organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-anilino-3-nitro­benzoate

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, bFaculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Cheras 56000, Malaysia, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 24 April 2012; accepted 3 May 2012; online 12 May 2012)

In the title compound, C15H14N2O4, the dihedral angle between the benzene and phenyl rings is 73.20 (6)°. An intra­molecular N—H⋯O hydrogen bond forms an S(6) ring motif. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds into a layer parallel to the bc plane.

Related literature

For applications of nitro­phenyl­ene­amines, see: Stephane (2006[Stephane, S. (2006). US Patent 20060005323.]); Glebowska et al. (2009[Glebowska, A., Przybylski, P., Winek, M., Krzyczkowska, P., Krowczynski, A., Szydlowska, J., Pociecha, D. & Gorecka, E. (2009). J. Mater. Chem. 19, 1395-1398.]); Remusat et al. (2004[Remusat, V., Terme, T., Gellis, A., Rathelot, P. & Vanelle, P. (2004). J. Heterocycl. Chem. 41, 221-225.]). For related structures, see: Mohdaidin et al. (2008[Mohd. Maidin, S. M., Abdul Rahim, A. S., Abdul Hamid, S., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1501-o1502.]); Zhang et al. (2009[Zhang, G.-H., Wu, Y.-Z., Li, H.-Y., Liu, B.-N. & Guo, C. (2009). Acta Cryst. E65, o1380.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4

  • Mr = 286.28

  • Monoclinic, P 21 /c

  • a = 10.6464 (2) Å

  • b = 9.9178 (2) Å

  • c = 14.7885 (2) Å

  • β = 120.244 (1)°

  • V = 1348.96 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.984

  • 17988 measured reflections

  • 4639 independent reflections

  • 3276 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.04

  • 4639 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O4 0.859 (18) 2.00 (2) 2.6375 (17) 130.6 (17)
N1—H1N1⋯O2i 0.858 (17) 2.288 (16) 2.9411 (14) 133.0 (14)
C15—H15A⋯O2ii 0.93 2.45 3.342 (2) 160
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In chemistry, nitrophenyleneamines are important building blocks for many pharmaceutical compounds. Phenylenediamine themselves are also used as composition in making dyes (Stephane, 2006), metallomesogens (Glebowska et al., 2009) as well as ligand precursors. Condensation of substituted ο-phenylenediamine with various diketones is then used in the preparation of a variety of pharmaceuticals (Remusat et al., 2004).

In the molecular structure (Fig. 1), an intramolecular N1—H1N1···O4 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The C1–C6 benzene ring [maximum deviation of 0.007 (1) Å at atoms C5 and C6] and C10–C15 phenyl ring [maximum deviation of 0.005 (2) Å at atom C12] make a dihedral angle of 73.20 (6)° with each other. Bond lengths and angles are within normal ranges and are comparable to related structures (Mohd. Maidin et al., 2008; Zhang et al., 2009).

The crystal packing is shown in Fig. 2. The intermolecular N1—H1N1···O2 and C15—H15A···O2 (Table 1) hydrogen bonds linked the molecules into a two-dimensional network parallel to the bc plane.

Related literature top

For applications of nitrophenyleneamines, see: Stephane (2006); Glebowska et al. (2009); Remusat et al. (2004). For related structures, see: Mohd. Maidin et al. (2008); Zhang et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Ethyl-4-fluro-3-nitro benzoate (1 g) in dichloromethane (20 ml) was added into the solution of aniline (0.51 g) and N,N-diisopropylethylamine (0.72 g) in dichloromethane (20 ml). The reaction mixture was stirred overnight at room temperature. After completion of the reaction, evidenced by TLC analysis. The reaction mixture was washed with water (10 ml × 2) and 10% Na2CO3 (10 ml × 2). The dichloromethane layer was collected and dried over Na2SO4 and evaporated in vacuo to yield the product. The product was recrystallised from ethyl acetate.

Refinement top

N-bound H atom was located in a difference Fourier map and refined freely [N—H = 0.858 (17) Å]. Other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular N—H···O hydrogen bond is shown by a dashed line.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound, viewed along the b axis. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Ethyl 4-anilino-3-nitrobenzoate top
Crystal data top
C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3629 reflections
a = 10.6464 (2) Åθ = 2.9–31.4°
b = 9.9178 (2) ŵ = 0.10 mm1
c = 14.7885 (2) ÅT = 100 K
β = 120.244 (1)°Block, yellow
V = 1348.96 (4) Å30.35 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4639 independent reflections
Radiation source: fine-focus sealed tube3276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 31.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.965, Tmax = 0.984k = 1414
17988 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.2709P]
where P = (Fo2 + 2Fc2)/3
4639 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H14N2O4V = 1348.96 (4) Å3
Mr = 286.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6464 (2) ŵ = 0.10 mm1
b = 9.9178 (2) ÅT = 100 K
c = 14.7885 (2) Å0.35 × 0.20 × 0.16 mm
β = 120.244 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4639 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3276 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.984Rint = 0.040
17988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.39 e Å3
4639 reflectionsΔρmin = 0.26 e Å3
195 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28632 (10)0.12818 (8)0.76247 (7)0.01976 (19)
O20.46453 (10)0.00161 (9)0.76921 (7)0.0212 (2)
O30.66947 (10)0.34436 (10)1.03221 (8)0.0273 (2)
O40.55970 (10)0.42674 (9)1.10945 (8)0.0228 (2)
N10.33488 (11)0.29963 (10)1.09858 (8)0.0181 (2)
N20.56820 (11)0.34349 (10)1.05006 (8)0.0184 (2)
C10.46344 (13)0.16060 (11)0.92632 (9)0.0165 (2)
H1A0.53530.17640.90950.020*
C20.45671 (12)0.24143 (11)1.00074 (9)0.0154 (2)
C30.34771 (13)0.22195 (11)1.02854 (9)0.0153 (2)
C40.24935 (13)0.11392 (12)0.97700 (9)0.0169 (2)
H4A0.17670.09680.99290.020*
C50.25813 (13)0.03416 (12)0.90452 (10)0.0173 (2)
H5A0.19240.03620.87300.021*
C60.36523 (13)0.05748 (11)0.87723 (9)0.0161 (2)
C70.37913 (13)0.02319 (12)0.79882 (10)0.0173 (2)
C80.29118 (15)0.20792 (13)0.68146 (11)0.0239 (3)
H8A0.38260.25630.71070.029*
H8B0.28250.14970.62590.029*
C90.16782 (18)0.30447 (14)0.63980 (12)0.0324 (3)
H9A0.16770.35820.58580.049*
H9B0.07800.25550.61140.049*
H9C0.17800.36200.69530.049*
C100.23046 (13)0.27774 (12)1.13077 (10)0.0175 (2)
C110.11792 (14)0.37011 (13)1.10012 (11)0.0227 (3)
H11A0.10900.44181.05670.027*
C120.01887 (15)0.35537 (14)1.13428 (12)0.0281 (3)
H12A0.05590.41761.11430.034*
C130.03126 (15)0.24804 (14)1.19810 (12)0.0287 (3)
H13A0.03590.23741.22020.034*
C140.14412 (16)0.15626 (14)1.22907 (12)0.0269 (3)
H14A0.15280.08461.27240.032*
C150.24447 (15)0.17090 (12)1.19555 (11)0.0218 (3)
H15A0.32020.10951.21650.026*
H1N10.3899 (19)0.3693 (16)1.1227 (13)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0247 (5)0.0208 (4)0.0188 (5)0.0008 (3)0.0147 (4)0.0030 (3)
O20.0237 (5)0.0249 (4)0.0222 (5)0.0049 (3)0.0169 (4)0.0034 (4)
O30.0211 (5)0.0350 (5)0.0342 (6)0.0065 (4)0.0202 (4)0.0053 (4)
O40.0259 (5)0.0229 (4)0.0250 (5)0.0052 (4)0.0169 (4)0.0054 (4)
N10.0189 (5)0.0194 (5)0.0218 (6)0.0037 (4)0.0146 (4)0.0049 (4)
N20.0176 (5)0.0211 (5)0.0193 (5)0.0010 (4)0.0113 (4)0.0013 (4)
C10.0172 (5)0.0188 (5)0.0176 (6)0.0039 (4)0.0119 (5)0.0048 (4)
C20.0151 (5)0.0172 (5)0.0163 (6)0.0000 (4)0.0096 (5)0.0011 (4)
C30.0153 (5)0.0176 (5)0.0153 (6)0.0018 (4)0.0092 (4)0.0011 (4)
C40.0157 (5)0.0211 (5)0.0172 (6)0.0009 (4)0.0107 (5)0.0005 (4)
C50.0176 (5)0.0191 (5)0.0167 (6)0.0001 (4)0.0098 (5)0.0005 (4)
C60.0182 (5)0.0187 (5)0.0146 (6)0.0036 (4)0.0107 (5)0.0025 (4)
C70.0195 (6)0.0183 (5)0.0162 (6)0.0050 (4)0.0106 (5)0.0037 (4)
C80.0314 (7)0.0249 (6)0.0208 (7)0.0044 (5)0.0171 (6)0.0038 (5)
C90.0428 (9)0.0279 (7)0.0307 (8)0.0050 (6)0.0217 (7)0.0078 (6)
C100.0157 (5)0.0222 (5)0.0183 (6)0.0038 (4)0.0113 (5)0.0063 (5)
C110.0181 (6)0.0273 (6)0.0227 (7)0.0004 (5)0.0104 (5)0.0031 (5)
C120.0181 (6)0.0356 (7)0.0334 (8)0.0002 (5)0.0151 (6)0.0101 (6)
C130.0256 (7)0.0362 (7)0.0356 (8)0.0118 (6)0.0239 (6)0.0167 (6)
C140.0348 (8)0.0266 (6)0.0314 (8)0.0086 (5)0.0256 (7)0.0073 (6)
C150.0245 (6)0.0217 (6)0.0259 (7)0.0012 (5)0.0176 (6)0.0033 (5)
Geometric parameters (Å, º) top
O1—C71.3470 (15)C6—C71.4764 (16)
O1—C81.4582 (14)C8—C91.485 (2)
O2—C71.2165 (13)C8—H8A0.9700
O3—N21.2325 (12)C8—H8B0.9700
O4—N21.2415 (13)C9—H9A0.9600
N1—C31.3518 (14)C9—H9B0.9600
N1—C101.4293 (14)C9—H9C0.9600
N1—H1N10.858 (17)C10—C151.3852 (17)
N2—C21.4468 (15)C10—C111.3904 (17)
C1—C61.3789 (17)C11—C121.3875 (17)
C1—C21.3923 (15)C11—H11A0.9300
C1—H1A0.9300C12—C131.384 (2)
C2—C31.4262 (15)C12—H12A0.9300
C3—C41.4218 (16)C13—C141.388 (2)
C4—C51.3727 (16)C13—H13A0.9300
C4—H4A0.9300C14—C151.3935 (17)
C5—C61.4071 (15)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C7—O1—C8115.13 (9)O1—C8—H8A110.2
C3—N1—C10124.35 (10)C9—C8—H8A110.2
C3—N1—H1N1117.8 (11)O1—C8—H8B110.2
C10—N1—H1N1117.8 (11)C9—C8—H8B110.2
O3—N2—O4122.02 (11)H8A—C8—H8B108.5
O3—N2—C2118.75 (10)C8—C9—H9A109.5
O4—N2—C2119.23 (9)C8—C9—H9B109.5
C6—C1—C2121.06 (10)H9A—C9—H9B109.5
C6—C1—H1A119.5C8—C9—H9C109.5
C2—C1—H1A119.5H9A—C9—H9C109.5
C1—C2—C3121.55 (11)H9B—C9—H9C109.5
C1—C2—N2116.46 (10)C15—C10—C11120.29 (11)
C3—C2—N2121.97 (10)C15—C10—N1121.04 (11)
N1—C3—C4120.59 (10)C11—C10—N1118.58 (11)
N1—C3—C2123.68 (11)C12—C11—C10120.00 (13)
C4—C3—C2115.72 (10)C12—C11—H11A120.0
C5—C4—C3122.11 (10)C10—C11—H11A120.0
C5—C4—H4A118.9C13—C12—C11120.03 (13)
C3—C4—H4A118.9C13—C12—H12A120.0
C4—C5—C6120.86 (11)C11—C12—H12A120.0
C4—C5—H5A119.6C12—C13—C14119.90 (11)
C6—C5—H5A119.6C12—C13—H13A120.0
C1—C6—C5118.69 (10)C14—C13—H13A120.0
C1—C6—C7117.78 (10)C13—C14—C15120.36 (13)
C5—C6—C7123.53 (11)C13—C14—H14A119.8
O2—C7—O1122.94 (11)C15—C14—H14A119.8
O2—C7—C6124.18 (11)C10—C15—C14119.41 (12)
O1—C7—C6112.88 (9)C10—C15—H15A120.3
O1—C8—C9107.49 (10)C14—C15—H15A120.3
C6—C1—C2—C30.58 (18)C4—C5—C6—C7179.04 (11)
C6—C1—C2—N2177.85 (11)C8—O1—C7—O22.29 (17)
O3—N2—C2—C17.34 (16)C8—O1—C7—C6177.49 (10)
O4—N2—C2—C1173.15 (11)C1—C6—C7—O25.67 (18)
O3—N2—C2—C3171.07 (11)C5—C6—C7—O2174.66 (12)
O4—N2—C2—C38.44 (17)C1—C6—C7—O1174.56 (10)
C10—N1—C3—C43.33 (18)C5—C6—C7—O15.11 (17)
C10—N1—C3—C2177.07 (11)C7—O1—C8—C9171.43 (11)
C1—C2—C3—N1178.51 (11)C3—N1—C10—C1572.36 (17)
N2—C2—C3—N13.15 (18)C3—N1—C10—C11110.92 (14)
C1—C2—C3—C41.12 (17)C15—C10—C11—C120.1 (2)
N2—C2—C3—C4177.22 (10)N1—C10—C11—C12176.86 (12)
N1—C3—C4—C5179.17 (12)C10—C11—C12—C130.6 (2)
C2—C3—C4—C50.47 (17)C11—C12—C13—C140.9 (2)
C3—C4—C5—C60.72 (19)C12—C13—C14—C150.5 (2)
C2—C1—C6—C50.65 (18)C11—C10—C15—C140.49 (19)
C2—C1—C6—C7179.67 (11)N1—C10—C15—C14177.15 (12)
C4—C5—C6—C11.29 (18)C13—C14—C15—C100.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O40.859 (18)2.00 (2)2.6375 (17)130.6 (17)
N1—H1N1···O2i0.858 (17)2.288 (16)2.9411 (14)133.0 (14)
C15—H15A···O2ii0.932.453.342 (2)160
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.6464 (2), 9.9178 (2), 14.7885 (2)
β (°) 120.244 (1)
V3)1348.96 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.965, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
17988, 4639, 3276
Rint0.040
(sin θ/λ)max1)0.744
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.04
No. of reflections4639
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O40.859 (18)2.00 (2)2.6375 (17)130.6 (17)
N1—H1N1···O2i0.858 (17)2.288 (16)2.9411 (14)133.0 (14)
C15—H15A···O2ii0.93002.45003.342 (2)160.00
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University grants Nos. 1001/PFIZIK/811151 and 1001/PSK/8620012. The authors also thank Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malaysia.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlebowska, A., Przybylski, P., Winek, M., Krzyczkowska, P., Krowczynski, A., Szydlowska, J., Pociecha, D. & Gorecka, E. (2009). J. Mater. Chem. 19, 1395–1398.  CAS Google Scholar
First citationMohd. Maidin, S. M., Abdul Rahim, A. S., Abdul Hamid, S., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1501–o1502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRemusat, V., Terme, T., Gellis, A., Rathelot, P. & Vanelle, P. (2004). J. Heterocycl. Chem. 41, 221–225.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephane, S. (2006). US Patent 20060005323.  Google Scholar
First citationZhang, G.-H., Wu, Y.-Z., Li, H.-Y., Liu, B.-N. & Guo, C. (2009). Acta Cryst. E65, o1380.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds