organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Bi­cyclo­hexyl-1,1′-diyl 2,2′-bi­pyridine-3,3′-di­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 20 April 2012; accepted 25 April 2012; online 5 May 2012)

The title compound, C24H26N2O4, lies about a crystallographic twofold rotation axis. The cyclo­hexane rings adopts a chair conformation. The two pyridine rings form a dihedral angle of 41.02 (4)°. In the crystal, mol­ecules are linked via C—H⋯O and C—H⋯N hydrogen bonds into a layer parallel to the bc plane.

Related literature

For the background to this study, see the first paper in this series: Fun, Quah, Wu & Zhang (2012[Fun, H.-K., Quah, C. K., Wu, D. & Zhang, Y. (2012). Acta Cryst. E68, o1627.]). For a related structure, see: Fun, Quah & Wu (2012[Fun, H.-K., Quah, C. K. & Wu, D. (2012). Acta Cryst. E68, o1628.]). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the preparation, see: Wu et al. (2012[Wu, D., Wang, L., Xu, K., Song, J., Fun, H.-K., Xu, J. & Zhang, Y. (2012). Chem. Commun. 48, 1168-1170.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26N2O4

  • Mr = 406.47

  • Monoclinic, C 2/c

  • a = 16.7647 (3) Å

  • b = 10.2618 (2) Å

  • c = 11.5755 (2) Å

  • β = 99.810 (1)°

  • V = 1962.28 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.53 × 0.24 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.989

  • 11734 measured reflections

  • 3578 independent reflections

  • 2972 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.04

  • 3578 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.95 2.60 3.5319 (12) 168
C12—H12A⋯N1ii 0.99 2.54 3.4641 (12) 156
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is a ten-membered bislactone with biaryl moiety fused. Easy preparation of this compound could be achieved through a concise photochemical method (Wu et al., 2012). The title compound, Fig. 1, lies about a crystallographic twofold axis generated by the symmetry code -x, y, -z + 1/2. The cyclohexane ring (C7–C12) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.5773 (10) Å, Θ = 177.88 (10)° and ϕ = 256 (3)°. The two pyridine rings (N1/C1–C5 & N1A/C1A–C5A) are essentially planar [maximum deviation of 0.018 (1) Å at atom C4/C4A] and form a dihedral angle of 41.02 (4)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun, Quah, Wu & Zhang, 2012; Fun, Quah & Wu, 2012). In the crystal (Fig. 2), molecules are linked via intermolecular C3—H3A···O2 and C12—H12A···N1 hydrogen bonds (Table 1) into layers parallel to the (100) plane.

Related literature top

For the background to this study, see the first paper in this series: Fun, Quah, Wu & Zhang (2012). For a related structure, see: Fun, Quah & Wu (2012). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For the preparation, see: Wu et al. (2012).

Experimental top

The title compound was the product from the photo-oxidation between 2,3-dispirohexyl-2,3-dihydro-[1,4]dioxino[2,3-f][1,10]phenanthroline and oxygen. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:10) as eluents. X-ray quality crystals of the title compound (m.p. 180–183 °C), were obtained from slow evaporation of an acetone and petroleum ether solution (1:10).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 or 0.99 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms. Atoms with suffix A have been generated by the symmetry code -x, y, -z + 1/2.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
1,1'-Bicyclohexyl-1,1'-diyl 2,2'-bipyridine-3,3'-dicarboxylate top
Crystal data top
C24H26N2O4F(000) = 864
Mr = 406.47Dx = 1.376 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4821 reflections
a = 16.7647 (3) Åθ = 2.3–32.4°
b = 10.2618 (2) ŵ = 0.09 mm1
c = 11.5755 (2) ÅT = 100 K
β = 99.810 (1)°Block, colourless
V = 1962.28 (6) Å30.53 × 0.24 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3578 independent reflections
Radiation source: fine-focus sealed tube2972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 32.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2425
Tmin = 0.952, Tmax = 0.989k = 1515
11734 measured reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0602P)2 + 1.2358P]
where P = (Fo2 + 2Fc2)/3
3578 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C24H26N2O4V = 1962.28 (6) Å3
Mr = 406.47Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.7647 (3) ŵ = 0.09 mm1
b = 10.2618 (2) ÅT = 100 K
c = 11.5755 (2) Å0.53 × 0.24 × 0.12 mm
β = 99.810 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3578 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2972 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.989Rint = 0.027
11734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
3578 reflectionsΔρmin = 0.27 e Å3
136 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07035 (4)0.91569 (6)0.32195 (5)0.01138 (14)
O20.08919 (4)0.79994 (7)0.15933 (6)0.01480 (15)
N10.03750 (5)0.47163 (8)0.36731 (7)0.01641 (17)
C10.13527 (6)0.68507 (10)0.44475 (8)0.01575 (18)
H1A0.16780.75830.47170.019*
C20.13993 (6)0.57190 (10)0.51086 (8)0.01792 (19)
H2A0.17570.56580.58370.022*
C30.09090 (6)0.46750 (10)0.46771 (8)0.01813 (19)
H3A0.09550.38890.51170.022*
C40.03211 (5)0.58187 (9)0.30384 (8)0.01315 (17)
C50.08212 (5)0.68998 (9)0.33802 (8)0.01229 (16)
C60.08110 (5)0.80731 (9)0.26097 (8)0.01163 (16)
C70.04781 (5)1.04426 (9)0.26757 (7)0.01063 (16)
C80.09239 (5)1.07527 (9)0.16519 (8)0.01365 (17)
H8A0.07601.01160.10130.016*
H8B0.07641.16310.13430.016*
C90.18467 (6)1.07060 (10)0.20256 (9)0.01769 (19)
H9A0.20130.98140.22890.021*
H9B0.21101.09210.13460.021*
C100.21245 (6)1.16711 (11)0.30191 (9)0.0207 (2)
H10A0.27161.15910.32800.025*
H10B0.20071.25720.27340.025*
C110.16867 (6)1.13963 (10)0.40464 (8)0.01758 (19)
H11A0.18421.20650.46600.021*
H11B0.18601.05370.43880.021*
C120.07650 (5)1.14012 (9)0.36753 (8)0.01346 (17)
H12A0.05851.22910.34220.016*
H12B0.05101.11710.43590.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0130 (3)0.0087 (3)0.0120 (3)0.0012 (2)0.0009 (2)0.0006 (2)
O20.0162 (3)0.0141 (3)0.0145 (3)0.0007 (2)0.0040 (2)0.0013 (2)
N10.0203 (4)0.0111 (4)0.0178 (3)0.0014 (3)0.0030 (3)0.0021 (3)
C10.0156 (4)0.0141 (4)0.0164 (4)0.0025 (3)0.0004 (3)0.0002 (3)
C20.0196 (4)0.0177 (5)0.0154 (4)0.0054 (4)0.0002 (3)0.0016 (3)
C30.0223 (4)0.0140 (4)0.0180 (4)0.0052 (4)0.0032 (3)0.0039 (3)
C40.0156 (4)0.0099 (4)0.0138 (4)0.0012 (3)0.0022 (3)0.0001 (3)
C50.0132 (3)0.0097 (4)0.0139 (3)0.0020 (3)0.0020 (3)0.0005 (3)
C60.0094 (3)0.0098 (4)0.0151 (4)0.0001 (3)0.0003 (3)0.0002 (3)
C70.0118 (3)0.0076 (3)0.0119 (3)0.0002 (3)0.0003 (3)0.0009 (3)
C80.0132 (4)0.0137 (4)0.0140 (4)0.0011 (3)0.0023 (3)0.0021 (3)
C90.0134 (4)0.0198 (5)0.0203 (4)0.0020 (3)0.0040 (3)0.0032 (4)
C100.0143 (4)0.0193 (5)0.0271 (5)0.0050 (4)0.0001 (3)0.0018 (4)
C110.0141 (4)0.0167 (4)0.0200 (4)0.0014 (3)0.0028 (3)0.0025 (4)
C120.0142 (4)0.0101 (4)0.0148 (4)0.0005 (3)0.0011 (3)0.0023 (3)
Geometric parameters (Å, º) top
O1—C61.3458 (11)C7—C7i1.5854 (17)
O1—C71.4828 (11)C8—C91.5344 (13)
O2—C61.2094 (11)C8—H8A0.9900
N1—C31.3414 (12)C8—H8B0.9900
N1—C41.3435 (12)C9—C101.5290 (15)
C1—C21.3856 (14)C9—H9A0.9900
C1—C51.3956 (12)C9—H9B0.9900
C1—H1A0.9500C10—C111.5264 (15)
C2—C31.3903 (15)C10—H10A0.9900
C2—H2A0.9500C10—H10B0.9900
C3—H3A0.9500C11—C121.5317 (13)
C4—C51.4061 (13)C11—H11A0.9900
C4—C4i1.5018 (18)C11—H11B0.9900
C5—C61.4968 (12)C12—H12A0.9900
C7—C121.5324 (12)C12—H12B0.9900
C7—C81.5382 (12)
C6—O1—C7124.05 (6)C7—C8—H8A109.2
C3—N1—C4118.24 (9)C9—C8—H8B109.2
C2—C1—C5119.12 (9)C7—C8—H8B109.2
C2—C1—H1A120.4H8A—C8—H8B107.9
C5—C1—H1A120.4C10—C9—C8110.80 (8)
C1—C2—C3118.24 (9)C10—C9—H9A109.5
C1—C2—H2A120.9C8—C9—H9A109.5
C3—C2—H2A120.9C10—C9—H9B109.5
N1—C3—C2123.60 (9)C8—C9—H9B109.5
N1—C3—H3A118.2H9A—C9—H9B108.1
C2—C3—H3A118.2C11—C10—C9109.94 (8)
N1—C4—C5121.94 (8)C11—C10—H10A109.7
N1—C4—C4i115.20 (6)C9—C10—H10A109.7
C5—C4—C4i122.84 (6)C11—C10—H10B109.7
C1—C5—C4118.74 (8)C9—C10—H10B109.7
C1—C5—C6119.82 (8)H10A—C10—H10B108.2
C4—C5—C6121.42 (8)C10—C11—C12112.15 (8)
O2—C6—O1127.53 (8)C10—C11—H11A109.2
O2—C6—C5122.52 (8)C12—C11—H11A109.2
O1—C6—C5109.95 (7)C10—C11—H11B109.2
O1—C7—C12103.07 (6)C12—C11—H11B109.2
O1—C7—C8112.90 (7)H11A—C11—H11B107.9
C12—C7—C8108.53 (7)C11—C12—C7112.42 (8)
O1—C7—C7i106.40 (5)C11—C12—H12A109.1
C12—C7—C7i111.54 (7)C7—C12—H12A109.1
C8—C7—C7i113.91 (8)C11—C12—H12B109.1
C9—C8—C7112.04 (7)C7—C12—H12B109.1
C9—C8—H8A109.2H12A—C12—H12B107.9
C5—C1—C2—C30.15 (14)C1—C5—C6—O153.79 (11)
C4—N1—C3—C21.26 (15)C4—C5—C6—O1128.11 (9)
C1—C2—C3—N12.13 (16)C6—O1—C7—C12157.78 (7)
C3—N1—C4—C51.90 (14)C6—O1—C7—C840.90 (10)
C3—N1—C4—C4i176.74 (10)C6—O1—C7—C7i84.75 (10)
C2—C1—C5—C43.07 (14)O1—C7—C8—C956.99 (10)
C2—C1—C5—C6175.08 (8)C12—C7—C8—C956.61 (10)
N1—C4—C5—C14.06 (14)C7i—C7—C8—C9178.48 (6)
C4i—C4—C5—C1174.47 (10)C7—C8—C9—C1058.49 (11)
N1—C4—C5—C6174.05 (8)C8—C9—C10—C1156.01 (11)
C4i—C4—C5—C67.41 (15)C9—C10—C11—C1254.88 (11)
C7—O1—C6—O214.66 (13)C10—C11—C12—C755.67 (11)
C7—O1—C6—C5165.46 (7)O1—C7—C12—C1165.03 (9)
C1—C5—C6—O2126.10 (10)C8—C7—C12—C1154.90 (10)
C4—C5—C6—O252.00 (13)C7i—C7—C12—C11178.81 (7)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2ii0.952.603.5319 (12)168
C12—H12A···N1iii0.992.543.4641 (12)156
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H26N2O4
Mr406.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)16.7647 (3), 10.2618 (2), 11.5755 (2)
β (°) 99.810 (1)
V3)1962.28 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.53 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.952, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11734, 3578, 2972
Rint0.027
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.04
No. of reflections3578
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT (Bruker, 2009, SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.952.603.5319 (12)168
C12—H12A···N1ii0.992.543.4641 (12)156
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (2007DFA41590) is acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Quah, C. K. & Wu, D. (2012). Acta Cryst. E68, o1628.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Wu, D. & Zhang, Y. (2012). Acta Cryst. E68, o1627.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D., Wang, L., Xu, K., Song, J., Fun, H.-K., Xu, J. & Zhang, Y. (2012). Chem. Commun. 48, 1168–1170.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds