclo­hexyl-1,1′-diyl 1,1′-bi­phenyl-2,2′-di­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 20 April 2012; accepted 25 April 2012; online 5 May 2012)

The title compound, C26H28O4, lies about a crystallographic twofold rotation axis. The cyclo­hexane rings adopt a chair conformation. The two benzene rings form a dihedral angle of 40.82 (3)°. No significant intra- or inter­molecular inter­actions are observed in the crystal structure.

Related literature

For general background to and the biological activity of the title compound, see: Lei et al. (2004[Lei, A., Wu, S., He, M. & Zhang, X. (2004). J. Am. Chem. Soc. 126, 1626-1627.]); Wu et al. (2002[Wu, S., Wang, W., Tang, W., Lin, M. & Zhang, X. (2002). Org. Lett. 4, 4495-4497.], 2012[Wu, D., Wang, L., Xu, K., Song, J., Fun, H.-K., Xu, J. & Zhang, Y. (2012). Chem. Commun. 48, 1168-1170.]); Quideau et al. (1996[Quideau, S. & Feldman, K. S. (1996). Chem. Rev. 96, 475-503.]); Yoshimura et al. (2008[Yoshimura, M., Ito, H., Miyashita, K., Hatano, T., Taniguchi, S., Amakura, Y. & Yoshida, T. (2008). Phytochemistry, 69, 3062-3069.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28O4

  • Mr = 404.48

  • Monoclinic, C 2/c

  • a = 16.8289 (7) Å

  • b = 10.5919 (5) Å

  • c = 11.4752 (5) Å

  • β = 99.967 (1)°

  • V = 2014.58 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.38 × 0.37 × 0.37 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.968

  • 16772 measured reflections

  • 4382 independent reflections

  • 4006 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.107

  • S = 1.05

  • 4382 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Biaryl motifs are present in a large number of natural products, dyes, chiral ligands and chiral catalysts (Lei et al., 2004, Wu et al., 2002). Biphenyl-containing medium-sized lactones containing biaryl motif are also important structural core found in many biologically active natural products, such as ellagitannins family (Quideau et al., 1996). Flavonol glucuronides and C-glucosidic ellagitannins which were isolated from the leaves of Melaleuca squarrosa shown in vitro antioxidant activity that can be evaluated by DPPH radical in the usual way (Yoshimura et al., 2008). The crystal structures of 5,10-dioxo-5,7,8,10-tetrahydrodibenzo[f,h] [1,4]dioxecin-7-yl benzoate, 7-methyl-8-phenyl-7,8-dihydrodibenzo [f,h][1,4]dioxecine-5,10-dione and 7-phenyl-7,8-dihydro-[1,4]dioxecino[7,6-b:8,9-b'] dipyridine-5,10-dione (Wu et al., 2012) have been reported. Due to the importance of the biphenyl-containing medium-sized rings, we report here the crystal structure of the title compound in this paper.

The title compound, Fig. 1, lies about a crystallographic twofold axis generated by the symmetry code -x+1, y, -z+1/2. The cyclohexane ring (C8–C13) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.5752 (7) Å, Θ = 177.40 (7)° and ϕ = 114.1 (14)°. The two benzene rings (C1–C6 & C1A–C6A) form a dihedral angle of 40.82 (3)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges. There are no significant hydrogen bonds observed in this compound.

Related literature top

For general background to and the biological activity of the title compound, see: Lei et al. (2004); Wu et al. (2002, 2012); Quideau et al. (1996); Yoshimura et al. (2008). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975).

Experimental top

The title compound was the product from the photooxidation between 2,3- dispirocyclohexyl-2,3-dihydrophenanthro[9,10-b][1,4]dioxine and oxygen. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:10) as eluents. X-ray quality crystals of the title compound, were obtained from slow evaporation of an acetone and petroleum ether solution (1:10).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 or 0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Atoms with suffix A were generated by the symmetry code -x + 1, y, -z + 1/2.
1,1'-Bicyclohexyl-1,1'-diyl 1,1'-biphenyl-2,2'-dicarboxylate top
Crystal data top
C26H28O4F(000) = 864
Mr = 404.48Dx = 1.334 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9620 reflections
a = 16.8289 (7) Åθ = 4.2–35.0°
b = 10.5919 (5) ŵ = 0.09 mm1
c = 11.4752 (5) ÅT = 100 K
β = 99.967 (1)°Block, colourless
V = 2014.58 (15) Å30.38 × 0.37 × 0.37 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4382 independent reflections
Radiation source: fine-focus sealed tube4006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 35.0°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2127
Tmin = 0.967, Tmax = 0.968k = 1712
16772 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.7551P]
where P = (Fo2 + 2Fc2)/3
4382 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C26H28O4V = 2014.58 (15) Å3
Mr = 404.48Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.8289 (7) ŵ = 0.09 mm1
b = 10.5919 (5) ÅT = 100 K
c = 11.4752 (5) Å0.38 × 0.37 × 0.37 mm
β = 99.967 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4382 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4006 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.968Rint = 0.019
16772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.05Δρmax = 0.47 e Å3
4382 reflectionsΔρmin = 0.23 e Å3
136 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42941 (3)0.08237 (4)0.17817 (4)0.01098 (9)
O20.41218 (3)0.19432 (4)0.34309 (4)0.01462 (9)
C10.35947 (4)0.30612 (6)0.05831 (5)0.01532 (11)
H1A0.32780.23560.03460.018*
C20.34982 (4)0.41537 (6)0.01047 (6)0.01852 (12)
H2A0.31120.41840.07900.022*
C30.39828 (4)0.51981 (6)0.02401 (6)0.01974 (12)
H3A0.39150.59360.02050.024*
C40.45706 (4)0.51343 (6)0.12541 (6)0.01746 (11)
H4A0.49030.58280.14630.021*
C50.46751 (3)0.40532 (5)0.19691 (5)0.01327 (10)
C60.41629 (3)0.30170 (5)0.16241 (5)0.01239 (10)
C70.41890 (3)0.18771 (5)0.24002 (5)0.01133 (10)
C80.45225 (3)0.04149 (5)0.23283 (5)0.01039 (9)
C90.42275 (3)0.13489 (5)0.13258 (5)0.01332 (10)
H9A0.44720.11350.06460.016*
H9B0.44050.21920.15800.016*
C100.33088 (4)0.13507 (6)0.09545 (6)0.01723 (11)
H10A0.31360.05400.06060.021*
H10B0.31560.19950.03570.021*
C110.28797 (4)0.16018 (7)0.19990 (6)0.01998 (12)
H11A0.29920.24570.22830.024*
H11B0.23020.15200.17460.024*
C120.31654 (4)0.06665 (6)0.29988 (6)0.01688 (11)
H12A0.29130.08680.36750.020*
H12B0.30030.01810.27390.020*
C130.40844 (3)0.07157 (5)0.33654 (5)0.01320 (10)
H13A0.42410.15510.36680.016*
H13B0.42500.01130.39980.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.01283 (17)0.00808 (16)0.01182 (17)0.00106 (12)0.00151 (13)0.00043 (12)
O20.01673 (19)0.01344 (19)0.01440 (18)0.00038 (14)0.00467 (14)0.00096 (13)
C10.0149 (2)0.0138 (2)0.0166 (2)0.00300 (17)0.00097 (18)0.00128 (17)
C20.0185 (3)0.0183 (3)0.0184 (3)0.0063 (2)0.0021 (2)0.0042 (2)
C30.0218 (3)0.0154 (3)0.0227 (3)0.0061 (2)0.0056 (2)0.0066 (2)
C40.0194 (3)0.0105 (2)0.0231 (3)0.00200 (18)0.0056 (2)0.00334 (19)
C50.0143 (2)0.0090 (2)0.0169 (2)0.00124 (16)0.00385 (17)0.00066 (16)
C60.0132 (2)0.0093 (2)0.0148 (2)0.00178 (16)0.00282 (17)0.00097 (16)
C70.0099 (2)0.0095 (2)0.0145 (2)0.00032 (15)0.00178 (16)0.00049 (15)
C80.0114 (2)0.00798 (19)0.0115 (2)0.00010 (15)0.00114 (15)0.00068 (15)
C90.0140 (2)0.0106 (2)0.0143 (2)0.00026 (16)0.00064 (17)0.00214 (16)
C100.0144 (2)0.0169 (2)0.0187 (3)0.00241 (18)0.00193 (19)0.00231 (19)
C110.0146 (2)0.0195 (3)0.0248 (3)0.0057 (2)0.0004 (2)0.0012 (2)
C120.0132 (2)0.0189 (3)0.0191 (2)0.00175 (18)0.00416 (19)0.00251 (19)
C130.0133 (2)0.0133 (2)0.0132 (2)0.00114 (16)0.00258 (17)0.00192 (16)
Geometric parameters (Å, º) top
O1—C71.3503 (7)C8—C131.5379 (8)
O1—C81.4760 (7)C8—C8i1.5872 (11)
O2—C71.2095 (7)C9—C101.5310 (8)
C1—C21.3942 (8)C9—H9A0.9700
C1—C61.3958 (8)C9—H9B0.9700
C1—H1A0.9300C10—C111.5258 (10)
C2—C31.3906 (10)C10—H10A0.9700
C2—H2A0.9300C10—H10B0.9700
C3—C41.3923 (10)C11—C121.5290 (10)
C3—H3A0.9300C11—H11A0.9700
C4—C51.4020 (8)C11—H11B0.9700
C4—H4A0.9300C12—C131.5318 (8)
C5—C61.4094 (8)C12—H12A0.9700
C5—C5i1.4896 (12)C12—H12B0.9700
C6—C71.4964 (8)C13—H13A0.9700
C8—C91.5332 (8)C13—H13B0.9700
C7—O1—C8124.00 (4)C10—C9—H9A109.0
C2—C1—C6120.51 (6)C8—C9—H9A109.0
C2—C1—H1A119.7C10—C9—H9B109.0
C6—C1—H1A119.7C8—C9—H9B109.0
C3—C2—C1119.61 (6)H9A—C9—H9B107.8
C3—C2—H2A120.2C11—C10—C9111.97 (5)
C1—C2—H2A120.2C11—C10—H10A109.2
C2—C3—C4119.74 (6)C9—C10—H10A109.2
C2—C3—H3A120.1C11—C10—H10B109.2
C4—C3—H3A120.1C9—C10—H10B109.2
C3—C4—C5121.85 (6)H10A—C10—H10B107.9
C3—C4—H4A119.1C10—C11—C12110.27 (5)
C5—C4—H4A119.1C10—C11—H11A109.6
C4—C5—C6117.58 (6)C12—C11—H11A109.6
C4—C5—C5i118.60 (4)C10—C11—H11B109.6
C6—C5—C5i123.81 (4)C12—C11—H11B109.6
C1—C6—C5120.62 (5)H11A—C11—H11B108.1
C1—C6—C7118.79 (5)C11—C12—C13110.82 (5)
C5—C6—C7120.51 (5)C11—C12—H12A109.5
O2—C7—O1127.21 (5)C13—C12—H12A109.5
O2—C7—C6122.49 (5)C11—C12—H12B109.5
O1—C7—C6110.30 (5)C13—C12—H12B109.5
O1—C8—C9103.18 (4)H12A—C12—H12B108.1
O1—C8—C13112.87 (4)C12—C13—C8112.14 (5)
C9—C8—C13108.10 (4)C12—C13—H13A109.2
O1—C8—C8i106.46 (3)C8—C13—H13A109.2
C9—C8—C8i111.63 (4)C12—C13—H13B109.2
C13—C8—C8i114.10 (5)C8—C13—H13B109.2
C10—C9—C8112.94 (5)H13A—C13—H13B107.9
C6—C1—C2—C31.18 (10)C1—C6—C7—O156.26 (7)
C1—C2—C3—C41.34 (10)C5—C6—C7—O1126.93 (5)
C2—C3—C4—C52.06 (10)C7—O1—C8—C9157.39 (5)
C3—C4—C5—C60.24 (9)C7—O1—C8—C1340.97 (7)
C3—C4—C5—C5i179.20 (6)C7—O1—C8—C8i84.97 (6)
C2—C1—C6—C53.04 (9)O1—C8—C9—C1064.78 (6)
C2—C1—C6—C7173.76 (5)C13—C8—C9—C1054.98 (6)
C4—C5—C6—C12.29 (8)C8i—C8—C9—C10178.73 (4)
C5i—C5—C6—C1176.60 (6)C8—C9—C10—C1155.23 (7)
C4—C5—C6—C7174.45 (5)C9—C10—C11—C1254.07 (7)
C5i—C5—C6—C76.65 (10)C10—C11—C12—C1355.70 (7)
C8—O1—C7—O213.97 (9)C11—C12—C13—C858.70 (6)
C8—O1—C7—C6166.08 (5)O1—C8—C13—C1256.62 (6)
C1—C6—C7—O2123.70 (6)C9—C8—C13—C1256.84 (6)
C5—C6—C7—O253.11 (8)C8i—C8—C13—C12178.33 (4)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H28O4
Mr404.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)16.8289 (7), 10.5919 (5), 11.4752 (5)
β (°) 99.967 (1)
V3)2014.58 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.37 × 0.37
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.967, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
16772, 4382, 4006
Rint0.019
(sin θ/λ)max1)0.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.107, 1.05
No. of reflections4382
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (2007DFA41590) is acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationLei, A., Wu, S., He, M. & Zhang, X. (2004). J. Am. Chem. Soc. 126, 1626–1627.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQuideau, S. & Feldman, K. S. (1996). Chem. Rev. 96, 475–503.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, S., Wang, W., Tang, W., Lin, M. & Zhang, X. (2002). Org. Lett. 4, 4495–4497.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, D., Wang, L., Xu, K., Song, J., Fun, H.-K., Xu, J. & Zhang, Y. (2012). Chem. Commun. 48, 1168–1170.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoshimura, M., Ito, H., Miyashita, K., Hatano, T., Taniguchi, S., Amakura, Y. & Yoshida, T. (2008). Phytochemistry, 69, 3062–3069.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds