organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1736-o1737

3-Benzyl-7-(2,4-di­chloro­phen­yl)-4H-1,3,4-thia­diazolo[2,3-c][1,2,4]triazin-4-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, P. A. College of Engineering, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 April 2012; accepted 10 May 2012; online 16 May 2012)

In the title compound, C17H10Cl2N4OS, the phenyl ring and the H atoms attached to the adjacent C atom are disordered over two positions, with refined site occupancies of 0.509 (8) and 0.491 (8). The planar 4H-1,3,4-thia­diazolo[2,3-c][1,2,4]triazine ring system [maximum deviation = 0.048 (3) Å] forms dihedral angles of 76.9 (5), 74.9 (5) and 9.88 (12)°, respectively, with the major and minor parts of the disordered phenyl ring and with the dichloro-substituted benzene ring. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules, forming inversion dimers with an R22(18) graph-set motif. A short S⋯N contact of 2.801 (3) Å is observed between the dimers.

Related literature

For applications of thia­diazole derivatives, see: Kurtzer (1965[Kurtzer, F. (1965). Adv. Heterocycl. Chem. 5, 119-204.]); Sandstrom (1968[Sandstrom, J. (1968). Adv. Heterocycl. Chem. 9, 165-209.]); Eue & Tietz (1970[Eue, L. & Tietz, H. (1970). Pflanzenshutz-Nachrichten Bayer, 23, 208-218.]); Holla et al. (1988[Holla, B. S., Kalluraya, B. & Sridhar, K. R. (1988). Rev. Roum. Chim. 33, 277-288.], 1998[Holla, B. S., Sarojini, B. K. & Gonsalves, R. (1998). Il Farmaco, 53, 395-398.]). For a related structure, see: Zhang et al. (2011[Zhang, J., He, Q., Jiang, Q., Mu, H. & Wan, R. (2011). Acta Cryst. E67, o2255.]); Fun et al. (2011[Fun, H.-K., Chantrapromma, S., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o205-o206.]); Ma & Yang (2008[Ma, W.-W. & Yang, M.-H. (2008). Acta Cryst. E64, m630.]); Yu et al. (2007[Yu, M., Zhang, K., Qian, K.-D., Zhang, L.-X. & Liu, Y.-Z. (2007). Acta Cryst. E63, o2551.]); Jia et al. (2011[Jia, W., Wang, Z., Jia, X., Zhang, J. & Wang, W. (2011). Acta Cryst. E67, o1093.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H10Cl2N4OS

  • Mr = 389.25

  • Triclinic, [P \overline 1]

  • a = 4.4961 (1) Å

  • b = 13.4412 (5) Å

  • c = 14.4588 (5) Å

  • α = 70.620 (2)°

  • β = 85.956 (2)°

  • γ = 83.063 (2)°

  • V = 817.81 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 100 K

  • 0.21 × 0.10 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.894, Tmax = 0.955

  • 8906 measured reflections

  • 4086 independent reflections

  • 2479 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.129

  • S = 1.04

  • 4086 reflections

  • 281 parameters

  • 180 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.95 2.36 3.226 (5) 151
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Several thiadiazoles find important application in the field of medicine, agriculture and industry (Kurtzer, 1965; Sandstrom, 1968). Thiadiazoles were also used as effective herbicides and fungicides (Eue & Tietz, 1970). The antibacterial activity of some of the thiadiazolotriazinone derivatives were reported (Holla et al., 1998). The presence of substituents like aryloxymethyl and anilinomethyl on thiadiazole moiety were known to enhance the biological activities (Holla et al., 1988). The crystal structures of some of the thiadiazole derivatives have been reported (Zhang et al., 2011; Fun et al., 2011; Ma & Yang, 2008). The present work describes the synthesis and crystal structure of the title compound (C17H10Cl2N4OS), 3-benzyl-7-(2,4-dichlorophenyl)-4H -[1,3,4]thiadiazolo[2,3-c][1,2,4]triazin-4-one. The compound was prepared by the reaction of 4-amino-6-benzyl-3-mercapto-1,2,4-triazin- 5(4H)-one with 2,4 dichlorobenzoic acid.

The molecular structure is shown in Fig. 1. The benzene ring and the hydrogen atoms which are attached to atom C11 are disordered over two positions with refined site-occupancies of 0.509 (8): 0.491 (8) ratio. Bond lengths and angles are within normal ranges. The 4H-[1,3,4]thiadiazolo [2,3-c][1,2,4]triazine ring (S1/N1/N2/N3/N4/C7–C10; maximum deviation = 0.048 (3) Å at atom C9) forms dihedral angles of 76.9 (5), 74.9 (5) and 9.88 (12)° with the major and minor parts of the disordered benzene ring (C12–C17 & C12X–C17X) and the dichloro-substituted benzene ring (C1–C6), respectively.

In the crystal packing (Fig. 2), two neighbouring molecules are linked by intermolecular C2—H2A···O1 hydrogen bonds (Table 1) into inversion dimers, forming R22(18) graph-set motifs (Bernstein et al., 1995). A short S1···N3 contact [2.801 (3) Å, symmetry code: -x,1 - y,2 - z] is observed between the dimers and comparable with those short contacts of the previously reported structures (Yu et al., 2007; Jia et al., 2011).

Related literature top

For applications of thiadiazole derivatives, see: Kurtzer (1965); Sandstrom (1968); Eue & Tietz (1970); Holla et al. (1988, 1998). For a related structure, see: Zhang et al. (2011); Fun et al. (2011); Ma & Yang (2008); Yu et al. (2007); Jia et al. (2011). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). for hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 4-amino-6-benzyl-3-mercapto-1,2,4-triazin-5(4H)-one (2.34 g, 0.01 mol), 2,4-dichlorobenzoic acid (1.91 g, 0.01 mol) and phosphorus oxychloride (10 ml) was refluxed on a water bath for about 5 h. Excess of phosphorus oxychloride was removed under reduced pressure. The reaction mixture was cooled and poured onto crushed ice. The resulting solid product was filtered, washed with sodium bicarbonate solution (2%), followed by distilled water. It was dried and recrystallized from aqueous dioxane. The single crystals were grown by slow evaporation from a mixture of ethanol and dichloromethane. (1:1) (M.p. = 473–475 K).

Refinement top

The benzene ring and the hydrogen atoms which are attached to atom C11 are disordered over two positions with refined site-occupancies of 0.509 (8): 0.491 (8) ratio. All the H atoms were positioned geometrically (C—H = 0.95 and 0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). Similarity and rigid bond restraints were used in the final refinement. Two outliers (0 1 1) and (0 0 1) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. All disordered components are shown.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the a axis. Dashed lines represent the intermolecular hydrogen bonds. Only major disordered component is shown.
3-Benzyl-7-(2,4-dichlorophenyl)-4H-1,3,4- thiadiazolo[2,3-c][1,2,4]triazin-4-one top
Crystal data top
C17H10Cl2N4OSZ = 2
Mr = 389.25F(000) = 396
Triclinic, P1Dx = 1.581 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.4961 (1) ÅCell parameters from 5482 reflections
b = 13.4412 (5) Åθ = 2.5–31.5°
c = 14.4588 (5) ŵ = 0.54 mm1
α = 70.620 (2)°T = 100 K
β = 85.956 (2)°Block, yellow
γ = 83.063 (2)°0.21 × 0.10 × 0.09 mm
V = 817.81 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4086 independent reflections
Radiation source: fine-focus sealed tube2479 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.894, Tmax = 0.955k = 1818
8906 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.2058P]
where P = (Fo2 + 2Fc2)/3
4086 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.42 e Å3
180 restraintsΔρmin = 0.38 e Å3
Crystal data top
C17H10Cl2N4OSγ = 83.063 (2)°
Mr = 389.25V = 817.81 (5) Å3
Triclinic, P1Z = 2
a = 4.4961 (1) ÅMo Kα radiation
b = 13.4412 (5) ŵ = 0.54 mm1
c = 14.4588 (5) ÅT = 100 K
α = 70.620 (2)°0.21 × 0.10 × 0.09 mm
β = 85.956 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4086 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2479 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.955Rint = 0.053
8906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060180 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
4086 reflectionsΔρmin = 0.38 e Å3
281 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.1885 (2)1.03193 (7)1.30609 (7)0.0514 (3)
Cl20.2647 (2)0.66171 (7)1.25574 (6)0.0410 (3)
S10.00839 (17)0.62886 (7)1.07446 (5)0.0301 (2)
O10.7716 (5)0.79090 (18)0.84041 (16)0.0380 (6)
N10.3542 (6)0.7790 (2)0.99367 (18)0.0301 (6)
N20.3951 (5)0.7091 (2)0.94181 (18)0.0284 (6)
N30.2316 (5)0.5525 (2)0.92944 (17)0.0321 (7)
N40.4208 (5)0.5638 (2)0.84780 (18)0.0330 (7)
C10.1722 (7)0.9123 (3)1.1014 (2)0.0338 (8)
H1A0.30000.93391.04470.041*
C20.0985 (8)0.9801 (3)1.1546 (2)0.0376 (8)
H2A0.17441.04731.13510.045*
C30.0885 (7)0.9488 (3)1.2373 (2)0.0360 (8)
C40.1976 (7)0.8511 (3)1.2661 (2)0.0354 (8)
H4A0.32510.83011.32300.043*
C50.1205 (7)0.7840 (3)1.2119 (2)0.0296 (7)
C60.0653 (7)0.8122 (3)1.1278 (2)0.0292 (7)
C70.1560 (7)0.7466 (3)1.0647 (2)0.0281 (7)
C80.2259 (7)0.6250 (3)0.9714 (2)0.0294 (7)
C90.6039 (7)0.7215 (3)0.8630 (2)0.0309 (8)
C100.5922 (7)0.6403 (3)0.8173 (2)0.0313 (8)
C110.7890 (7)0.6472 (3)0.7261 (2)0.0371 (9)
H11A0.92160.58010.73740.045*0.509 (8)
H11B0.91760.70530.71400.045*0.509 (8)
H11C0.94660.69440.72100.045*0.491 (8)
H11D0.88810.57590.73050.045*0.491 (8)
C120.600 (6)0.6676 (16)0.6331 (18)0.020 (3)0.509 (8)
C130.4824 (18)0.7651 (7)0.5769 (5)0.0307 (18)0.509 (8)
H13A0.52460.82660.58990.037*0.509 (8)
C140.302 (4)0.7744 (17)0.5012 (10)0.044 (3)0.509 (8)
H14A0.21460.84230.46310.053*0.509 (8)
C150.248 (3)0.6858 (12)0.4802 (8)0.049 (3)0.509 (8)
H15A0.12660.69270.42680.059*0.509 (8)
C160.3718 (17)0.5854 (7)0.5380 (5)0.042 (2)0.509 (8)
H16A0.33640.52390.52370.051*0.509 (8)
C170.546 (2)0.5769 (7)0.6159 (7)0.034 (2)0.509 (8)
H17A0.62670.50930.65690.041*0.509 (8)
C12X0.611 (7)0.6874 (18)0.6421 (19)0.023 (3)0.491 (8)
C13X0.5639 (18)0.7976 (7)0.5985 (6)0.0300 (18)0.491 (8)
H13B0.65600.84150.62530.036*0.491 (8)
C14X0.3859 (17)0.8449 (7)0.5171 (5)0.041 (2)0.491 (8)
H14B0.35320.91990.48980.050*0.491 (8)
C15X0.256 (4)0.7806 (18)0.4761 (10)0.042 (3)0.491 (8)
H15B0.13430.81270.42080.050*0.491 (8)
C16X0.302 (3)0.6708 (13)0.5142 (7)0.041 (2)0.491 (8)
H16B0.21200.62770.48610.049*0.491 (8)
C17X0.483 (2)0.6257 (8)0.5948 (7)0.033 (2)0.491 (8)
H17B0.52380.55070.61930.040*0.491 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0638 (7)0.0300 (5)0.0509 (6)0.0054 (5)0.0255 (5)0.0094 (4)
Cl20.0471 (5)0.0458 (6)0.0308 (5)0.0175 (4)0.0167 (4)0.0126 (4)
S10.0230 (4)0.0477 (5)0.0195 (4)0.0078 (4)0.0029 (3)0.0101 (4)
O10.0324 (13)0.0363 (14)0.0368 (13)0.0029 (11)0.0121 (10)0.0035 (11)
N10.0250 (14)0.0336 (16)0.0261 (14)0.0025 (12)0.0024 (11)0.0049 (12)
N20.0209 (13)0.0383 (16)0.0228 (13)0.0010 (12)0.0022 (11)0.0076 (12)
N30.0220 (14)0.059 (2)0.0178 (13)0.0098 (14)0.0029 (10)0.0146 (13)
N40.0189 (13)0.065 (2)0.0189 (13)0.0113 (14)0.0041 (10)0.0174 (13)
C10.0279 (18)0.0290 (19)0.0327 (18)0.0058 (15)0.0077 (14)0.0008 (15)
C20.038 (2)0.0248 (18)0.0365 (19)0.0046 (16)0.0101 (16)0.0027 (15)
C30.0323 (19)0.0298 (19)0.038 (2)0.0105 (15)0.0043 (15)0.0056 (15)
C40.0338 (19)0.034 (2)0.0289 (18)0.0028 (16)0.0108 (14)0.0020 (15)
C50.0270 (17)0.0313 (18)0.0253 (16)0.0021 (15)0.0027 (13)0.0031 (14)
C60.0231 (17)0.0342 (19)0.0235 (16)0.0048 (14)0.0010 (13)0.0036 (14)
C70.0210 (16)0.0343 (19)0.0219 (16)0.0001 (14)0.0002 (12)0.0007 (13)
C80.0194 (16)0.050 (2)0.0169 (15)0.0035 (15)0.0006 (12)0.0079 (14)
C90.0232 (17)0.040 (2)0.0215 (16)0.0038 (16)0.0003 (13)0.0014 (14)
C100.0175 (15)0.054 (2)0.0195 (15)0.0005 (16)0.0001 (12)0.0087 (15)
C110.0227 (17)0.064 (3)0.0236 (17)0.0066 (17)0.0083 (13)0.0135 (17)
C120.019 (5)0.034 (7)0.011 (4)0.005 (5)0.002 (3)0.013 (4)
C130.038 (4)0.035 (4)0.018 (3)0.000 (3)0.008 (3)0.010 (3)
C140.033 (6)0.064 (5)0.020 (6)0.013 (5)0.002 (4)0.000 (6)
C150.033 (5)0.080 (7)0.025 (5)0.002 (5)0.005 (4)0.007 (5)
C160.048 (4)0.058 (5)0.029 (4)0.012 (4)0.013 (3)0.027 (4)
C170.041 (5)0.035 (5)0.024 (4)0.004 (4)0.007 (3)0.006 (4)
C12X0.019 (4)0.035 (7)0.016 (6)0.008 (5)0.008 (4)0.011 (4)
C13X0.028 (4)0.036 (4)0.022 (4)0.003 (3)0.006 (3)0.008 (3)
C14X0.039 (4)0.051 (5)0.022 (3)0.005 (4)0.009 (3)0.000 (3)
C15X0.019 (5)0.083 (7)0.014 (6)0.009 (5)0.001 (4)0.010 (6)
C16X0.024 (5)0.074 (6)0.023 (5)0.004 (5)0.003 (4)0.015 (5)
C17X0.039 (5)0.042 (5)0.019 (4)0.005 (4)0.011 (3)0.012 (4)
Geometric parameters (Å, º) top
Cl1—C31.730 (4)C11—H11A0.9900
Cl2—C51.741 (3)C11—H11B0.9900
S1—C81.736 (3)C11—H11C0.9900
S1—C71.749 (3)C11—H11D0.9900
O1—C91.216 (4)C12—C131.36 (2)
N1—C71.306 (4)C12—C171.375 (18)
N1—N21.373 (4)C13—C141.370 (14)
N2—C81.371 (4)C13—H13A0.9500
N2—C91.403 (4)C14—C151.37 (3)
N3—C81.305 (4)C14—H14A0.9500
N3—N41.382 (3)C15—C161.402 (16)
N4—C101.299 (4)C15—H15A0.9500
C1—C21.374 (5)C16—C171.382 (12)
C1—C61.406 (4)C16—H16A0.9500
C1—H1A0.9500C17—H17A0.9500
C2—C31.387 (4)C12X—C13X1.40 (2)
C2—H2A0.9500C12X—C17X1.425 (19)
C3—C41.379 (5)C13X—C14X1.395 (10)
C4—C51.380 (4)C13X—H13B0.9500
C4—H4A0.9500C14X—C15X1.40 (2)
C5—C61.395 (4)C14X—H14B0.9500
C6—C71.474 (4)C15X—C16X1.39 (3)
C9—C101.458 (5)C15X—H15B0.9500
C10—C111.518 (4)C16X—C17X1.391 (14)
C11—C12X1.42 (3)C16X—H16B0.9500
C11—C121.57 (2)C17X—H17B0.9500
C8—S1—C788.09 (16)H11A—C11—H11B107.9
C7—N1—N2109.0 (3)C12X—C11—H11C109.8
C8—N2—N1117.1 (2)C10—C11—H11C109.8
C8—N2—C9121.1 (3)C12X—C11—H11D109.8
N1—N2—C9121.9 (3)C10—C11—H11D109.8
C8—N3—N4116.4 (3)H11C—C11—H11D108.2
C10—N4—N3121.4 (3)C13—C12—C17121.7 (16)
C2—C1—C6122.4 (3)C13—C12—C11124.0 (12)
C2—C1—H1A118.8C17—C12—C11114.2 (16)
C6—C1—H1A118.8C12—C13—C14119.8 (13)
C1—C2—C3118.8 (3)C12—C13—H13A120.1
C1—C2—H2A120.6C14—C13—H13A120.1
C3—C2—H2A120.6C13—C14—C15120.3 (15)
C4—C3—C2120.7 (3)C13—C14—H14A119.9
C4—C3—Cl1118.9 (3)C15—C14—H14A119.9
C2—C3—Cl1120.4 (3)C14—C15—C16119.7 (10)
C3—C4—C5119.6 (3)C14—C15—H15A120.1
C3—C4—H4A120.2C16—C15—H15A120.1
C5—C4—H4A120.2C17—C16—C15119.4 (9)
C4—C5—C6121.8 (3)C17—C16—H16A120.3
C4—C5—Cl2115.9 (2)C15—C16—H16A120.3
C6—C5—Cl2122.2 (3)C12—C17—C16119.1 (12)
C5—C6—C1116.6 (3)C12—C17—H17A120.5
C5—C6—C7125.7 (3)C16—C17—H17A120.5
C1—C6—C7117.7 (3)C13X—C12X—C11117.8 (13)
N1—C7—C6118.7 (3)C13X—C12X—C17X116.3 (19)
N1—C7—S1116.4 (2)C11—C12X—C17X125.9 (17)
C6—C7—S1124.9 (2)C14X—C13X—C12X122.0 (12)
N3—C8—N2125.2 (3)C14X—C13X—H13B119.0
N3—C8—S1125.4 (2)C12X—C13X—H13B119.0
N2—C8—S1109.4 (2)C13X—C14X—C15X119.1 (10)
O1—C9—N2121.9 (3)C13X—C14X—H14B120.4
O1—C9—C10127.1 (3)C15X—C14X—H14B120.4
N2—C9—C10111.0 (3)C16X—C15X—C14X121.5 (11)
N4—C10—C9124.8 (3)C16X—C15X—H15B119.3
N4—C10—C11117.6 (3)C14X—C15X—H15B119.3
C9—C10—C11117.6 (3)C15X—C16X—C17X118.2 (13)
C12X—C11—C10109.5 (13)C15X—C16X—H16B120.9
C10—C11—C12112.3 (11)C17X—C16X—H16B120.9
C10—C11—H11A109.2C16X—C17X—C12X122.7 (14)
C12—C11—H11A109.2C16X—C17X—H17B118.7
C10—C11—H11B109.2C12X—C17X—H17B118.7
C12—C11—H11B109.2
C7—N1—N2—C81.3 (4)N1—N2—C9—O14.5 (5)
C7—N1—N2—C9177.7 (3)C8—N2—C9—C104.1 (4)
C8—N3—N4—C102.7 (4)N1—N2—C9—C10177.0 (3)
C6—C1—C2—C30.1 (5)N3—N4—C10—C90.7 (5)
C1—C2—C3—C40.4 (5)N3—N4—C10—C11179.1 (3)
C1—C2—C3—Cl1179.7 (3)O1—C9—C10—N4175.7 (3)
C2—C3—C4—C50.2 (5)N2—C9—C10—N42.7 (4)
Cl1—C3—C4—C5179.8 (3)O1—C9—C10—C115.8 (5)
C3—C4—C5—C60.2 (5)N2—C9—C10—C11175.7 (3)
C3—C4—C5—Cl2178.9 (2)N4—C10—C11—C12X75.2 (9)
C4—C5—C6—C10.4 (5)C9—C10—C11—C12X103.4 (9)
Cl2—C5—C6—C1178.6 (2)N4—C10—C11—C1262.9 (9)
C4—C5—C6—C7179.1 (3)C9—C10—C11—C12115.7 (8)
Cl2—C5—C6—C71.9 (5)C10—C11—C12—C1384 (2)
C2—C1—C6—C50.3 (5)C10—C11—C12—C1792.4 (19)
C2—C1—C6—C7179.3 (3)C17—C12—C13—C140 (3)
N2—N1—C7—C6177.3 (3)C11—C12—C13—C14175.2 (18)
N2—N1—C7—S10.6 (3)C12—C13—C14—C152 (3)
C5—C6—C7—N1173.5 (3)C13—C14—C15—C161 (3)
C1—C6—C7—N17.0 (4)C14—C15—C16—C170.4 (19)
C5—C6—C7—S18.8 (5)C13—C12—C17—C161 (3)
C1—C6—C7—S1170.7 (2)C11—C12—C17—C16177.5 (13)
C8—S1—C7—N11.7 (3)C15—C16—C17—C121.9 (19)
C8—S1—C7—C6176.0 (3)C10—C11—C12X—C13X87 (2)
N4—N3—C8—N21.2 (5)C10—C11—C12X—C17X95 (2)
N4—N3—C8—S1180.0 (2)C11—C12X—C13X—C14X178.3 (14)
N1—N2—C8—N3178.5 (3)C17X—C12X—C13X—C14X4 (3)
C9—N2—C8—N32.5 (5)C12X—C13X—C14X—C15X1.6 (19)
N1—N2—C8—S12.5 (3)C13X—C14X—C15X—C16X0 (2)
C9—N2—C8—S1176.5 (2)C14X—C15X—C16X—C17X0 (2)
C7—S1—C8—N3178.9 (3)C15X—C16X—C17X—C12X3 (2)
C7—S1—C8—N22.2 (2)C13X—C12X—C17X—C16X5 (3)
C8—N2—C9—O1174.4 (3)C11—C12X—C17X—C16X177.7 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.952.363.226 (5)151
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC17H10Cl2N4OS
Mr389.25
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)4.4961 (1), 13.4412 (5), 14.4588 (5)
α, β, γ (°)70.620 (2), 85.956 (2), 83.063 (2)
V3)817.81 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.21 × 0.10 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.894, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
8906, 4086, 2479
Rint0.053
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.129, 1.04
No. of reflections4086
No. of parameters281
No. of restraints180
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.952.363.226 (5)151
Symmetry code: (i) x+1, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and SA thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). SA thanks the Malaysian government and USM for the award of Academic Staff Training Scheme (ASTS). BKS gratefully acknowledges the Department of Atomic Energy (DAE)/BRNS, Government of India, for providing financial assistance in the BRNS Project (grant No. 2011/34/20-BRNS/0846).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEue, L. & Tietz, H. (1970). Pflanzenshutz-Nachrichten Bayer, 23, 208–218.  CAS Google Scholar
First citationFun, H.-K., Chantrapromma, S., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o205–o206.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHolla, B. S., Kalluraya, B. & Sridhar, K. R. (1988). Rev. Roum. Chim. 33, 277–288.  CAS Google Scholar
First citationHolla, B. S., Sarojini, B. K. & Gonsalves, R. (1998). Il Farmaco, 53, 395–398.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJia, W., Wang, Z., Jia, X., Zhang, J. & Wang, W. (2011). Acta Cryst. E67, o1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKurtzer, F. (1965). Adv. Heterocycl. Chem. 5, 119–204.  Google Scholar
First citationMa, W.-W. & Yang, M.-H. (2008). Acta Cryst. E64, m630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSandstrom, J. (1968). Adv. Heterocycl. Chem. 9, 165–209.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, M., Zhang, K., Qian, K.-D., Zhang, L.-X. & Liu, Y.-Z. (2007). Acta Cryst. E63, o2551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J., He, Q., Jiang, Q., Mu, H. & Wan, R. (2011). Acta Cryst. E67, o2255.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1736-o1737
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds