organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Ethyl­phen­yl)-4,6-di­methyl-2-oxo-1,2-di­hydro­pyridine-3-carbo­nitrile

aMedicinal, Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 2 May 2012; accepted 3 May 2012; online 12 May 2012)

In the title compound, C16H16N2O, the essentially planar 1,2-dihydro­pyridine ring [maximum deviation = 0.021 (1) Å] makes a dihedral angle of 85.33 (8)° with the benzene ring. In the crystal, mol­ecules are linked into a chain along the b axis via C—H⋯O inter­actions.

Related literature

For the biological activities and applications of 2-pyridone derivatives, see: Abadi et al. (2009[Abadi, A. H., Ibrahim, T. M., Abouzid, K. M., Lehmann, J., Tinsley, H. N., Gary, B. D. & Piazza, G. A. (2009). Bioorg. Med. Chem. 17, 5974-5982.]); Cheney et al. (2007[Cheney, I. W., Yan, S., Appleby, T., Walker, H., Vo, T., Yao, N., Hamatake, R., Hong, Z. & Wu, J. Z. (2007). Bioorg. Med. Chem. Lett. 17, 1679-1683.]); Aqui & Vonderheide (2008[Aqui, N. A. & Vonderheide, R. H. (2008). Cancer Biol. Ther. 7, 1888-1889.]); Ambrosini et al. (1997[Ambrosini, G., Adida, C. & Altieri, D. C. (1997). Nat. Med. 3, 917-921.]); Murata et al. (2001[Murata, T., Sugatani, T., Shimizu, K., Manganiello, V. & Tagawa, T. (2001). Anticancer Drugs, 12, 79-83.]); Ghorab et al. (2009[Ghorab, M. M., Ragab, F. A. & Hamed, M. M. (2009). Eur. J. Med. Chem. 44, 4211-4217.], 2010[Ghorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171-178.]); Al-Said et al. (2010[Al-Said, M. S., Ghorab, M. M., Alqasoumi, S. I., El-Hossary, E. M. & Noaman, E. (2010). Eur. J. Med. Chem. 45, 3011-3018.]). For related structures, see: Lynch & McClenaghan (2002[Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, o680-o681.]); Elgemeie & Jones (2004[Elgemeie, G. H. & Jones, P. G. (2004). Acta Cryst. E60, o2107-o2109.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O

  • Mr = 252.31

  • Monoclinic, P 21 /c

  • a = 8.3834 (3) Å

  • b = 7.1852 (2) Å

  • c = 23.5264 (8) Å

  • β = 93.203 (3)°

  • V = 1414.93 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 296 K

  • 0.93 × 0.46 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.609, Tmax = 0.960

  • 9742 measured reflections

  • 2638 independent reflections

  • 1938 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.161

  • S = 1.09

  • 2638 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1i 0.93 2.32 3.2105 (18) 161
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It was reported that compounds containing the 2-pyridone moiety was proven to possess several biological properties, especially anticancer activity (Abadi et al., 2009; Cheney et al., 2007; Aqui & Vonderheide, 2008; Ambrosini et al., 1997; Murata et al., 2001). Compounds containing heteroaromatic rings frequently play an important role as scaffolds of bioactive substances. It is well known that pyridone and its derivatives are among the most popular N-heteroaromatic compounds integrated into the structures of many pharmaceutical compounds and their structural units occur in various molecules exhibiting diverse biological activities (Abadi et al., 2009). Based on the above information and as a continuation of our previous work on anticancer agents (Ghorab et al., 2009; Al-Said et al., 2010; Ghorab et al., 2010), we report the synthesis of a novel 2-pyridone derivative which is expected to exhibit anticancer activity.

In the title compound (Fig. 1), the 1,2-dihydropyridine ring (N1/C1–C5) is essentially planar with a maximum deviation of 0.021 (1) Å at atom N1 and almost perpendicular with the benzene ring (C6–C11) with a dihedral angle of 85.33 (8)°. Bond lengths and angles are within the normal ranges and are comparable to those in the related structures (Lynch & McClenaghan, 2002; Elgemeie & Jones, 2004). The crystal structure is shown in Fig. 2. The molecules are linked into a one-dimensional chain along the b-axis via C4—H4A···O1 interactions (Table 1).

Related literature top

For the biological activities and applications of 2-pyridone derivatives, see: Abadi et al. (2009); Cheney et al. (2007); Aqui & Vonderheide (2008); Ambrosini et al. (1997); Murata et al. (2001); Ghorab et al. (2009); Al-Said et al. (2010); Ghorab et al. (2010). For related structures, see: Lynch & McClenaghan (2002); Elgemeie & Jones (2004).

Experimental top

A mixture of 2-cyano-N-(3-ethylphenyl)acetamide (1.88 g, 0.01 mol) and acetylacetone (1.00 g, 0.01 mol) in absolute ethanol (50 ml) containing piperidine (0.5 ml) were refluxed for 5 h. The reaction mixture was triturated with ethanol and the solid obtained was recrystallized from ethanol to give the title compound. A single-crystal suitable for an X-ray structural analysis was obtained by slow evaporation from an ethanol solution at room temperature.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. The same Uij parameter was used for atoms pair C2/C14.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound viewed along the c axis. For the sake of clarity, H atoms not involved in the intermolecular interactions (dashed lines) have been omitted.
1-(3-Ethylphenyl)-4,6-dimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile top
Crystal data top
C16H16N2OF(000) = 536
Mr = 252.31Dx = 1.184 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1728 reflections
a = 8.3834 (3) Åθ = 3.8–62.6°
b = 7.1852 (2) ŵ = 0.59 mm1
c = 23.5264 (8) ÅT = 296 K
β = 93.203 (3)°Plate, colorless
V = 1414.93 (8) Å30.93 × 0.46 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2638 independent reflections
Radiation source: fine-focus sealed tube1938 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 69.8°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.609, Tmax = 0.960k = 68
9742 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0972P)2 + 0.0312P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2638 reflectionsΔρmax = 0.30 e Å3
170 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (7)
Crystal data top
C16H16N2OV = 1414.93 (8) Å3
Mr = 252.31Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.3834 (3) ŵ = 0.59 mm1
b = 7.1852 (2) ÅT = 296 K
c = 23.5264 (8) Å0.93 × 0.46 × 0.07 mm
β = 93.203 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2638 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1938 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 0.960Rint = 0.032
9742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.09Δρmax = 0.30 e Å3
2638 reflectionsΔρmin = 0.18 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51182 (17)0.19353 (15)0.40553 (6)0.0771 (4)
N10.43401 (15)0.09675 (17)0.37682 (6)0.0565 (4)
N20.8174 (2)0.1541 (2)0.51433 (8)0.0818 (5)
C10.52879 (18)0.0253 (2)0.41097 (7)0.0567 (4)
C20.64093 (18)0.0642 (2)0.45059 (7)0.0596 (3)
C30.65232 (18)0.2536 (2)0.45604 (7)0.0574 (4)
C40.54774 (19)0.3644 (2)0.42144 (8)0.0614 (4)
H4A0.55230.49320.42500.074*
C50.44005 (19)0.2869 (2)0.38292 (7)0.0580 (4)
C60.32547 (19)0.0076 (2)0.33530 (7)0.0599 (4)
C70.1715 (2)0.0320 (2)0.34863 (8)0.0687 (5)
H7A0.13610.00370.38380.082*
C80.0682 (2)0.1252 (3)0.30994 (9)0.0756 (5)
C90.1242 (3)0.1759 (3)0.25855 (9)0.0826 (6)
H9A0.05710.23950.23240.099*
C110.3787 (2)0.0421 (3)0.28313 (8)0.0763 (5)
H11A0.48220.01330.27390.092*
C120.0998 (3)0.1725 (4)0.32586 (12)0.1040 (8)
H12A0.14750.06350.34230.125*
H12B0.16370.20530.29170.125*
C130.1029 (3)0.3299 (4)0.36728 (13)0.1134 (9)
H13A0.21150.35660.37540.170*
H13B0.04370.29600.40180.170*
H13C0.05560.43810.35120.170*
C140.73956 (19)0.0576 (2)0.48568 (7)0.0596 (3)
C150.7695 (2)0.3428 (2)0.49802 (9)0.0739 (5)
H15A0.87590.30530.49010.111*
H15B0.74700.30470.53580.111*
H15C0.76070.47570.49500.111*
C160.3267 (2)0.4026 (3)0.34699 (9)0.0788 (6)
H16A0.35240.53190.35240.118*
H16B0.21960.38030.35780.118*
H16C0.33500.37030.30770.118*
C100.2776 (3)0.1347 (3)0.24493 (9)0.0876 (6)
H10A0.31290.16970.20970.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0885 (9)0.0349 (6)0.1054 (10)0.0021 (5)0.0179 (7)0.0017 (5)
N10.0590 (7)0.0398 (7)0.0703 (8)0.0013 (5)0.0004 (6)0.0012 (5)
N20.0869 (11)0.0633 (10)0.0934 (12)0.0139 (8)0.0113 (9)0.0020 (7)
C10.0609 (8)0.0358 (8)0.0735 (10)0.0006 (6)0.0040 (7)0.0010 (6)
C20.0608 (6)0.0431 (6)0.0747 (7)0.0014 (5)0.0019 (5)0.0009 (5)
C30.0564 (8)0.0408 (8)0.0754 (10)0.0031 (6)0.0078 (7)0.0021 (6)
C40.0657 (9)0.0343 (7)0.0842 (11)0.0015 (6)0.0040 (8)0.0001 (7)
C50.0611 (9)0.0393 (8)0.0740 (10)0.0006 (6)0.0066 (7)0.0047 (6)
C60.0643 (9)0.0441 (8)0.0708 (10)0.0003 (7)0.0015 (7)0.0005 (6)
C70.0668 (9)0.0638 (11)0.0751 (11)0.0024 (8)0.0006 (8)0.0010 (8)
C80.0698 (10)0.0683 (11)0.0872 (13)0.0069 (9)0.0094 (9)0.0029 (9)
C90.0881 (14)0.0756 (13)0.0816 (13)0.0042 (9)0.0162 (11)0.0080 (9)
C110.0761 (11)0.0758 (13)0.0772 (12)0.0043 (9)0.0074 (9)0.0066 (9)
C120.0726 (13)0.117 (2)0.120 (2)0.0191 (12)0.0096 (12)0.0005 (15)
C130.0886 (15)0.143 (3)0.1091 (19)0.0278 (15)0.0121 (14)0.0044 (16)
C140.0608 (6)0.0431 (6)0.0747 (7)0.0014 (5)0.0019 (5)0.0009 (5)
C150.0712 (11)0.0527 (10)0.0963 (14)0.0067 (8)0.0075 (9)0.0088 (8)
C160.0884 (12)0.0489 (10)0.0970 (13)0.0083 (8)0.0137 (10)0.0082 (8)
C100.1033 (16)0.0863 (14)0.0730 (12)0.0018 (12)0.0032 (11)0.0142 (10)
Geometric parameters (Å, º) top
O1—C11.2233 (18)C8—C121.516 (3)
N1—C51.374 (2)C9—C101.375 (3)
N1—C11.4050 (19)C9—H9A0.9300
N1—C61.447 (2)C11—C101.373 (3)
N2—C141.145 (2)C11—H11A0.9300
C1—C21.438 (2)C12—C131.494 (4)
C2—C31.369 (2)C12—H12A0.9700
C2—C141.434 (2)C12—H12B0.9700
C3—C41.409 (2)C13—H13A0.9600
C3—C151.498 (2)C13—H13B0.9600
C4—C51.362 (2)C13—H13C0.9600
C4—H4A0.9300C15—H15A0.9600
C5—C161.490 (2)C15—H15B0.9600
C6—C71.375 (2)C15—H15C0.9600
C6—C111.377 (3)C16—H16A0.9600
C7—C81.393 (3)C16—H16B0.9600
C7—H7A0.9300C16—H16C0.9600
C8—C91.371 (3)C10—H10A0.9300
C5—N1—C1122.98 (13)C10—C11—H11A120.3
C5—N1—C6121.91 (13)C6—C11—H11A120.3
C1—N1—C6115.10 (12)C13—C12—C8112.4 (2)
O1—C1—N1119.87 (14)C13—C12—H12A109.1
O1—C1—C2125.29 (14)C8—C12—H12A109.1
N1—C1—C2114.83 (13)C13—C12—H12B109.1
C3—C2—C14121.17 (14)C8—C12—H12B109.1
C3—C2—C1123.00 (14)H12A—C12—H12B107.9
C14—C2—C1115.82 (13)C12—C13—H13A109.5
C2—C3—C4117.99 (14)C12—C13—H13B109.5
C2—C3—C15121.81 (15)H13A—C13—H13B109.5
C4—C3—C15120.19 (14)C12—C13—H13C109.5
C5—C4—C3121.42 (14)H13A—C13—H13C109.5
C5—C4—H4A119.3H13B—C13—H13C109.5
C3—C4—H4A119.3N2—C14—C2179.11 (19)
C4—C5—N1119.66 (14)C3—C15—H15A109.5
C4—C5—C16121.84 (15)C3—C15—H15B109.5
N1—C5—C16118.50 (15)H15A—C15—H15B109.5
C7—C6—C11120.32 (16)C3—C15—H15C109.5
C7—C6—N1120.05 (16)H15A—C15—H15C109.5
C11—C6—N1119.60 (15)H15B—C15—H15C109.5
C6—C7—C8120.54 (18)C5—C16—H16A109.5
C6—C7—H7A119.7C5—C16—H16B109.5
C8—C7—H7A119.7H16A—C16—H16B109.5
C9—C8—C7118.25 (18)C5—C16—H16C109.5
C9—C8—C12121.81 (19)H16A—C16—H16C109.5
C7—C8—C12119.9 (2)H16B—C16—H16C109.5
C8—C9—C10121.29 (19)C11—C10—C9120.2 (2)
C8—C9—H9A119.4C11—C10—H10A119.9
C10—C9—H9A119.4C9—C10—H10A119.9
C10—C11—C6119.37 (18)
C5—N1—C1—O1176.08 (15)C1—N1—C5—C16176.04 (16)
C6—N1—C1—O12.4 (2)C6—N1—C5—C162.3 (2)
C5—N1—C1—C23.9 (2)C5—N1—C6—C785.9 (2)
C6—N1—C1—C2177.62 (13)C1—N1—C6—C792.63 (18)
O1—C1—C2—C3178.23 (16)C5—N1—C6—C1196.09 (19)
N1—C1—C2—C31.7 (2)C1—N1—C6—C1185.41 (19)
O1—C1—C2—C140.4 (3)C11—C6—C7—C80.9 (3)
N1—C1—C2—C14179.68 (14)N1—C6—C7—C8177.12 (16)
C14—C2—C3—C4177.87 (15)C6—C7—C8—C90.0 (3)
C1—C2—C3—C40.6 (2)C6—C7—C8—C12178.37 (19)
C14—C2—C3—C151.0 (3)C7—C8—C9—C100.7 (3)
C1—C2—C3—C15179.52 (16)C12—C8—C9—C10179.0 (2)
C2—C3—C4—C51.1 (2)C7—C6—C11—C101.2 (3)
C15—C3—C4—C5179.98 (16)N1—C6—C11—C10176.86 (17)
C3—C4—C5—N10.9 (2)C9—C8—C12—C13104.2 (3)
C3—C4—C5—C16178.71 (16)C7—C8—C12—C1374.1 (3)
C1—N1—C5—C43.6 (2)C6—C11—C10—C90.5 (3)
C6—N1—C5—C4178.01 (15)C8—C9—C10—C110.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.932.323.2105 (18)161
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O
Mr252.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.3834 (3), 7.1852 (2), 23.5264 (8)
β (°) 93.203 (3)
V3)1414.93 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.93 × 0.46 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.609, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
9742, 2638, 1938
Rint0.032
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.161, 1.09
No. of reflections2638
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.932.323.2105 (18)161
Symmetry code: (i) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors are grateful for the sponsorship of the Research Center, College of Pharmacy and the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia. HKF and SA thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the award of Academic Staff Training Scheme (ASTS).

References

First citationAbadi, A. H., Ibrahim, T. M., Abouzid, K. M., Lehmann, J., Tinsley, H. N., Gary, B. D. & Piazza, G. A. (2009). Bioorg. Med. Chem. 17, 5974–5982.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAl-Said, M. S., Ghorab, M. M., Alqasoumi, S. I., El-Hossary, E. M. & Noaman, E. (2010). Eur. J. Med. Chem. 45, 3011–3018.  Web of Science CAS PubMed Google Scholar
First citationAmbrosini, G., Adida, C. & Altieri, D. C. (1997). Nat. Med. 3, 917–921.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAqui, N. A. & Vonderheide, R. H. (2008). Cancer Biol. Ther. 7, 1888–1889.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheney, I. W., Yan, S., Appleby, T., Walker, H., Vo, T., Yao, N., Hamatake, R., Hong, Z. & Wu, J. Z. (2007). Bioorg. Med. Chem. Lett. 17, 1679–1683.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElgemeie, G. H. & Jones, P. G. (2004). Acta Cryst. E60, o2107–o2109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171–178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGhorab, M. M., Ragab, F. A. & Hamed, M. M. (2009). Eur. J. Med. Chem. 44, 4211–4217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, o680–o681.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurata, T., Sugatani, T., Shimizu, K., Manganiello, V. & Tagawa, T. (2001). Anticancer Drugs, 12, 79–83.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds