organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1655-o1656

(E)-N′-(4-Eth­­oxy­benzyl­­idene)-4-hy­dr­oxy­benzohydrazide dihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 27 April 2012; accepted 30 April 2012; online 5 May 2012)

The benzohydrazide mol­ecule of the title compound, C16H16N2O3·2H2O, exists in a trans conformation with respect to the C=N double bond. The central O=C—NH—N=C plane [r.m.s. deviation of 0.0165 (1) Å for the five non-H atoms] makes dihedral angles of 6.04 (8) and 2.38 (8)°, respectively, with the hy­droxy- and eth­oxy-substituted benzene rings. The dihedral angle between these benzene rings is 3.82 (7)°. The eth­oxy group is almost coplanar with the attached benzene ring with a C—O—C—C torsion angle of −176.58 (11)°. In the crystal, the benzohydrazide and water mol­ecules are linked by N—H⋯O, O—H⋯O , O—H⋯N and C—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]); Horkaew et al. (2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.], 2012[Horkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069-o1070.]). For applications of benzohydrazides, see: Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]); Molyneux (2004[Molyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211-219.]); Promdet et al. (2011[Promdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3·2H2O

  • Mr = 320.34

  • Monoclinic, P 21 /c

  • a = 7.1655 (1) Å

  • b = 17.3895 (3) Å

  • c = 13.6202 (2) Å

  • β = 110.875 (1)°

  • V = 1585.74 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.29 × 0.16 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.984

  • 22228 measured reflections

  • 5737 independent reflections

  • 4310 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.155

  • S = 1.03

  • 5737 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O1i 0.84 1.77 2.6106 (15) 174
N1—H2⋯O1Wii 0.85 2.10 2.9278 (16) 167
O1W—H3⋯O2iii 0.81 2.06 2.8683 (15) 177
O1W—H4⋯O2W 0.88 1.84 2.7159 (19) 169
O2W—H5⋯O1iv 0.87 2.14 2.8558 (18) 139
O2W—H5⋯N2iv 0.87 2.55 3.3363 (19) 151
O2W—H6⋯O3v 0.89 2.11 2.9791 (17) 165
C6—H6A⋯O1Wii 0.95 2.36 3.2942 (18) 169
C8—H8A⋯O1Wii 0.95 2.49 3.3222 (18) 146
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It has been known that a majority of benzohydrazides possesses various biological properties, such as antibacterial and antifungal (Loncle et al., 2004), and antiproliferative (Raj et al., 2007) activities. The title benzohydrazide derivative (I) was synthesized as part of our study on the bioactivity of benzohydrazide derivatives (Fun et al., 2011; Horkaew et al., 2011, 2012; Promdet et al., 2011) and was evaluated for antioxidant activity by DPPH scavenging (Molyneux, 2004). It was found to be active. Herein we report the synthesis and crystal structure of (I).

The title compound (Fig. 1), C16H16N2O3.2H2O, comprises one benzohydrazide molecule and two water molecules. The molecule of benzohydrazide exists in a trans-configuration with respect to the C8N2 bond and the torsion angle N1—N2—C8—C9 = -179.90 (11)° with the dihedral angle between the two benzene rings being 3.82 (7)°. The middle fragment are planar with an r.m.s. deviation of 0.0165 (1) Å for the five non-H atoms (O1, C7, N1, N2 and C8). The mean plane through this middle fragment makes the dihedral angles of 6.04 (8) and 2.38 (8)° with the 4-hydroxyphenyl and 4-ethoxyphenyl rings, respectively. The ethoxy group is co-planar with the bound benzene ring with the torsion angle C12—O3—C15—C16 = -176.58 (11)°. The molecule is therefore approximately planar. The two water molecules are linked to each other by an O—H···O hydrogen bond (Fig. 1). Bond distances of benzohydrazide are of normal values (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2011; Horkaew et al., 2011, 2012).

In the crystal packing (Fig. 2), the molecules of benzohydrazide and water are linked by N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds (Table 1) into a three-dimensional network.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2011); Horkaew et al. (2011, 2012). For applications of benzohydrazides, see: Loncle et al. (2004); Molyneux (2004); Promdet et al. (2011); Raj et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound (I) was prepared by dissolving 4-hydroxybenzohydrazide (2 mmol, 0.30 g) in ethanol (15 ml). A solution of 4-ethoxybenzaldehyde (2 mmol, 0.27 ml) in ethanol (15 ml) was then added slowly to the reaction. The mixture was refluxed for around 6 hr. The solution was then cooled to room temperature and a white solid appeared. Colorless block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from a methanol solution by slow evaporation of the solvent at room temperature after several days (m.p. 373-374 K).

Refinement top

All H atoms were positioned geometrically [d(O—H) = 0.84 Å for the hydroxy group and 0.81–0.89 Å for water molecules, d(N—H) = 0.85 Å, d(C—H) = 0.95 Å for aromatic and CH, 0.99 Å for CH2 and 0.98 Å for CH3 groups] and allowed to ride on their parent atoms, The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 60% probability displacement ellipsoids and the atom-numbering scheme. The O—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(E)-N'-(4-Ethoxybenzylidene)-4-hydroxybenzohydrazide dihydrate top
Crystal data top
C16H16N2O3·2H2OF(000) = 680
Mr = 320.34Dx = 1.342 Mg m3
Monoclinic, P21/cMelting point = 373–374 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.1655 (1) ÅCell parameters from 5737 reflections
b = 17.3895 (3) Åθ = 2.0–32.5°
c = 13.6202 (2) ŵ = 0.10 mm1
β = 110.875 (1)°T = 100 K
V = 1585.74 (4) Å3Block, colorless
Z = 40.29 × 0.16 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5737 independent reflections
Radiation source: sealed tube4310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 32.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.971, Tmax = 0.984k = 2619
22228 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.7894P]
where P = (Fo2 + 2Fc2)/3
5737 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H16N2O3·2H2OV = 1585.74 (4) Å3
Mr = 320.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1655 (1) ŵ = 0.10 mm1
b = 17.3895 (3) ÅT = 100 K
c = 13.6202 (2) Å0.29 × 0.16 × 0.16 mm
β = 110.875 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5737 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4310 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.984Rint = 0.032
22228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.03Δρmax = 0.73 e Å3
5737 reflectionsΔρmin = 0.28 e Å3
209 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75546 (15)0.81977 (6)0.40609 (8)0.0174 (2)
O20.60182 (15)0.81464 (6)0.08291 (8)0.0188 (2)
H10.64350.77040.08940.028*
O30.85596 (15)1.15548 (6)0.90045 (8)0.0198 (2)
N10.70782 (16)0.94655 (7)0.37373 (9)0.0146 (2)
H20.67290.98420.33150.018*
N20.75068 (16)0.96088 (7)0.47938 (9)0.0151 (2)
C10.67580 (17)0.86049 (7)0.22842 (10)0.0130 (2)
C20.67471 (19)0.78444 (8)0.19463 (11)0.0156 (2)
H2A0.69250.74370.24360.019*
C30.64817 (19)0.76747 (8)0.09099 (11)0.0162 (2)
H3A0.64610.71550.06900.019*
C40.62471 (18)0.82718 (8)0.01968 (10)0.0145 (2)
C50.62192 (19)0.90311 (8)0.05149 (11)0.0163 (2)
H5A0.60180.94360.00200.020*
C60.64847 (19)0.91980 (8)0.15534 (11)0.0156 (2)
H6A0.64810.97180.17680.019*
C70.71456 (17)0.87382 (7)0.34201 (10)0.0127 (2)
C80.73020 (19)1.03161 (8)0.50069 (11)0.0162 (2)
H8A0.68851.06760.44460.019*
C90.76804 (19)1.05918 (8)0.60712 (11)0.0155 (2)
C100.8108 (2)1.01088 (8)0.69423 (11)0.0200 (3)
H10A0.81970.95690.68580.024*
C110.8404 (2)1.04100 (8)0.79300 (11)0.0201 (3)
H11A0.86811.00770.85170.024*
C120.82933 (18)1.12032 (8)0.80608 (11)0.0166 (2)
C130.7880 (2)1.16903 (8)0.72028 (11)0.0186 (3)
H13A0.78091.22300.72910.022*
C140.7570 (2)1.13863 (8)0.62170 (11)0.0189 (3)
H14A0.72791.17210.56310.023*
C150.9043 (2)1.10800 (9)0.99250 (11)0.0196 (3)
H15A1.03481.08251.00660.024*
H15B0.80121.06780.98200.024*
C160.9131 (2)1.15890 (9)1.08336 (11)0.0207 (3)
H16A0.95211.12831.14790.031*
H16B0.78151.18181.07020.031*
H16C1.01161.19981.09120.031*
O1W0.36756 (19)0.59100 (6)0.24443 (9)0.0301 (3)
H30.43700.61770.29210.045*
H40.26640.61970.20590.045*
O2W0.0731 (2)0.67607 (8)0.10548 (11)0.0471 (4)
H50.03310.65580.05900.071*
H60.07050.72670.09630.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0255 (5)0.0134 (5)0.0125 (4)0.0004 (3)0.0059 (4)0.0019 (4)
O20.0281 (5)0.0179 (5)0.0100 (4)0.0064 (4)0.0062 (4)0.0004 (4)
O30.0277 (5)0.0181 (5)0.0126 (5)0.0025 (4)0.0059 (4)0.0014 (4)
N10.0212 (5)0.0134 (5)0.0086 (5)0.0002 (4)0.0047 (4)0.0005 (4)
N20.0184 (5)0.0170 (5)0.0097 (5)0.0007 (4)0.0044 (4)0.0015 (4)
C10.0142 (5)0.0133 (6)0.0111 (5)0.0001 (4)0.0041 (4)0.0003 (4)
C20.0220 (6)0.0125 (6)0.0129 (6)0.0000 (4)0.0067 (5)0.0008 (5)
C30.0223 (6)0.0132 (6)0.0132 (6)0.0008 (4)0.0063 (5)0.0010 (5)
C40.0159 (5)0.0165 (6)0.0103 (6)0.0025 (4)0.0037 (4)0.0000 (4)
C50.0227 (6)0.0142 (6)0.0123 (6)0.0039 (4)0.0067 (5)0.0025 (5)
C60.0211 (5)0.0129 (6)0.0134 (6)0.0024 (4)0.0070 (5)0.0012 (5)
C70.0137 (5)0.0139 (6)0.0105 (5)0.0006 (4)0.0042 (4)0.0000 (4)
C80.0203 (5)0.0161 (6)0.0125 (6)0.0015 (4)0.0061 (5)0.0004 (5)
C90.0173 (5)0.0176 (6)0.0117 (6)0.0005 (4)0.0052 (4)0.0018 (5)
C100.0275 (6)0.0163 (6)0.0162 (7)0.0028 (5)0.0078 (5)0.0004 (5)
C110.0274 (6)0.0175 (6)0.0140 (6)0.0030 (5)0.0055 (5)0.0020 (5)
C120.0166 (5)0.0184 (6)0.0139 (6)0.0005 (4)0.0043 (5)0.0032 (5)
C130.0246 (6)0.0145 (6)0.0168 (7)0.0002 (5)0.0075 (5)0.0005 (5)
C140.0247 (6)0.0154 (6)0.0169 (6)0.0012 (5)0.0080 (5)0.0005 (5)
C150.0236 (6)0.0212 (7)0.0144 (6)0.0014 (5)0.0073 (5)0.0014 (5)
C160.0235 (6)0.0247 (7)0.0137 (6)0.0009 (5)0.0066 (5)0.0027 (5)
O1W0.0463 (7)0.0148 (5)0.0187 (6)0.0027 (5)0.0014 (5)0.0031 (4)
O2W0.0469 (8)0.0341 (8)0.0342 (8)0.0181 (6)0.0176 (6)0.0151 (6)
Geometric parameters (Å, º) top
O1—C71.2445 (16)C8—H8A0.9500
O2—C41.3651 (16)C9—C101.3957 (19)
O2—H10.8415C9—C141.402 (2)
O3—C121.3738 (16)C10—C111.388 (2)
O3—C151.4368 (17)C10—H10A0.9500
N1—C71.3428 (17)C11—C121.397 (2)
N1—N21.3828 (15)C11—H11A0.9500
N1—H20.8479C12—C131.387 (2)
N2—C81.2841 (18)C13—C141.385 (2)
C1—C61.3977 (18)C13—H13A0.9500
C1—C21.3994 (18)C14—H14A0.9500
C1—C71.4894 (18)C15—C161.504 (2)
C2—C31.3872 (19)C15—H15A0.9900
C2—H2A0.9500C15—H15B0.9900
C3—C41.3906 (19)C16—H16A0.9800
C3—H3A0.9500C16—H16B0.9800
C4—C51.3920 (19)C16—H16C0.9800
C5—C61.3890 (19)O1W—H30.8092
C5—H5A0.9500O1W—H40.8829
C6—H6A0.9500O2W—H50.8715
C8—C91.4575 (18)O2W—H60.8889
C4—O2—H1109.6C10—C9—C8123.66 (13)
C12—O3—C15118.06 (11)C14—C9—C8117.71 (12)
C7—N1—N2118.98 (11)C11—C10—C9120.55 (13)
C7—N1—H2123.0C11—C10—H10A119.7
N2—N1—H2117.9C9—C10—H10A119.7
C8—N2—N1114.02 (12)C10—C11—C12120.03 (13)
C6—C1—C2118.69 (12)C10—C11—H11A120.0
C6—C1—C7123.50 (12)C12—C11—H11A120.0
C2—C1—C7117.77 (11)O3—C12—C13115.67 (12)
C3—C2—C1121.23 (12)O3—C12—C11124.31 (13)
C3—C2—H2A119.4C13—C12—C11120.02 (13)
C1—C2—H2A119.4C14—C13—C12119.73 (13)
C2—C3—C4119.37 (12)C14—C13—H13A120.1
C2—C3—H3A120.3C12—C13—H13A120.1
C4—C3—H3A120.3C13—C14—C9121.04 (13)
O2—C4—C3122.42 (12)C13—C14—H14A119.5
O2—C4—C5117.41 (12)C9—C14—H14A119.5
C3—C4—C5120.16 (12)O3—C15—C16107.82 (12)
C6—C5—C4120.21 (12)O3—C15—H15A110.1
C6—C5—H5A119.9C16—C15—H15A110.1
C4—C5—H5A119.9O3—C15—H15B110.1
C5—C6—C1120.31 (12)C16—C15—H15B110.1
C5—C6—H6A119.8H15A—C15—H15B108.5
C1—C6—H6A119.8C15—C16—H16A109.5
O1—C7—N1120.81 (12)C15—C16—H16B109.5
O1—C7—C1121.40 (12)H16A—C16—H16B109.5
N1—C7—C1117.78 (11)C15—C16—H16C109.5
N2—C8—C9122.96 (13)H16A—C16—H16C109.5
N2—C8—H8A118.5H16B—C16—H16C109.5
C9—C8—H8A118.5H3—O1W—H4106.9
C10—C9—C14118.62 (12)H5—O2W—H6109.2
C7—N1—N2—C8176.66 (11)N1—N2—C8—C9179.90 (11)
C6—C1—C2—C30.32 (18)N2—C8—C9—C106.5 (2)
C7—C1—C2—C3177.23 (11)N2—C8—C9—C14174.70 (12)
C1—C2—C3—C40.81 (19)C14—C9—C10—C110.4 (2)
C2—C3—C4—O2178.72 (11)C8—C9—C10—C11178.38 (12)
C2—C3—C4—C51.92 (19)C9—C10—C11—C120.6 (2)
O2—C4—C5—C6178.70 (11)C15—O3—C12—C13178.41 (11)
C3—C4—C5—C61.91 (19)C15—O3—C12—C111.97 (18)
C4—C5—C6—C10.77 (19)C10—C11—C12—O3179.87 (12)
C2—C1—C6—C50.34 (18)C10—C11—C12—C130.3 (2)
C7—C1—C6—C5177.06 (11)O3—C12—C13—C14179.40 (12)
N2—N1—C7—O11.17 (17)C11—C12—C13—C140.2 (2)
N2—N1—C7—C1177.57 (10)C12—C13—C14—C90.4 (2)
C6—C1—C7—O1173.58 (12)C10—C9—C14—C130.1 (2)
C2—C1—C7—O13.85 (17)C8—C9—C14—C13178.96 (12)
C6—C1—C7—N15.15 (17)C12—O3—C15—C16176.58 (11)
C2—C1—C7—N1177.43 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O1i0.841.772.6106 (15)174
N1—H2···O1Wii0.852.102.9278 (16)167
O1W—H3···O2iii0.812.062.8683 (15)177
O1W—H4···O2W0.881.842.7159 (19)169
O2W—H5···O1iv0.872.142.8558 (18)139
O2W—H5···N2iv0.872.553.3363 (19)151
O2W—H6···O3v0.892.112.9791 (17)165
C6—H6A···O1Wii0.952.363.2942 (18)169
C8—H8A···O1Wii0.952.493.3222 (18)146
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x1, y+3/2, z1/2; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H16N2O3·2H2O
Mr320.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1655 (1), 17.3895 (3), 13.6202 (2)
β (°) 110.875 (1)
V3)1585.74 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.16 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.971, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
22228, 5737, 4310
Rint0.032
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.155, 1.03
No. of reflections5737
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O1i0.841.772.6106 (15)174
N1—H2···O1Wii0.852.102.9278 (16)167
O1W—H3···O2iii0.812.062.8683 (15)177
O1W—H4···O2W0.881.842.7159 (19)169
O2W—H5···O1iv0.872.142.8558 (18)139
O2W—H5···N2iv0.872.553.3363 (19)151
O2W—H6···O3v0.892.112.9791 (17)165
C6—H6A···O1Wii0.952.363.2942 (18)169
C8—H8A···O1Wii0.952.493.3222 (18)146
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x1, y+3/2, z1/2; (v) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009. Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

JH thanks the Graduate School, Prince of Songkla University, for partial financial support. The authors thank Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069–o1070.  CSD CrossRef IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211–219.  CAS Google Scholar
First citationPromdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1655-o1656
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds