organic compounds
5-Bromo-4-(3,4-dimethoxyphenyl)thiazol-2-amine
aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C11H11BrN2O2S, the thiazole ring makes a dihedral angle of 53.16 (11)° with the adjacent benzene ring. The two methoxy groups are slightly twisted from the attached benzene ring with C—O—C—C torsion angles of −9.2 (3) and −5.5 (3)°. In the crystal, molecules are linked by a pair of N—H⋯N hydrogen bonds into an inversion dimer with an R22(8) ring motif. The dimers are further connected by N—H⋯O hydrogen bonds into a tape along [-110].
Related literature
For applications of the thiazole ring system, see: Hargrave et al. (1983); Patt et al. (1992); Haviv et al. (1988); Jaen et al. (1990); Tsuji & Ishikawa (1994); Bell et al. (1995). For applications of aminothiazoles, see: Fink et al. (1999); Van Muijlwijk-Koezen et al. (2001); Metzger (1984). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the preparation, see: Das et al. (2006). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812019320/is5132sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812019320/is5132Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812019320/is5132Isup3.cml
The title compound was prepared from the reaction of 4-(3,4-dimethoxyphenyl)thiazol-2-amine (236 mg, 1 mmol) with bromine (161 mg, 1.1 mmol) in glacial acetic acid and heated at 80 °C for 1.5 h. Single crystals of the title compound suitable for X-ray
were recrystallized from ethanol by the slow evaporation of the solvent at room temperature after several days (Das et al., 2006).Atom H1N2 and H2N2 were located in a difference Fourier map and refined freely [N—H = 0.80 (3) and 0.78 (3) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. Three outliers (-2 6 4), (5 -3 8) and (5 -2 9) were omitted.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C11H11BrN2O2S | Z = 2 |
Mr = 315.19 | F(000) = 316 |
Triclinic, P1 | Dx = 1.681 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4873 (2) Å | Cell parameters from 7495 reflections |
b = 8.0359 (2) Å | θ = 2.6–35.5° |
c = 10.6428 (3) Å | µ = 3.46 mm−1 |
α = 86.571 (2)° | T = 100 K |
β = 77.633 (2)° | Plate, brown |
γ = 85.330 (2)° | 0.45 × 0.20 × 0.09 mm |
V = 622.82 (3) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 2121 independent reflections |
Radiation source: fine-focus sealed tube | 1888 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→8 |
Tmin = 0.305, Tmax = 0.737 | k = −9→9 |
10861 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0446P)2 + 0.1359P] where P = (Fo2 + 2Fc2)/3 |
2121 reflections | (Δ/σ)max = 0.002 |
164 parameters | Δρmax = 1.17 e Å−3 |
0 restraints | Δρmin = −0.73 e Å−3 |
C11H11BrN2O2S | γ = 85.330 (2)° |
Mr = 315.19 | V = 622.82 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.4873 (2) Å | Mo Kα radiation |
b = 8.0359 (2) Å | µ = 3.46 mm−1 |
c = 10.6428 (3) Å | T = 100 K |
α = 86.571 (2)° | 0.45 × 0.20 × 0.09 mm |
β = 77.633 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2121 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1888 reflections with I > 2σ(I) |
Tmin = 0.305, Tmax = 0.737 | Rint = 0.030 |
10861 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.071 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 1.17 e Å−3 |
2121 reflections | Δρmin = −0.73 e Å−3 |
164 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.16418 (3) | 0.27703 (3) | 1.04837 (2) | 0.02360 (12) | |
S1 | −0.30599 (8) | 0.51061 (8) | 0.84026 (6) | 0.01865 (17) | |
O1 | 0.6319 (2) | −0.1031 (2) | 0.74403 (16) | 0.0203 (4) | |
O2 | 0.4088 (2) | −0.1521 (2) | 0.60126 (16) | 0.0213 (4) | |
N1 | −0.0368 (3) | 0.4074 (3) | 0.6600 (2) | 0.0187 (5) | |
N2 | −0.2487 (4) | 0.5970 (3) | 0.5852 (2) | 0.0237 (5) | |
C1 | 0.2811 (3) | 0.2379 (3) | 0.8495 (2) | 0.0195 (6) | |
H1A | 0.2539 | 0.3246 | 0.9090 | 0.023* | |
C2 | 0.4415 (3) | 0.1345 (3) | 0.8433 (2) | 0.0193 (6) | |
H2A | 0.5241 | 0.1524 | 0.8968 | 0.023* | |
C3 | 0.4794 (3) | 0.0060 (3) | 0.7588 (2) | 0.0168 (5) | |
C4 | 0.3576 (3) | −0.0193 (3) | 0.6795 (2) | 0.0162 (5) | |
C5 | 0.2018 (3) | 0.0867 (3) | 0.6835 (2) | 0.0166 (5) | |
H5A | 0.1218 | 0.0719 | 0.6274 | 0.020* | |
C6 | 0.1613 (3) | 0.2164 (3) | 0.7706 (2) | 0.0169 (5) | |
C7 | −0.0059 (3) | 0.3294 (3) | 0.7743 (2) | 0.0167 (5) | |
C8 | −0.1867 (3) | 0.5072 (3) | 0.6792 (2) | 0.0180 (6) | |
C9 | −0.1366 (3) | 0.3686 (3) | 0.8796 (2) | 0.0174 (5) | |
C10 | 0.7724 (3) | −0.0657 (3) | 0.8075 (2) | 0.0233 (6) | |
H10A | 0.8799 | −0.1439 | 0.7821 | 0.035* | |
H10B | 0.7274 | −0.0762 | 0.9010 | 0.035* | |
H10C | 0.8065 | 0.0488 | 0.7831 | 0.035* | |
C11 | 0.2828 (4) | −0.1928 (4) | 0.5250 (3) | 0.0260 (6) | |
H11A | 0.3359 | −0.2877 | 0.4723 | 0.039* | |
H11B | 0.2589 | −0.0961 | 0.4689 | 0.039* | |
H11C | 0.1675 | −0.2225 | 0.5819 | 0.039* | |
H2N2 | −0.324 (4) | 0.669 (4) | 0.602 (3) | 0.028 (9)* | |
H1N2 | −0.182 (4) | 0.606 (4) | 0.515 (3) | 0.033 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02354 (18) | 0.02661 (19) | 0.01783 (16) | 0.00291 (11) | −0.00083 (11) | 0.00253 (12) |
S1 | 0.0173 (3) | 0.0182 (4) | 0.0182 (3) | 0.0037 (3) | −0.0003 (3) | −0.0012 (3) |
O1 | 0.0161 (9) | 0.0188 (10) | 0.0266 (9) | 0.0041 (7) | −0.0071 (7) | −0.0039 (8) |
O2 | 0.0207 (9) | 0.0200 (10) | 0.0238 (9) | 0.0045 (8) | −0.0060 (8) | −0.0086 (8) |
N1 | 0.0190 (11) | 0.0185 (12) | 0.0178 (10) | 0.0028 (9) | −0.0033 (9) | −0.0020 (9) |
N2 | 0.0244 (14) | 0.0241 (15) | 0.0187 (12) | 0.0125 (11) | −0.0005 (10) | −0.0019 (11) |
C1 | 0.0203 (14) | 0.0167 (14) | 0.0208 (12) | −0.0003 (11) | −0.0019 (10) | −0.0048 (11) |
C2 | 0.0187 (13) | 0.0199 (15) | 0.0202 (13) | −0.0014 (11) | −0.0057 (10) | −0.0008 (11) |
C3 | 0.0142 (13) | 0.0132 (13) | 0.0209 (12) | 0.0013 (10) | −0.0003 (10) | 0.0021 (10) |
C4 | 0.0178 (13) | 0.0135 (14) | 0.0152 (11) | −0.0001 (10) | 0.0006 (10) | −0.0003 (10) |
C5 | 0.0172 (13) | 0.0173 (14) | 0.0149 (11) | −0.0009 (10) | −0.0029 (10) | 0.0007 (10) |
C6 | 0.0188 (13) | 0.0137 (13) | 0.0162 (11) | −0.0003 (10) | −0.0001 (10) | 0.0030 (10) |
C7 | 0.0175 (13) | 0.0136 (13) | 0.0190 (12) | −0.0011 (10) | −0.0039 (10) | −0.0008 (11) |
C8 | 0.0193 (14) | 0.0170 (14) | 0.0171 (12) | 0.0013 (11) | −0.0030 (10) | −0.0024 (11) |
C9 | 0.0192 (13) | 0.0136 (14) | 0.0183 (12) | 0.0021 (10) | −0.0035 (10) | 0.0017 (11) |
C10 | 0.0140 (13) | 0.0262 (16) | 0.0296 (14) | 0.0026 (11) | −0.0050 (11) | −0.0034 (12) |
C11 | 0.0263 (15) | 0.0265 (16) | 0.0270 (14) | 0.0004 (12) | −0.0080 (12) | −0.0097 (12) |
Br1—C9 | 1.876 (2) | C2—C3 | 1.382 (3) |
S1—C9 | 1.738 (3) | C2—H2A | 0.9500 |
S1—C8 | 1.755 (2) | C3—C4 | 1.402 (3) |
O1—C3 | 1.369 (3) | C4—C5 | 1.382 (4) |
O1—C10 | 1.426 (3) | C5—C6 | 1.407 (3) |
O2—C4 | 1.372 (3) | C5—H5A | 0.9500 |
O2—C11 | 1.437 (3) | C6—C7 | 1.480 (4) |
N1—C8 | 1.312 (3) | C7—C9 | 1.355 (3) |
N1—C7 | 1.390 (3) | C10—H10A | 0.9800 |
N2—C8 | 1.340 (4) | C10—H10B | 0.9800 |
N2—H2N2 | 0.78 (3) | C10—H10C | 0.9800 |
N2—H1N2 | 0.80 (3) | C11—H11A | 0.9800 |
C1—C6 | 1.380 (3) | C11—H11B | 0.9800 |
C1—C2 | 1.395 (4) | C11—H11C | 0.9800 |
C1—H1A | 0.9500 | ||
C9—S1—C8 | 88.28 (12) | C1—C6—C7 | 121.1 (2) |
C3—O1—C10 | 116.65 (19) | C5—C6—C7 | 119.8 (2) |
C4—O2—C11 | 117.3 (2) | C9—C7—N1 | 114.3 (2) |
C8—N1—C7 | 111.7 (2) | C9—C7—C6 | 126.9 (2) |
C8—N2—H2N2 | 120 (2) | N1—C7—C6 | 118.7 (2) |
C8—N2—H1N2 | 119 (2) | N1—C8—N2 | 123.9 (2) |
H2N2—N2—H1N2 | 116 (3) | N1—C8—S1 | 114.24 (19) |
C6—C1—C2 | 121.1 (2) | N2—C8—S1 | 121.9 (2) |
C6—C1—H1A | 119.4 | C7—C9—S1 | 111.44 (19) |
C2—C1—H1A | 119.4 | C7—C9—Br1 | 128.9 (2) |
C3—C2—C1 | 119.6 (2) | S1—C9—Br1 | 119.41 (13) |
C3—C2—H2A | 120.2 | O1—C10—H10A | 109.5 |
C1—C2—H2A | 120.2 | O1—C10—H10B | 109.5 |
O1—C3—C2 | 124.9 (2) | H10A—C10—H10B | 109.5 |
O1—C3—C4 | 115.1 (2) | O1—C10—H10C | 109.5 |
C2—C3—C4 | 120.0 (2) | H10A—C10—H10C | 109.5 |
O2—C4—C5 | 125.4 (2) | H10B—C10—H10C | 109.5 |
O2—C4—C3 | 114.6 (2) | O2—C11—H11A | 109.5 |
C5—C4—C3 | 120.1 (2) | O2—C11—H11B | 109.5 |
C4—C5—C6 | 120.1 (2) | H11A—C11—H11B | 109.5 |
C4—C5—H5A | 119.9 | O2—C11—H11C | 109.5 |
C6—C5—H5A | 119.9 | H11A—C11—H11C | 109.5 |
C1—C6—C5 | 119.1 (2) | H11B—C11—H11C | 109.5 |
C6—C1—C2—C3 | −1.4 (4) | C8—N1—C7—C9 | 1.5 (3) |
C10—O1—C3—C2 | −9.2 (3) | C8—N1—C7—C6 | −178.0 (2) |
C10—O1—C3—C4 | 170.4 (2) | C1—C6—C7—C9 | −52.8 (4) |
C1—C2—C3—O1 | 179.9 (2) | C5—C6—C7—C9 | 128.5 (3) |
C1—C2—C3—C4 | 0.3 (4) | C1—C6—C7—N1 | 126.6 (2) |
C11—O2—C4—C5 | −5.5 (3) | C5—C6—C7—N1 | −52.1 (3) |
C11—O2—C4—C3 | 175.2 (2) | C7—N1—C8—N2 | −179.6 (2) |
O1—C3—C4—O2 | 1.3 (3) | C7—N1—C8—S1 | −1.3 (3) |
C2—C3—C4—O2 | −179.1 (2) | C9—S1—C8—N1 | 0.6 (2) |
O1—C3—C4—C5 | −178.0 (2) | C9—S1—C8—N2 | 179.0 (2) |
C2—C3—C4—C5 | 1.6 (4) | N1—C7—C9—S1 | −1.0 (3) |
O2—C4—C5—C6 | 178.4 (2) | C6—C7—C9—S1 | 178.36 (19) |
C3—C4—C5—C6 | −2.4 (3) | N1—C7—C9—Br1 | 172.86 (17) |
C2—C1—C6—C5 | 0.6 (4) | C6—C7—C9—Br1 | −7.7 (4) |
C2—C1—C6—C7 | −178.1 (2) | C8—S1—C9—C7 | 0.28 (19) |
C4—C5—C6—C1 | 1.3 (3) | C8—S1—C9—Br1 | −174.28 (14) |
C4—C5—C6—C7 | −180.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N2···O1i | 0.78 (3) | 2.40 (3) | 2.992 (3) | 134 (3) |
N2—H2N2···O2i | 0.78 (3) | 2.37 (3) | 3.112 (3) | 161 (3) |
N2—H1N2···N1ii | 0.81 (3) | 2.20 (3) | 2.998 (3) | 168 (3) |
Symmetry codes: (i) x−1, y+1, z; (ii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C11H11BrN2O2S |
Mr | 315.19 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.4873 (2), 8.0359 (2), 10.6428 (3) |
α, β, γ (°) | 86.571 (2), 77.633 (2), 85.330 (2) |
V (Å3) | 622.82 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.46 |
Crystal size (mm) | 0.45 × 0.20 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.305, 0.737 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10861, 2121, 1888 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.071, 1.12 |
No. of reflections | 2121 |
No. of parameters | 164 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.17, −0.73 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N2···O1i | 0.78 (3) | 2.40 (3) | 2.992 (3) | 134 (3) |
N2—H2N2···O2i | 0.78 (3) | 2.37 (3) | 3.112 (3) | 161 (3) |
N2—H1N2···N1ii | 0.81 (3) | 2.20 (3) | 2.998 (3) | 168 (3) |
Symmetry codes: (i) x−1, y+1, z; (ii) −x, −y+1, −z+1. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
HAG thanks the Deanship of Scientific Research and Research Center, College of Pharmacy, King Saud University. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.
References
Bell, F. W., Cantrell, A. S., Högberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., Kinnick, M. D., Lind, P., Morin, J. M. Jr, Noréen, R., Oberg, B., Palkowitz, J. A., Parrish, C. A., Pranc, J., Sahlberg, C., Ternansky, R. J., Vasileff, R. T., Vrang, L., West, S. J., Zhang, H. & Zhou, X.-X. (1995). J. Med. Chem. 38, 4929–4936. CrossRef CAS PubMed Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Das, J., Furch, J. A., Liu, C., Moquin, R. V., Lin, J., Spergel, S. H., Mclntyre, K. W., Shuster, D. J., O'Day, K. D., Penhallow, B., Hung, C.-Y., Doweyko, A. M., Kamath, A., Zhang, H., Marathe, P., Kanner, S. B., Lin, T.-A., Dodd, J. H., Barrish, J. C. & Wityak, J. (2006). Bioorg. Med. Chem. Lett. 16, 3706–3712. Web of Science CrossRef PubMed CAS Google Scholar
Fink, B. E., Mortensen, D. S., Stauffer, S. R., Aron, Z. D. & Katzenellenbogen, J. A. (1999). Chem. Biol. 6, 205–219. Web of Science CrossRef PubMed CAS Google Scholar
Hargrave, K. D., Hess, F. K. & Oliver, J. T. (1983). J. Med. Chem. 26, 1158–1163. CrossRef CAS PubMed Web of Science Google Scholar
Haviv, F., Ratajczyk, J. D., DeNet, R. W., Kerdesky, F. A., Walters, R. L., Schmidt, S. P., Holms, J. H., Young, P. R. & Carter, G. W. (1988). J. Med. Chem. 31, 1719–1728. CrossRef CAS PubMed Web of Science Google Scholar
Jaen, J. C., Wise, L. D., Caprathe, B. W., Tecle, H., Bergmeier, S., Humblet, C. C., Heffner, T. G., Meltzner, L. T. & Pugsley, T. A. (1990). J. Med. Chem. 33, 311–317. CrossRef PubMed CAS Web of Science Google Scholar
Metzger, J. V. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, p. 238. New York: Pergamon Press. Google Scholar
Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G., Conolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Olson, S. C. J. (1992). J. Med. Chem. 35, 2562–2572. CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsuji, K. & Ishikawa, H. (1994). Bioorg. Med. Chem. Lett. 4, 1601–1606. CrossRef CAS Web of Science Google Scholar
Van Muijlwijk-Koezen, J. E., Timmerman, H., Vollinga, R. C., Von Drabbe Kunzel, J. F., De Groote, M., Visser, S. & Ijzerman, A. P. (2001). J. Med. Chem. 44, 749–762. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The thiazole ring system is a useful structural motif found in numerous biologically active molecules. This structure has found applications in drug development for the treatment of allergies (Hargrave et al., 1983), hypertension (Patt et al., 1992), inflammation (Haviv et al., 1988), schizophrenia (Jaen et al., 1990), bacterial (Tsuji & Ishikawa, 1994) and HIV infections (Bell et al., 1995). Aminothiazoles are known to be ligands of estrogen receptors (Fink et al., 1999) as well as a novel class of adenosine receptor antagonists (Van Muijlwijk-Koezen et al., 2001). Other analogues are used as fungicides, inhibiting in vivo growth of Xanthomonas, as an ingredient of herbicides or as schistosomicidal and anthelmintic drugs (Metzger, 1984).
In the title compound (Fig. 1), the thiazole ring (S1/N1/C7–C9) makes a dihedral angle of 53.16 (11)° with the adjacent benzene ring (C1–C6). The two methoxy groups (O1/C10 & O2/C11) are slightly twisted from the C1–C6 ring with torsion angles C10—O1—C3—C2 = -9.2 (3) and C11—O2—C4—C5 = -5.5 (3)°.
In the crystal packing (Fig. 2 & 3), the molecules are linked by intermolecular N2—H1N2···N1 hydrogen bonds into dimers with R22(8) ring motifs (Bernstein et al., 1995). The dimers are further connected by intermolecular N2—H2N2···O1 and N2—H2N2···O2 hydrogen bonds (Table 1) into infinite tapes along [110].