organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(4-chloro­phen­yl)-1-phenyl-1H-benzimidazole-5-carboxyl­ate

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, bDepartment of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Cheras 56000, Malaysia, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 7 May 2012; accepted 16 May 2012; online 23 May 2012)

In the title compound, C22H17ClN2O2, the essentially planar benzimidazole ring system [maximum deviation = 0.012 (2) Å] forms dihedral angles of 28.69 (6) and 63.65 (7)°, respectively, with the phenyl and chloro-substituted benzene rings. The dihedral angle between the phenyl and benzene rings is 64.23 (8)°. In the crystal, mol­ecules are linked into a zigzag chain along the a axis by inter­molecular C—H⋯O hydrogen bonds. C—H⋯π inter­actions are also present.

Related literature

For applications of benzimidazoles, see: Tanious et al. (2004[Tanious, F. A., Hamelberg, D., Bailly, C., Czarny, A., Boykin, D. W. & Wilson, W. D. (2004). J. Am. Chem. Soc. 126, 143-153.]); Townsend & Revankar (1970[Townsend, L. B. & Revankar, G. R. (1970). Chem. Rev. 70, 389-438.]). For related structures, see: Yoon et al. (2011[Yoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.], 2012[Yoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012). Acta Cryst. E68, o251-o252.]); Kassim et al. (2012[Kassim, K., Hashim, N. Z. N., Fadzil, A. H. & Yusof, M. S. M. (2012). Acta Cryst. E68, o799.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17ClN2O2

  • Mr = 376.83

  • Triclinic, [P \overline 1]

  • a = 9.3357 (2) Å

  • b = 9.7982 (2) Å

  • c = 11.7718 (4) Å

  • α = 107.502 (2)°

  • β = 102.106 (2)°

  • γ = 109.539 (1)°

  • V = 908.31 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.38 × 0.29 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.917, Tmax = 0.946

  • 18472 measured reflections

  • 5326 independent reflections

  • 4233 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.127

  • S = 1.04

  • 5326 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the N1/C7/N2/C1/C6, C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.95 2.39 3.324 (2) 166
C21—H21ACg1ii 0.99 2.63 3.5183 (16) 149
C12—H12ACg2iii 0.95 2.96 3.5940 (16) 125
C19—H19ACg3iii 0.95 2.60 3.4770 (18) 153
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted benzimidazoles are proven important drug leads. Substituted benzimidazole is the key building block for numerous compounds which plays crucial roles in the function of biologically important molecules (Tanious et al., 2004). In particular, 2-substituted benzimidazoles are recognized as potential anticancer agents (Townsend & Revankar, 1970). As part of our ongoing structural studies of benzimidazole derivatives (Yoon et al., 2011), we now report the structure of the title compound.

In the molecular structure (Fig. 1), The benzimidazole ring system (N1/N2/C1—C7) is essentially planar with a maximum deviation of 0.012 (2) Å at atom C1 and forms dihedral angles of 28.69 (6) and 63.65 (7)°, respectively, with the phenyl (C8–C13) and chloro-substituted benzene (C14–C19) ring. The dihedral angle between the phenyl ring and the chloro-substituted benzene ring is 64.23 (8)°. Bond lengths and angles are within normal ranges and are comparable to related structures (Yoon et al., 2011; Kassim et al., 2012; Yoon et al., 2012).

The crystal packing is shown in Fig. 2. The molecules are linked into a zigzag chain along the a-axis via intermolecular C15—H15A···O2 (Table 1) hydrogen bonds. The crystal structure is further stabilized by intermolecular C21—H21A···Cg1, C1—H12A···Cg2 and C19—H19A···Cg3 (Table 1) interactions (Cg1, Cg2 and Cg3 are the centroids of N1/N2/C1/C6/C7, C1–C6 and C8–C13 rings, respectively).

Related literature top

For applications of benzimidazoles, see: Tanious et al. (2004); Townsend & Revankar (1970). For related structures, see: Yoon et al. (2011, 2012); Kassim et al. (2012). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Ethyl 3-amino-4-(phenyl amino) benzoate (0.84 mmol) and sodium metabisulfite adduct of chlorobenzaldehyde (1.68 mmol) were dissolved in DMF. The reaction mixture was reflux at 130 °C for 2 h. After completion, the reaction mixture was diluted in ethyl acetate (20 ml) and washed with water (20 ml). The organic layer was collected, dried over Na2SO4 and the evaporated in-vacuo to yield the product. The product was recrystallized from ethyl acetate.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model with Uiso(H) = 1.2 and 1.5Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound viewed along the b axis. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Ethyl 2-(4-chlorophenyl)-1-phenyl-1H-benzimidazole-5-carboxylate top
Crystal data top
C22H17ClN2O2Z = 2
Mr = 376.83F(000) = 392
Triclinic, P1Dx = 1.378 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3357 (2) ÅCell parameters from 7225 reflections
b = 9.7982 (2) Åθ = 2.6–30.2°
c = 11.7718 (4) ŵ = 0.23 mm1
α = 107.502 (2)°T = 100 K
β = 102.106 (2)°Block, colourless
γ = 109.539 (1)°0.38 × 0.29 × 0.24 mm
V = 908.31 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5326 independent reflections
Radiation source: fine-focus sealed tube4233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.917, Tmax = 0.946k = 1313
18472 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.3753P]
where P = (Fo2 + 2Fc2)/3
5326 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C22H17ClN2O2γ = 109.539 (1)°
Mr = 376.83V = 908.31 (4) Å3
Triclinic, P1Z = 2
a = 9.3357 (2) ÅMo Kα radiation
b = 9.7982 (2) ŵ = 0.23 mm1
c = 11.7718 (4) ÅT = 100 K
α = 107.502 (2)°0.38 × 0.29 × 0.24 mm
β = 102.106 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5326 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4233 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.946Rint = 0.033
18472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.04Δρmax = 0.57 e Å3
5326 reflectionsΔρmin = 0.31 e Å3
245 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66895 (5)0.31206 (5)0.07003 (4)0.02705 (11)
O10.66316 (12)0.10624 (12)0.40052 (10)0.0196 (2)
O20.84606 (13)0.14573 (13)0.46871 (11)0.0229 (2)
N10.11793 (15)0.10887 (14)0.20878 (12)0.0173 (2)
N20.16095 (14)0.14100 (14)0.23348 (12)0.0158 (2)
C10.31182 (17)0.14553 (17)0.28366 (14)0.0165 (3)
C20.46660 (18)0.26942 (17)0.34187 (14)0.0190 (3)
H2A0.48480.37440.35200.023*
C30.59248 (18)0.23218 (18)0.38427 (15)0.0201 (3)
H3A0.69970.31360.42490.024*
C40.56507 (17)0.07571 (17)0.36849 (14)0.0179 (3)
C50.41041 (18)0.04706 (17)0.31022 (14)0.0180 (3)
H5A0.39240.15210.29970.022*
C60.28203 (17)0.01073 (17)0.26755 (13)0.0165 (3)
C70.04967 (17)0.01571 (16)0.19011 (13)0.0159 (3)
C80.12637 (17)0.07740 (17)0.12872 (13)0.0158 (3)
C90.22379 (18)0.21369 (17)0.13982 (14)0.0178 (3)
H9A0.17460.25850.18810.021*
C100.39041 (19)0.28384 (18)0.08158 (14)0.0199 (3)
H10A0.45590.37390.09190.024*
C110.46027 (18)0.21990 (18)0.00743 (14)0.0192 (3)
C120.36672 (18)0.08703 (18)0.00704 (14)0.0186 (3)
H12A0.41610.04580.05880.022*
C130.19981 (18)0.01465 (17)0.05489 (13)0.0171 (3)
H13A0.13540.07790.04700.021*
C140.13273 (17)0.27784 (17)0.23909 (13)0.0163 (3)
C150.04178 (18)0.32176 (18)0.31023 (14)0.0188 (3)
H15A0.00400.26070.35340.023*
C160.01898 (19)0.45680 (19)0.31695 (15)0.0223 (3)
H16A0.04170.48880.36610.027*
C170.0840 (2)0.54544 (18)0.25259 (16)0.0242 (3)
H17A0.06750.63740.25770.029*
C180.1728 (2)0.49899 (19)0.18094 (16)0.0246 (3)
H18A0.21610.55860.13600.029*
C190.19904 (19)0.36522 (18)0.17450 (14)0.0204 (3)
H19A0.26140.33430.12660.024*
C200.70739 (18)0.04619 (17)0.41852 (14)0.0171 (3)
C210.79321 (18)0.14740 (18)0.44432 (14)0.0188 (3)
H21A0.84470.09280.53780.023*
H21B0.87670.11650.40560.023*
C220.7175 (2)0.32370 (19)0.40427 (16)0.0254 (3)
H22A0.80130.35780.43170.038*
H22B0.66670.37590.31170.038*
H22C0.63540.35230.44330.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01444 (18)0.0278 (2)0.0327 (2)0.00672 (15)0.00290 (15)0.01040 (16)
O10.0137 (5)0.0191 (5)0.0244 (5)0.0072 (4)0.0042 (4)0.0082 (4)
O20.0151 (5)0.0228 (5)0.0280 (6)0.0061 (5)0.0055 (4)0.0100 (5)
N10.0149 (6)0.0164 (6)0.0196 (6)0.0061 (5)0.0041 (5)0.0077 (5)
N20.0141 (6)0.0151 (5)0.0192 (6)0.0060 (5)0.0063 (5)0.0079 (5)
C10.0151 (6)0.0175 (6)0.0181 (6)0.0073 (6)0.0064 (5)0.0081 (5)
C20.0180 (7)0.0154 (6)0.0228 (7)0.0060 (6)0.0073 (6)0.0078 (6)
C30.0152 (7)0.0189 (7)0.0237 (7)0.0049 (6)0.0067 (6)0.0082 (6)
C40.0152 (7)0.0201 (7)0.0187 (7)0.0073 (6)0.0056 (5)0.0084 (6)
C50.0169 (7)0.0170 (6)0.0206 (7)0.0074 (6)0.0064 (6)0.0080 (5)
C60.0155 (6)0.0163 (6)0.0173 (6)0.0062 (6)0.0059 (5)0.0067 (5)
C70.0163 (6)0.0150 (6)0.0156 (6)0.0057 (6)0.0053 (5)0.0064 (5)
C80.0144 (6)0.0159 (6)0.0152 (6)0.0062 (5)0.0042 (5)0.0045 (5)
C90.0177 (7)0.0179 (6)0.0172 (6)0.0069 (6)0.0057 (5)0.0073 (5)
C100.0190 (7)0.0202 (7)0.0194 (7)0.0066 (6)0.0076 (6)0.0080 (6)
C110.0140 (6)0.0224 (7)0.0180 (7)0.0076 (6)0.0047 (5)0.0048 (6)
C120.0182 (7)0.0217 (7)0.0177 (7)0.0114 (6)0.0058 (5)0.0071 (5)
C130.0183 (7)0.0170 (6)0.0176 (7)0.0082 (6)0.0072 (5)0.0075 (5)
C140.0161 (6)0.0151 (6)0.0169 (6)0.0065 (6)0.0040 (5)0.0066 (5)
C150.0172 (7)0.0196 (7)0.0190 (7)0.0074 (6)0.0058 (6)0.0076 (6)
C160.0189 (7)0.0221 (7)0.0254 (8)0.0111 (6)0.0068 (6)0.0067 (6)
C170.0225 (8)0.0173 (7)0.0295 (8)0.0094 (6)0.0027 (6)0.0086 (6)
C180.0305 (8)0.0183 (7)0.0253 (8)0.0089 (7)0.0084 (7)0.0119 (6)
C190.0240 (8)0.0191 (7)0.0202 (7)0.0092 (6)0.0099 (6)0.0090 (6)
C200.0154 (6)0.0198 (7)0.0181 (7)0.0078 (6)0.0081 (5)0.0083 (5)
C210.0154 (7)0.0219 (7)0.0198 (7)0.0097 (6)0.0049 (5)0.0081 (6)
C220.0282 (8)0.0247 (8)0.0256 (8)0.0139 (7)0.0083 (7)0.0110 (6)
Geometric parameters (Å, º) top
Cl1—C111.7393 (15)C10—C111.394 (2)
O1—C201.3440 (17)C10—H10A0.9500
O1—C211.4466 (17)C11—C121.386 (2)
O2—C201.2101 (18)C12—C131.391 (2)
N1—C71.3186 (18)C12—H12A0.9500
N1—C61.3858 (19)C13—H13A0.9500
N2—C11.3885 (17)C14—C191.389 (2)
N2—C71.3916 (18)C14—C151.390 (2)
N2—C141.4359 (17)C15—C161.391 (2)
C1—C21.394 (2)C15—H15A0.9500
C1—C61.4057 (19)C16—C171.390 (2)
C2—C31.383 (2)C16—H16A0.9500
C2—H2A0.9500C17—C181.386 (2)
C3—C41.413 (2)C17—H17A0.9500
C3—H3A0.9500C18—C191.395 (2)
C4—C51.389 (2)C18—H18A0.9500
C4—C201.4923 (19)C19—H19A0.9500
C5—C61.3985 (19)C21—C221.503 (2)
C5—H5A0.9500C21—H21A0.9900
C7—C81.471 (2)C21—H21B0.9900
C8—C131.3990 (19)C22—H22A0.9800
C8—C91.403 (2)C22—H22B0.9800
C9—C101.384 (2)C22—H22C0.9800
C9—H9A0.9500
C20—O1—C21115.83 (11)C11—C12—H12A120.3
C7—N1—C6105.12 (12)C13—C12—H12A120.3
C1—N2—C7106.08 (11)C12—C13—C8120.38 (14)
C1—N2—C14124.39 (12)C12—C13—H13A119.8
C7—N2—C14129.30 (12)C8—C13—H13A119.8
N2—C1—C2131.98 (13)C19—C14—C15121.23 (13)
N2—C1—C6105.41 (12)C19—C14—N2119.15 (13)
C2—C1—C6122.60 (13)C15—C14—N2119.61 (13)
C3—C2—C1116.80 (13)C14—C15—C16118.77 (14)
C3—C2—H2A121.6C14—C15—H15A120.6
C1—C2—H2A121.6C16—C15—H15A120.6
C2—C3—C4121.44 (14)C17—C16—C15120.81 (14)
C2—C3—H3A119.3C17—C16—H16A119.6
C4—C3—H3A119.3C15—C16—H16A119.6
C5—C4—C3121.36 (13)C18—C17—C16119.67 (14)
C5—C4—C20120.65 (13)C18—C17—H17A120.2
C3—C4—C20117.98 (13)C16—C17—H17A120.2
C4—C5—C6117.73 (13)C17—C18—C19120.38 (15)
C4—C5—H5A121.1C17—C18—H18A119.8
C6—C5—H5A121.1C19—C18—H18A119.8
N1—C6—C5129.46 (13)C14—C19—C18119.13 (14)
N1—C6—C1110.46 (12)C14—C19—H19A120.4
C5—C6—C1120.07 (13)C18—C19—H19A120.4
N1—C7—N2112.93 (12)O2—C20—O1123.55 (13)
N1—C7—C8121.50 (13)O2—C20—C4124.85 (13)
N2—C7—C8125.57 (12)O1—C20—C4111.60 (12)
C13—C8—C9118.95 (13)O1—C21—C22106.27 (12)
C13—C8—C7124.14 (13)O1—C21—H21A110.5
C9—C8—C7116.79 (12)C22—C21—H21A110.5
C10—C9—C8121.07 (13)O1—C21—H21B110.5
C10—C9—H9A119.5C22—C21—H21B110.5
C8—C9—H9A119.5H21A—C21—H21B108.7
C9—C10—C11118.76 (14)C21—C22—H22A109.5
C9—C10—H10A120.6C21—C22—H22B109.5
C11—C10—H10A120.6H22A—C22—H22B109.5
C12—C11—C10121.37 (14)C21—C22—H22C109.5
C12—C11—Cl1119.89 (11)H22A—C22—H22C109.5
C10—C11—Cl1118.73 (12)H22B—C22—H22C109.5
C11—C12—C13119.42 (13)
C7—N2—C1—C2178.88 (15)C13—C8—C9—C101.5 (2)
C14—N2—C1—C24.0 (2)C7—C8—C9—C10177.72 (13)
C7—N2—C1—C60.11 (15)C8—C9—C10—C112.2 (2)
C14—N2—C1—C6174.80 (13)C9—C10—C11—C121.1 (2)
N2—C1—C2—C3178.50 (15)C9—C10—C11—Cl1177.86 (11)
C6—C1—C2—C30.1 (2)C10—C11—C12—C130.8 (2)
C1—C2—C3—C40.3 (2)Cl1—C11—C12—C13179.71 (11)
C2—C3—C4—C50.3 (2)C11—C12—C13—C81.5 (2)
C2—C3—C4—C20179.22 (14)C9—C8—C13—C120.4 (2)
C3—C4—C5—C60.1 (2)C7—C8—C13—C12175.52 (13)
C20—C4—C5—C6178.85 (13)C1—N2—C14—C1965.11 (19)
C7—N1—C6—C5179.06 (15)C7—N2—C14—C19121.21 (16)
C7—N1—C6—C10.26 (16)C1—N2—C14—C15114.00 (16)
C4—C5—C6—N1178.95 (14)C7—N2—C14—C1559.7 (2)
C4—C5—C6—C10.3 (2)C19—C14—C15—C160.6 (2)
N2—C1—C6—N10.23 (16)N2—C14—C15—C16178.49 (13)
C2—C1—C6—N1179.15 (13)C14—C15—C16—C170.8 (2)
N2—C1—C6—C5179.16 (13)C15—C16—C17—C180.1 (2)
C2—C1—C6—C50.2 (2)C16—C17—C18—C190.8 (2)
C6—N1—C7—N20.19 (16)C15—C14—C19—C180.3 (2)
C6—N1—C7—C8179.89 (13)N2—C14—C19—C18179.41 (14)
C1—N2—C7—N10.05 (16)C17—C18—C19—C141.0 (2)
C14—N2—C7—N1174.62 (13)C21—O1—C20—O20.5 (2)
C1—N2—C7—C8179.73 (13)C21—O1—C20—C4179.16 (12)
C14—N2—C7—C85.7 (2)C5—C4—C20—O2178.84 (15)
N1—C7—C8—C13149.37 (15)C3—C4—C20—O22.2 (2)
N2—C7—C8—C1330.3 (2)C5—C4—C20—O10.83 (19)
N1—C7—C8—C926.6 (2)C3—C4—C20—O1178.10 (13)
N2—C7—C8—C9153.74 (14)C20—O1—C21—C22175.16 (12)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/C7/N2/C1/C6, C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.952.393.324 (2)166
C21—H21A···Cg1ii0.992.633.5183 (16)149
C12—H12A···Cg2iii0.952.963.5940 (16)125
C19—H19A···Cg3iii0.952.603.4770 (18)153
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x, y, z.

Experimental details

Crystal data
Chemical formulaC22H17ClN2O2
Mr376.83
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.3357 (2), 9.7982 (2), 11.7718 (4)
α, β, γ (°)107.502 (2), 102.106 (2), 109.539 (1)
V3)908.31 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.38 × 0.29 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.917, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
18472, 5326, 4233
Rint0.033
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.04
No. of reflections5326
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/C7/N2/C1/C6, C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.952.393.324 (2)166
C21—H21A···Cg1ii0.992.633.5183 (16)149
C12—H12A···Cg2iii0.952.963.5940 (16)125
C19—H19A···Cg3iii0.952.603.4770 (18)153
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Grant Nos.1001/PFIZIK/811151 and 1001/PSK/8620012. The authors also wish to express their thanks to the Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malaysia. SA also thanks the Malaysian Government and USM for an Academic Staff Training Scheme (ASTS) fellowship.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKassim, K., Hashim, N. Z. N., Fadzil, A. H. & Yusof, M. S. M. (2012). Acta Cryst. E68, o799.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanious, F. A., Hamelberg, D., Bailly, C., Czarny, A., Boykin, D. W. & Wilson, W. D. (2004). J. Am. Chem. Soc. 126, 143–153.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTownsend, L. B. & Revankar, G. R. (1970). Chem. Rev. 70, 389–438.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012). Acta Cryst. E68, o251–o252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds