organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Meth­­oxy­phen­yl)ethane-1,2-diyl 1,1′-bi­phenyl-2,2′-di­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 20 April 2012; accepted 25 April 2012; online 5 May 2012)

In the title mol­ecule, C23H18O5, the meth­oxy-substituted benzene ring makes dihedral angles of 65.12 (4) and 88.55 (4)° with the other two benzene rings. These two benzene rings form a dihedral angle of 45.70 (4)°. In the crystal, mol­ecules are linked into inversion dimers by pairs of weak C—H⋯O hydrogen bonds.

Related literature

For the background to this study has been set out in the preceding paper, see: Fun et al. (2012[Fun, H.-K., Quah, C. K., Wu, D. & Zhang, Y. (2012). Acta Cryst. E68, o1627.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the preparation, see: Wu et al. (2012[Wu, D., Wang, L., Xu, K., Song, J., Fun, H.-K., Xu, J. & Zhang, Y. (2012). Chem. Commun. 48, 1168-1170.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18O5

  • Mr = 374.37

  • Monoclinic, P 21 /c

  • a = 14.0049 (5) Å

  • b = 10.8637 (4) Å

  • c = 12.7190 (5) Å

  • β = 110.150 (1)°

  • V = 1816.69 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.50 × 0.37 × 0.33 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.969

  • 30595 measured reflections

  • 8040 independent reflections

  • 6872 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.122

  • S = 1.03

  • 8040 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O3i 0.98 2.60 3.2676 (10) 126
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound belongs to the biphenyl-containing bislactone family whose preparation could be achieved through a concise photochemical method (Wu et al., 2012). In the title compound, Fig. 1, the methoxy attached phenyl ring (C17–C22) inclines at dihedral angles of 65.12 (4) and 88.55 (4)° with the two benzene rings (C2–C7 and C8–C13), respectively. The two benzene rings form a dihedral angle of 45.70 (4)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2012). In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of intermolecular C16—H16A···O3 hydrogen bonds (Table 1).

Related literature top

For the background to this study has been set out in the preceding paper, see: Fun et al. (2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For the preparation, see: Wu et al. (2012).

Experimental top

The title compound was the major diastereoisomer of the sequential photoreaction products of 9,10-phenanthrenedione with 1-methoxy-4-vinylbenzene. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:9) as eluents. X-ray quality crystals of the title compound were obtained from slow evaporation of an acetone and petroleum ether solution (1:10).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was applied for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
1-(4-Methoxyphenyl)ethane-1,2-diyl 1,1'-biphenyl-2,2'-dicarboxylate top
Crystal data top
C23H18O5F(000) = 784
Mr = 374.37Dx = 1.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9888 reflections
a = 14.0049 (5) Åθ = 3.3–35.1°
b = 10.8637 (4) ŵ = 0.10 mm1
c = 12.7190 (5) ÅT = 100 K
β = 110.150 (1)°Block, colourless
V = 1816.69 (12) Å30.50 × 0.37 × 0.33 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
8040 independent reflections
Radiation source: fine-focus sealed tube6872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 35.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.954, Tmax = 0.969k = 1716
30595 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.3453P]
where P = (Fo2 + 2Fc2)/3
8040 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H18O5V = 1816.69 (12) Å3
Mr = 374.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0049 (5) ŵ = 0.10 mm1
b = 10.8637 (4) ÅT = 100 K
c = 12.7190 (5) Å0.50 × 0.37 × 0.33 mm
β = 110.150 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
8040 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6872 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.969Rint = 0.025
30595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.03Δρmax = 0.52 e Å3
8040 reflectionsΔρmin = 0.23 e Å3
254 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38784 (4)0.55150 (5)0.14424 (4)0.01591 (10)
O20.35057 (4)0.34260 (5)0.01861 (5)0.01878 (11)
O30.35878 (4)0.61128 (5)0.03585 (5)0.01878 (11)
O40.23791 (5)0.35189 (5)0.11150 (5)0.02007 (11)
O50.77642 (5)0.51575 (6)0.57884 (5)0.02188 (12)
C10.33248 (5)0.60283 (6)0.04471 (6)0.01410 (11)
C20.23425 (5)0.64784 (6)0.05242 (6)0.01326 (11)
C30.24048 (5)0.74160 (6)0.12951 (6)0.01596 (12)
H3A0.30380.77210.17310.019*
C40.15308 (6)0.78980 (7)0.14184 (7)0.01838 (13)
H4A0.15760.85390.19180.022*
C50.05903 (6)0.74156 (7)0.07911 (7)0.01791 (13)
H5A0.00020.77240.08770.021*
C60.05267 (5)0.64697 (6)0.00326 (6)0.01502 (12)
H6A0.01080.61480.03770.018*
C70.13932 (5)0.59887 (6)0.01318 (6)0.01314 (11)
C80.12481 (5)0.50195 (6)0.10053 (6)0.01377 (11)
C90.04937 (5)0.52047 (7)0.20515 (6)0.01666 (12)
H9A0.00910.59070.21690.020*
C100.03313 (6)0.43626 (7)0.29216 (6)0.01981 (13)
H10A0.01860.44950.36040.024*
C110.09433 (6)0.33242 (7)0.27690 (7)0.02003 (13)
H11A0.08520.27750.33560.024*
C120.16915 (6)0.31098 (7)0.17363 (7)0.01812 (13)
H12A0.21030.24160.16330.022*
C130.18276 (5)0.39331 (6)0.08526 (6)0.01456 (11)
C140.25758 (6)0.36052 (6)0.02653 (6)0.01598 (12)
C150.43566 (6)0.34300 (7)0.12253 (7)0.02087 (14)
H15A0.48930.29040.11610.025*
H15B0.41460.31160.18250.025*
C160.47489 (5)0.47470 (7)0.14896 (6)0.01735 (12)
H16A0.50390.50290.09320.021*
C170.55272 (5)0.48569 (7)0.26440 (6)0.01667 (12)
C180.53402 (6)0.43948 (8)0.35776 (7)0.02047 (14)
H18A0.47180.40230.34840.025*
C190.60657 (6)0.44787 (8)0.46475 (6)0.01999 (13)
H19A0.59330.41600.52620.024*
C200.69930 (5)0.50455 (7)0.47858 (6)0.01664 (12)
C210.71830 (6)0.55306 (6)0.38612 (6)0.01783 (13)
H21A0.77980.59220.39570.021*
C220.64573 (6)0.54311 (6)0.28016 (6)0.01736 (12)
H22A0.65910.57500.21880.021*
C230.76498 (7)0.45148 (10)0.67193 (7)0.02796 (18)
H23A0.82620.45950.73570.042*
H23B0.75210.36600.65330.042*
H23C0.70890.48580.68920.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0142 (2)0.0186 (2)0.0154 (2)0.00415 (17)0.00568 (17)0.00102 (17)
O20.0156 (2)0.0204 (2)0.0190 (2)0.00381 (18)0.00424 (18)0.00265 (18)
O30.0179 (2)0.0224 (2)0.0184 (2)0.00192 (19)0.00934 (19)0.00145 (19)
O40.0244 (3)0.0174 (2)0.0200 (2)0.00093 (19)0.0096 (2)0.00254 (18)
O50.0199 (3)0.0270 (3)0.0163 (2)0.0030 (2)0.0032 (2)0.0001 (2)
C10.0129 (3)0.0133 (2)0.0162 (3)0.0003 (2)0.0052 (2)0.0004 (2)
C20.0133 (3)0.0122 (2)0.0153 (3)0.00065 (19)0.0062 (2)0.00129 (19)
C30.0164 (3)0.0141 (2)0.0187 (3)0.0004 (2)0.0078 (2)0.0016 (2)
C40.0202 (3)0.0152 (3)0.0227 (3)0.0006 (2)0.0112 (3)0.0023 (2)
C50.0175 (3)0.0165 (3)0.0229 (3)0.0027 (2)0.0110 (2)0.0014 (2)
C60.0137 (3)0.0149 (2)0.0179 (3)0.0014 (2)0.0072 (2)0.0027 (2)
C70.0135 (3)0.0124 (2)0.0144 (3)0.00076 (19)0.0058 (2)0.00167 (19)
C80.0134 (3)0.0141 (2)0.0148 (3)0.00113 (19)0.0061 (2)0.0003 (2)
C90.0153 (3)0.0190 (3)0.0154 (3)0.0012 (2)0.0049 (2)0.0015 (2)
C100.0185 (3)0.0242 (3)0.0160 (3)0.0055 (2)0.0050 (2)0.0011 (2)
C110.0206 (3)0.0215 (3)0.0189 (3)0.0072 (2)0.0080 (3)0.0057 (2)
C120.0185 (3)0.0157 (3)0.0213 (3)0.0028 (2)0.0084 (2)0.0038 (2)
C130.0143 (3)0.0137 (2)0.0163 (3)0.0012 (2)0.0061 (2)0.0007 (2)
C140.0170 (3)0.0120 (2)0.0189 (3)0.0012 (2)0.0062 (2)0.0005 (2)
C150.0183 (3)0.0196 (3)0.0211 (3)0.0057 (2)0.0022 (3)0.0017 (2)
C160.0142 (3)0.0214 (3)0.0165 (3)0.0049 (2)0.0053 (2)0.0004 (2)
C170.0143 (3)0.0199 (3)0.0160 (3)0.0029 (2)0.0054 (2)0.0003 (2)
C180.0143 (3)0.0304 (4)0.0174 (3)0.0009 (3)0.0065 (2)0.0002 (3)
C190.0170 (3)0.0284 (3)0.0159 (3)0.0006 (3)0.0074 (2)0.0004 (2)
C200.0160 (3)0.0176 (3)0.0159 (3)0.0011 (2)0.0048 (2)0.0010 (2)
C210.0181 (3)0.0161 (3)0.0193 (3)0.0016 (2)0.0065 (2)0.0001 (2)
C220.0188 (3)0.0163 (3)0.0176 (3)0.0010 (2)0.0071 (2)0.0018 (2)
C230.0225 (4)0.0423 (5)0.0169 (3)0.0023 (3)0.0040 (3)0.0039 (3)
Geometric parameters (Å, º) top
O1—C11.3558 (9)C10—H10A0.9300
O1—C161.4613 (9)C11—C121.3890 (11)
O2—C141.3543 (9)C11—H11A0.9300
O2—C151.4429 (9)C12—C131.3971 (10)
O3—C11.2058 (9)C12—H12A0.9300
O4—C141.2073 (9)C13—C141.4901 (10)
O5—C201.3633 (9)C15—C161.5281 (11)
O5—C231.4303 (11)C15—H15A0.9700
C1—C21.4948 (9)C15—H15B0.9700
C2—C31.3955 (10)C16—C171.5019 (10)
C2—C71.4080 (9)C16—H16A0.9800
C3—C41.3891 (10)C17—C181.3946 (11)
C3—H3A0.9300C17—C221.3950 (10)
C4—C51.3864 (11)C18—C191.3928 (11)
C4—H4A0.9300C18—H18A0.9300
C5—C61.3913 (10)C19—C201.3925 (11)
C5—H5A0.9300C19—H19A0.9300
C6—C71.4016 (9)C20—C211.3954 (11)
C6—H6A0.9300C21—C221.3846 (10)
C7—C81.4928 (10)C21—H21A0.9300
C8—C91.3995 (10)C22—H22A0.9300
C8—C131.4074 (10)C23—H23A0.9600
C9—C101.3929 (11)C23—H23B0.9600
C9—H9A0.9300C23—H23C0.9600
C10—C111.3893 (12)
C1—O1—C16118.28 (6)C8—C13—C14120.98 (6)
C14—O2—C15116.31 (6)O4—C14—O2125.25 (7)
C20—O5—C23116.88 (6)O4—C14—C13124.78 (7)
O3—C1—O1125.52 (6)O2—C14—C13109.97 (6)
O3—C1—C2126.03 (6)O2—C15—C16108.98 (6)
O1—C1—C2108.45 (6)O2—C15—H15A109.9
C3—C2—C7120.66 (6)C16—C15—H15A109.9
C3—C2—C1116.65 (6)O2—C15—H15B109.9
C7—C2—C1122.68 (6)C16—C15—H15B109.9
C4—C3—C2120.67 (7)H15A—C15—H15B108.3
C4—C3—H3A119.7O1—C16—C17108.00 (6)
C2—C3—H3A119.7O1—C16—C15107.09 (6)
C5—C4—C3119.48 (7)C17—C16—C15111.98 (6)
C5—C4—H4A120.3O1—C16—H16A109.9
C3—C4—H4A120.3C17—C16—H16A109.9
C4—C5—C6119.97 (7)C15—C16—H16A109.9
C4—C5—H5A120.0C18—C17—C22118.59 (7)
C6—C5—H5A120.0C18—C17—C16121.19 (7)
C5—C6—C7121.80 (7)C22—C17—C16120.22 (7)
C5—C6—H6A119.1C19—C18—C17121.36 (7)
C7—C6—H6A119.1C19—C18—H18A119.3
C6—C7—C2117.39 (6)C17—C18—H18A119.3
C6—C7—C8118.10 (6)C20—C19—C18119.15 (7)
C2—C7—C8124.49 (6)C20—C19—H19A120.4
C9—C8—C13117.54 (6)C18—C19—H19A120.4
C9—C8—C7118.09 (6)O5—C20—C19124.16 (7)
C13—C8—C7124.37 (6)O5—C20—C21115.78 (7)
C10—C9—C8121.61 (7)C19—C20—C21120.06 (7)
C10—C9—H9A119.2C22—C21—C20120.11 (7)
C8—C9—H9A119.2C22—C21—H21A119.9
C11—C10—C9119.89 (7)C20—C21—H21A119.9
C11—C10—H10A120.1C21—C22—C17120.71 (7)
C9—C10—H10A120.1C21—C22—H22A119.6
C12—C11—C10119.76 (7)C17—C22—H22A119.6
C12—C11—H11A120.1O5—C23—H23A109.5
C10—C11—H11A120.1O5—C23—H23B109.5
C11—C12—C13120.18 (7)H23A—C23—H23B109.5
C11—C12—H12A119.9O5—C23—H23C109.5
C13—C12—H12A119.9H23A—C23—H23C109.5
C12—C13—C8120.90 (6)H23B—C23—H23C109.5
C12—C13—C14118.09 (6)
C16—O1—C1—O315.26 (10)C9—C8—C13—C14174.01 (6)
C16—O1—C1—C2165.24 (6)C7—C8—C13—C146.70 (10)
O3—C1—C2—C3115.76 (8)C15—O2—C14—O415.77 (10)
O1—C1—C2—C363.74 (8)C15—O2—C14—C13163.90 (6)
O3—C1—C2—C764.78 (10)C12—C13—C14—O4122.73 (8)
O1—C1—C2—C7115.72 (7)C8—C13—C14—O455.03 (10)
C7—C2—C3—C41.00 (10)C12—C13—C14—O257.60 (8)
C1—C2—C3—C4179.52 (6)C8—C13—C14—O2124.64 (7)
C2—C3—C4—C51.90 (11)C14—O2—C15—C1689.13 (8)
C3—C4—C5—C61.03 (11)C1—O1—C16—C17149.64 (6)
C4—C5—C6—C70.75 (11)C1—O1—C16—C1589.59 (7)
C5—C6—C7—C21.62 (10)O2—C15—C16—O152.88 (8)
C5—C6—C7—C8176.89 (6)O2—C15—C16—C17171.09 (6)
C3—C2—C7—C60.74 (10)O1—C16—C17—C1866.97 (9)
C1—C2—C7—C6178.70 (6)C15—C16—C17—C1850.70 (9)
C3—C2—C7—C8177.67 (6)O1—C16—C17—C22112.89 (7)
C1—C2—C7—C82.89 (10)C15—C16—C17—C22129.45 (7)
C6—C7—C8—C945.82 (9)C22—C17—C18—C191.10 (12)
C2—C7—C8—C9132.57 (7)C16—C17—C18—C19179.04 (7)
C6—C7—C8—C13134.90 (7)C17—C18—C19—C200.54 (12)
C2—C7—C8—C1346.71 (10)C23—O5—C20—C198.11 (11)
C13—C8—C9—C101.31 (10)C23—O5—C20—C21171.16 (7)
C7—C8—C9—C10178.02 (6)C18—C19—C20—O5178.66 (7)
C8—C9—C10—C111.62 (11)C18—C19—C20—C210.58 (12)
C9—C10—C11—C122.22 (11)O5—C20—C21—C22178.19 (7)
C10—C11—C12—C130.14 (11)C19—C20—C21—C221.11 (11)
C11—C12—C13—C83.16 (11)C20—C21—C22—C170.54 (11)
C11—C12—C13—C14174.61 (7)C18—C17—C22—C210.55 (11)
C9—C8—C13—C123.69 (10)C16—C17—C22—C21179.59 (6)
C7—C8—C13—C12175.60 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.982.603.2676 (10)126
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H18O5
Mr374.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.0049 (5), 10.8637 (4), 12.7190 (5)
β (°) 110.150 (1)
V3)1816.69 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.37 × 0.33
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.954, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
30595, 8040, 6872
Rint0.025
(sin θ/λ)max1)0.810
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.03
No. of reflections8040
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.982.603.2676 (10)126
Symmetry code: (i) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Financial support from the National Natural Science Foundation of China (20972067) is acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Wu, D. & Zhang, Y. (2012). Acta Cryst. E68, o1627.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D., Wang, L., Xu, K., Song, J., Fun, H.-K., Xu, J. & Zhang, Y. (2012). Chem. Commun. 48, 1168–1170.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds