organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1803-o1804

Ethyl 2-amino-4-(4-fluoro­phen­yl)-6-meth­­oxy-4H-benzo[h]chromene-3-carboxyl­ate

aChemistry Department, Faculty of Science, King Khalid University, 9004, Abha, Saudi Arabia, bPharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, dApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, and eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 13 May 2012; accepted 15 May 2012; online 19 May 2012)

In the title compound, C23H20FNO4, the fluoro-substituted benzene ring is approximately perpendicular to the mean plane of the 4H-benzo[h]chromene ring system [maximum deviation = 0.264 (1) Å], with a dihedral angle of 83.79 (6)°. The pyran ring adopts a flattened boat conformation. The meth­oxy group is slightly twisted from the attached benzene ring of the 4H-benzo[h]chromene moiety [C—O—C—C = −2.1 (2)°]. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯F hydrogen bonds into a layer parallel to the bc plane. The crystal packing also features C—H⋯π inter­actions.

Related literature

For background to and applications of 4H-chromene and its derivatives, see: Jeso & Nicolaou (2009[Jeso, V. & Nicolaou, K. C. (2009). Tetrahedron Lett. 50, 1161-1163.]); Alvey et al. (2008[Alvey, L., Prado, S., Huteau, V., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2008). Bioorg. Med. Chem. 16, 8264-8272.], 2009[Alvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497-2505.]); Symeonidis et al. (2009[Symeonidis, T., Chamilos, M., Hadjipavlou-Litina, D. J., Kallitsakis, M. & Litinas, K. E. (2009). Bioorg. Med. Chem. Lett. 19, 1139-1142.]); Brühlmann et al. (2001[Brühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). J. Med. Chem. 44, 3195-3198.]); Bedair et al. (2001[Bedair, A. H., Emam, H. A., El-Hady, N. A., Ahmed, K. A. R. & El-Agrody, A. M. (2001). Farmaco, 56, 965-973.]); El-Agrody et al. (2002[El-Agrody, A. M., Eid, F. A., Emam, H. A., Mohamed, H. M. & Bedair, A. H. (2002). Z. Naturforsch. Teil B, 57, 579-585.], 2011[El-Agrody, A. M., Sabry, N. M. & Motlaq, S. S. (2011). J. Chem. Res. 35, 77-83.]); Abd-El-Aziz et al. (2004[Abd-El-Aziz, A. S., El-Agrody, A. M., Bedair, A. H., Corkery, T. C. & Ata, A. (2004). Heterocycles, 63, 1793-1812.]); Sabry et al. (2011[Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20FNO4

  • Mr = 393.40

  • Monoclinic, P 21 /c

  • a = 12.6844 (3) Å

  • b = 16.1933 (4) Å

  • c = 9.4579 (2) Å

  • β = 94.288 (2)°

  • V = 1937.24 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.82 mm−1

  • T = 296 K

  • 0.81 × 0.74 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.556, Tmax = 0.972

  • 13713 measured reflections

  • 3657 independent reflections

  • 3009 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.117

  • S = 1.08

  • 3657 reflections

  • 273 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of C4–C6/C11–C13, C14–C19 and C6–C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N1⋯O3i 0.89 (2) 2.23 (2) 3.0969 (19) 165.8 (17)
N1—H1N1⋯O3 0.89 (2) 2.111 (18) 2.7570 (18) 129.1 (16)
N1—H1N1⋯F1ii 0.89 (2) 2.32 (2) 3.034 (2) 137.6 (16)
C8—H8ACg1iii 0.93 2.81 3.5633 (16) 139
C10—H10ACg2iv 0.93 2.94 3.7003 (17) 140
C20—H20CCg3iv 0.96 2.74 3.5896 (17) 148
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 4H-chromene nucleus is frequently found in bioactive compounds and plays an important role in biochemical processes (Jeso & Nicolaou, 2009; Alvey et al., 2008, 2009; Symeonidis et al., 2009). In addition, 4H-chromenes and fused 4H-chromenes nuclei are used in treatment of Alzheimer's disease and Schizophrenia disorder (Brühlmann et al., 2001). In view of the above observations and in continuation of our program on the chemistry of 4H-pyran derivatives (Bedair et al., 2001; El-Agrody et al., 2002, 2011; Abd-El-Aziz et al., 2004; Sabry et al., 2011), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The fluoro-substituted benzene ring (C14–C19) is approximately perpendicular to the 4H-benzo[h]chromene ring system [O1/C1–C13, maximum deviation = 0.264 (1) Å at atom C2] as indicated by the dihedral angle of 83.79 (6)°. The pyran ring (O1/C1–C5) adopts a flattened boat conformation [puckering parameters (Cremer & Pople, 1975), Q = 0.2599 (13) Å, θ = 79.3 (3)° and ϕ = 170.9 (3)°]. The atoms O1 and C3 are deviating from the mean plane of C1/C2/C4/C5 by 0.1589 (18) and 0.2820 (21) Å, respectively. The methoxy group (C20/O2) is slightly twisted from the attached benzene ring (C4–C6/C11–C13) of the 4H-benzo[h]chromene moiety with the torsion angle C20—O2—C12—C13 of -2.1 (2)°. An intramolecular N1—H1N1···O3 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) in the molecule.

In the crystal (Fig. 2), molecules are linked by intermolecular N1—H2N1···O3 and N1—H1N1···F1 hydrogen bonds (Table 1) into a layer parallel to the bc plane. The crystal packing is further stabilized by C—H···π interactions (Table 1), involving Cg1, Cg2 and Cg3 which are the centroids of C4–C6/C11–C13, C14–C19 and C6–C11 rings, respectively.

Related literature top

For background to and applications of 4H-chromene and its derivatives, see: Jeso & Nicolaou (2009); Alvey et al. (2008, 2009); Symeonidis et al. (2009); Brühlmann et al. (2001); Bedair et al. (2001); El-Agrody et al. (2002, 2011); Abd-El-Aziz et al. (2004); Sabry et al. (2011). For ring puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of 4-methoxy-1-naphthol (0.01 mol) in EtOH (30 ml) was treated with ethyl α-cyano-p-fluorocinnamate (0.01 mol) and piperidine (0.5 ml). The reaction mixture was heated under reflux for 2 h. The obtained solid product was collected by filtration, dried and crystallized from ethanol to give the title compound. M.p.: 435–436 K.

Refinement top

The atoms H1N1 and H2N1 were located in a difference Fourier map and refined freely [N—H = 0.88 (2) and 0.89 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93, 0.96, 0.97 and 0.98 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view of the title compound along the a axis. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
Ethyl 2-amino-4-(4-fluorophenyl)-6-methoxy-4H- benzo[h]chromene-3-carboxylate top
Crystal data top
C23H20FNO4F(000) = 824
Mr = 393.40Dx = 1.349 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3029 reflections
a = 12.6844 (3) Åθ = 3.5–66.5°
b = 16.1933 (4) ŵ = 0.82 mm1
c = 9.4579 (2) ÅT = 296 K
β = 94.288 (2)°Plate, colourless
V = 1937.24 (8) Å30.81 × 0.74 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3657 independent reflections
Radiation source: fine-focus sealed tube3009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 70.1°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.556, Tmax = 0.972k = 1919
13713 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.2106P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3657 reflectionsΔρmax = 0.19 e Å3
273 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0059 (5)
Crystal data top
C23H20FNO4V = 1937.24 (8) Å3
Mr = 393.40Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.6844 (3) ŵ = 0.82 mm1
b = 16.1933 (4) ÅT = 296 K
c = 9.4579 (2) Å0.81 × 0.74 × 0.04 mm
β = 94.288 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3657 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3009 reflections with I > 2σ(I)
Tmin = 0.556, Tmax = 0.972Rint = 0.034
13713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.19 e Å3
3657 reflectionsΔρmin = 0.19 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.04716 (11)0.70219 (9)0.55146 (16)0.1144 (5)
O10.28914 (8)0.30595 (6)0.72092 (10)0.0487 (3)
O20.63332 (8)0.50557 (7)0.64293 (13)0.0584 (3)
O30.10800 (9)0.34723 (7)1.07127 (11)0.0559 (3)
O40.16230 (8)0.47933 (6)1.06692 (10)0.0516 (3)
N10.16357 (11)0.25396 (8)0.84457 (17)0.0554 (3)
C10.22572 (10)0.31944 (8)0.82843 (14)0.0429 (3)
C20.22913 (10)0.39123 (8)0.90464 (13)0.0416 (3)
C30.29340 (10)0.46421 (8)0.85933 (14)0.0413 (3)
H3A0.32640.49040.94500.050*
C40.38041 (10)0.43437 (8)0.77125 (13)0.0408 (3)
C50.37413 (10)0.35926 (8)0.70758 (14)0.0404 (3)
C60.45447 (10)0.32854 (8)0.62507 (13)0.0405 (3)
C70.45043 (11)0.24931 (9)0.56213 (14)0.0461 (3)
H7A0.39280.21510.57370.055*
C80.53032 (12)0.22258 (9)0.48457 (16)0.0525 (4)
H8A0.52740.16990.44530.063*
C90.61650 (13)0.27393 (10)0.46379 (17)0.0576 (4)
H9A0.67000.25550.40950.069*
C100.62263 (11)0.35095 (10)0.52281 (17)0.0524 (4)
H10A0.68010.38460.50800.063*
C110.54257 (10)0.37989 (9)0.60603 (14)0.0425 (3)
C120.54691 (10)0.46009 (9)0.67061 (15)0.0442 (3)
C130.46888 (11)0.48548 (8)0.75189 (14)0.0441 (3)
H13A0.47370.53700.79530.053*
C140.22577 (11)0.52880 (8)0.77811 (14)0.0437 (3)
C150.17007 (12)0.50829 (10)0.65164 (16)0.0526 (4)
H15A0.17350.45470.61700.063*
C160.10939 (14)0.56660 (12)0.57628 (19)0.0671 (5)
H16A0.07210.55260.49130.081*
C170.10514 (15)0.64454 (13)0.6283 (2)0.0727 (6)
C180.15756 (18)0.66735 (11)0.7526 (2)0.0810 (6)
H18A0.15260.72100.78660.097*
C190.21853 (14)0.60881 (10)0.82764 (19)0.0622 (4)
H19A0.25520.62350.91270.075*
C200.64028 (13)0.58658 (9)0.69998 (18)0.0575 (4)
H20A0.70070.61410.66670.086*
H20B0.64740.58360.80160.086*
H20C0.57740.61680.67020.086*
C210.16104 (11)0.40092 (9)1.01911 (14)0.0442 (3)
C220.09169 (15)0.49981 (11)1.17445 (17)0.0610 (4)
H22A0.11450.47321.26350.073*
H22C0.02030.48181.14580.073*
C230.09548 (19)0.59157 (12)1.19019 (19)0.0759 (5)
H23A0.04440.60881.25410.114*
H23D0.07970.61691.09930.114*
H23C0.16480.60801.22730.114*
H2N10.1556 (15)0.2184 (12)0.773 (2)0.068 (5)*
H1N10.1147 (16)0.2602 (11)0.906 (2)0.072 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1074 (10)0.1103 (10)0.1298 (11)0.0645 (8)0.0372 (8)0.0582 (9)
O10.0469 (5)0.0443 (5)0.0570 (6)0.0104 (4)0.0167 (4)0.0092 (4)
O20.0475 (6)0.0507 (6)0.0788 (7)0.0143 (5)0.0166 (5)0.0054 (5)
O30.0612 (6)0.0524 (6)0.0566 (6)0.0015 (5)0.0200 (5)0.0075 (5)
O40.0598 (6)0.0483 (6)0.0486 (5)0.0028 (5)0.0162 (4)0.0032 (4)
N10.0545 (7)0.0450 (7)0.0694 (8)0.0103 (6)0.0231 (6)0.0064 (6)
C10.0402 (7)0.0416 (7)0.0478 (7)0.0003 (6)0.0087 (5)0.0035 (6)
C20.0423 (7)0.0396 (7)0.0434 (7)0.0014 (5)0.0067 (5)0.0027 (5)
C30.0433 (7)0.0377 (7)0.0434 (7)0.0023 (5)0.0058 (5)0.0030 (5)
C40.0392 (6)0.0393 (7)0.0441 (7)0.0001 (5)0.0048 (5)0.0020 (5)
C50.0372 (6)0.0391 (7)0.0454 (7)0.0051 (5)0.0064 (5)0.0029 (5)
C60.0416 (7)0.0389 (7)0.0411 (6)0.0001 (5)0.0039 (5)0.0025 (5)
C70.0495 (8)0.0424 (7)0.0469 (7)0.0050 (6)0.0066 (6)0.0001 (6)
C80.0584 (9)0.0456 (8)0.0543 (8)0.0028 (7)0.0090 (7)0.0080 (6)
C90.0524 (8)0.0589 (9)0.0635 (9)0.0049 (7)0.0184 (7)0.0057 (7)
C100.0439 (7)0.0524 (9)0.0623 (9)0.0034 (6)0.0129 (6)0.0003 (7)
C110.0404 (7)0.0426 (7)0.0448 (7)0.0016 (6)0.0054 (5)0.0022 (5)
C120.0386 (7)0.0424 (7)0.0518 (7)0.0062 (6)0.0044 (6)0.0035 (6)
C130.0448 (7)0.0370 (7)0.0506 (7)0.0036 (6)0.0037 (6)0.0016 (5)
C140.0434 (7)0.0379 (7)0.0515 (7)0.0014 (6)0.0147 (6)0.0025 (5)
C150.0534 (8)0.0487 (8)0.0560 (8)0.0019 (7)0.0069 (7)0.0054 (6)
C160.0567 (9)0.0809 (13)0.0644 (10)0.0084 (9)0.0101 (8)0.0218 (9)
C170.0642 (10)0.0712 (12)0.0866 (13)0.0283 (9)0.0316 (10)0.0321 (10)
C180.1016 (16)0.0440 (10)0.1021 (15)0.0229 (10)0.0396 (13)0.0101 (9)
C190.0748 (11)0.0420 (8)0.0715 (10)0.0022 (7)0.0179 (8)0.0034 (7)
C200.0520 (8)0.0460 (8)0.0738 (10)0.0141 (7)0.0003 (7)0.0007 (7)
C210.0447 (7)0.0446 (8)0.0433 (7)0.0037 (6)0.0043 (6)0.0054 (6)
C220.0720 (10)0.0627 (10)0.0506 (8)0.0126 (8)0.0203 (7)0.0010 (7)
C230.1027 (15)0.0662 (11)0.0607 (10)0.0248 (10)0.0188 (9)0.0052 (8)
Geometric parameters (Å, º) top
F1—C171.364 (2)C9—C101.366 (2)
O1—C11.3606 (16)C9—H9A0.9300
O1—C51.3942 (15)C10—C111.4106 (19)
O2—C121.3619 (16)C10—H10A0.9300
O2—C201.4188 (18)C11—C121.4346 (19)
O3—C211.2254 (17)C12—C131.3615 (19)
O4—C211.3475 (17)C13—H13A0.9300
O4—C221.4432 (17)C14—C191.383 (2)
N1—C11.3367 (18)C14—C151.383 (2)
N1—H2N10.89 (2)C15—C161.382 (2)
N1—H1N10.88 (2)C15—H15A0.9300
C1—C21.3668 (19)C16—C171.357 (3)
C2—C211.4431 (18)C16—H16A0.9300
C2—C31.5156 (18)C17—C181.358 (3)
C3—C41.5109 (18)C18—C191.385 (3)
C3—C141.5236 (19)C18—H18A0.9300
C3—H3A0.9800C19—H19A0.9300
C4—C51.3568 (19)C20—H20A0.9600
C4—C131.4173 (18)C20—H20B0.9600
C5—C61.4191 (18)C20—H20C0.9600
C6—C71.4137 (18)C22—C231.494 (2)
C6—C111.4151 (18)C22—H22A0.9700
C7—C81.365 (2)C22—H22C0.9700
C7—H7A0.9300C23—H23A0.9600
C8—C91.399 (2)C23—H23D0.9600
C8—H8A0.9300C23—H23C0.9600
C1—O1—C5118.20 (10)O2—C12—C11114.43 (12)
C12—O2—C20117.07 (12)C12—C13—C4120.84 (13)
C21—O4—C22117.42 (12)C12—C13—H13A119.6
C1—N1—H2N1117.5 (12)C4—C13—H13A119.6
C1—N1—H1N1115.7 (13)C19—C14—C15118.37 (14)
H2N1—N1—H1N1121.7 (17)C19—C14—C3121.43 (14)
N1—C1—O1110.17 (12)C15—C14—C3120.20 (13)
N1—C1—C2127.59 (13)C16—C15—C14120.71 (16)
O1—C1—C2122.24 (12)C16—C15—H15A119.6
C1—C2—C21119.41 (12)C14—C15—H15A119.6
C1—C2—C3120.70 (11)C17—C16—C15118.97 (18)
C21—C2—C3119.47 (12)C17—C16—H16A120.5
C4—C3—C2109.69 (11)C15—C16—H16A120.5
C4—C3—C14110.40 (11)C16—C17—C18122.44 (16)
C2—C3—C14112.54 (11)C16—C17—F1118.6 (2)
C4—C3—H3A108.0C18—C17—F1118.98 (19)
C2—C3—H3A108.0C17—C18—C19118.42 (17)
C14—C3—H3A108.0C17—C18—H18A120.8
C5—C4—C13119.14 (12)C19—C18—H18A120.8
C5—C4—C3120.69 (12)C14—C19—C18121.09 (18)
C13—C4—C3120.16 (12)C14—C19—H19A119.5
C4—C5—O1122.35 (11)C18—C19—H19A119.5
C4—C5—C6122.52 (12)O2—C20—H20A109.5
O1—C5—C6115.12 (11)O2—C20—H20B109.5
C7—C6—C11118.93 (12)H20A—C20—H20B109.5
C7—C6—C5123.01 (12)O2—C20—H20C109.5
C11—C6—C5118.06 (12)H20A—C20—H20C109.5
C8—C7—C6120.59 (13)H20B—C20—H20C109.5
C8—C7—H7A119.7O3—C21—O4121.78 (12)
C6—C7—H7A119.7O3—C21—C2127.02 (13)
C7—C8—C9120.42 (14)O4—C21—C2111.19 (12)
C7—C8—H8A119.8O4—C22—C23106.36 (14)
C9—C8—H8A119.8O4—C22—H22A110.5
C10—C9—C8120.42 (14)C23—C22—H22A110.5
C10—C9—H9A119.8O4—C22—H22C110.5
C8—C9—H9A119.8C23—C22—H22C110.5
C9—C10—C11120.66 (14)H22A—C22—H22C108.6
C9—C10—H10A119.7C22—C23—H23A109.5
C11—C10—H10A119.7C22—C23—H23D109.5
C10—C11—C6118.95 (13)H23A—C23—H23D109.5
C10—C11—C12122.14 (13)C22—C23—H23C109.5
C6—C11—C12118.90 (12)H23A—C23—H23C109.5
C13—C12—O2125.08 (13)H23D—C23—H23C109.5
C13—C12—C11120.49 (12)
C5—O1—C1—N1166.73 (12)C7—C6—C11—C12179.64 (12)
C5—O1—C1—C213.33 (19)C5—C6—C11—C120.08 (19)
N1—C1—C2—C211.2 (2)C20—O2—C12—C132.1 (2)
O1—C1—C2—C21178.85 (12)C20—O2—C12—C11177.94 (12)
N1—C1—C2—C3171.35 (14)C10—C11—C12—C13179.08 (13)
O1—C1—C2—C38.6 (2)C6—C11—C12—C131.7 (2)
C1—C2—C3—C424.06 (17)C10—C11—C12—O20.9 (2)
C21—C2—C3—C4163.38 (11)C6—C11—C12—O2178.31 (12)
C1—C2—C3—C1499.26 (15)O2—C12—C13—C4178.23 (13)
C21—C2—C3—C1473.30 (15)C11—C12—C13—C41.8 (2)
C2—C3—C4—C520.10 (17)C5—C4—C13—C120.0 (2)
C14—C3—C4—C5104.48 (14)C3—C4—C13—C12178.74 (12)
C2—C3—C4—C13161.16 (12)C4—C3—C14—C19117.90 (14)
C14—C3—C4—C1374.27 (15)C2—C3—C14—C19119.17 (14)
C13—C4—C5—O1179.49 (12)C4—C3—C14—C1561.86 (16)
C3—C4—C5—O10.7 (2)C2—C3—C14—C1561.06 (16)
C13—C4—C5—C61.8 (2)C19—C14—C15—C160.5 (2)
C3—C4—C5—C6179.41 (12)C3—C14—C15—C16179.29 (13)
C1—O1—C5—C417.49 (19)C14—C15—C16—C170.0 (2)
C1—O1—C5—C6161.27 (11)C15—C16—C17—C180.7 (3)
C4—C5—C6—C7177.85 (12)C15—C16—C17—F1178.41 (15)
O1—C5—C6—C70.91 (18)C16—C17—C18—C190.8 (3)
C4—C5—C6—C111.9 (2)F1—C17—C18—C19178.22 (16)
O1—C5—C6—C11179.37 (11)C15—C14—C19—C180.3 (2)
C11—C6—C7—C80.2 (2)C3—C14—C19—C18179.47 (15)
C5—C6—C7—C8179.52 (13)C17—C18—C19—C140.4 (3)
C6—C7—C8—C91.3 (2)C22—O4—C21—O35.2 (2)
C7—C8—C9—C101.1 (2)C22—O4—C21—C2175.45 (12)
C8—C9—C10—C110.3 (2)C1—C2—C21—O310.6 (2)
C9—C10—C11—C61.3 (2)C3—C2—C21—O3176.74 (13)
C9—C10—C11—C12179.44 (14)C1—C2—C21—O4170.03 (12)
C7—C6—C11—C101.11 (19)C3—C2—C21—O42.62 (17)
C5—C6—C11—C10179.17 (12)C21—O4—C22—C23170.70 (14)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of C4–C6/C11–C13, C14–C19 and C6–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H2N1···O3i0.89 (2)2.23 (2)3.0969 (19)165.8 (17)
N1—H1N1···O30.89 (2)2.111 (18)2.7570 (18)129.1 (16)
N1—H1N1···F1ii0.89 (2)2.32 (2)3.034 (2)137.6 (16)
C8—H8A···Cg1iii0.932.813.5633 (16)139
C10—H10A···Cg2iv0.932.943.7003 (17)140
C20—H20C···Cg3iv0.962.743.5896 (17)148
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+3/2; (iii) x, y1/2, z3/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H20FNO4
Mr393.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.6844 (3), 16.1933 (4), 9.4579 (2)
β (°) 94.288 (2)
V3)1937.24 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.82
Crystal size (mm)0.81 × 0.74 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.556, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
13713, 3657, 3009
Rint0.034
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.117, 1.08
No. of reflections3657
No. of parameters273
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of C4–C6/C11–C13, C14–C19 and C6–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H2N1···O3i0.89 (2)2.23 (2)3.0969 (19)165.8 (17)
N1—H1N1···O30.89 (2)2.111 (18)2.7570 (18)129.1 (16)
N1—H1N1···F1ii0.89 (2)2.32 (2)3.034 (2)137.6 (16)
C8—H8A···Cg1iii0.932.813.5633 (16)139
C10—H10A···Cg2iv0.932.943.7003 (17)140
C20—H20C···Cg3iv0.962.743.5896 (17)148
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+3/2; (iii) x, y1/2, z3/2; (iv) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP-VPP-099.

References

First citationAbd-El-Aziz, A. S., El-Agrody, A. M., Bedair, A. H., Corkery, T. C. & Ata, A. (2004). Heterocycles, 63, 1793–1812.  CAS Google Scholar
First citationAlvey, L., Prado, S., Huteau, V., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2008). Bioorg. Med. Chem. 16, 8264–8272.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497–2505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBedair, A. H., Emam, H. A., El-Hady, N. A., Ahmed, K. A. R. & El-Agrody, A. M. (2001). Farmaco, 56, 965–973.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). J. Med. Chem. 44, 3195–3198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Agrody, A. M., Eid, F. A., Emam, H. A., Mohamed, H. M. & Bedair, A. H. (2002). Z. Naturforsch. Teil B, 57, 579–585.  CAS Google Scholar
First citationEl-Agrody, A. M., Sabry, N. M. & Motlaq, S. S. (2011). J. Chem. Res. 35, 77–83.  CAS Google Scholar
First citationJeso, V. & Nicolaou, K. C. (2009). Tetrahedron Lett. 50, 1161–1163.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSymeonidis, T., Chamilos, M., Hadjipavlou-Litina, D. J., Kallitsakis, M. & Litinas, K. E. (2009). Bioorg. Med. Chem. Lett. 19, 1139–1142.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1803-o1804
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds