organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(2-oxoindolin-3-yl­­idene)thio­carbonohydrazide tetra­hydro­furan monosolvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: hamid.khaledi@gmail.com

(Received 16 May 2012; accepted 18 May 2012; online 23 May 2012)

In the thio­carbonohydrazide mol­ecule of the title compound, C17H12N6O2S·C4H8O, the terminal indolin-2-one ring systems make a dihedral angle of 20.13 (6)° with each other. Two intra­molecular N—H⋯O hydrogen bonds are present, each of which generates an S(6) ring. In the crystal, N—H⋯O hydrogen bonds lead to a mol­ecular chain running along the b axis. The tetra­hydro­furan solvent mol­ecule is disordered over two orientations in a 0.561 (11):0.439 (11) ratio.

Related literature

For the structures of the N-methyl­isatin analogue and its Sn(IV) complex and also the spectroscopic characterization of the title thio­carbonohydrazide, see: Bacchi et al. (2005[Bacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, G., Rodriguez-Arguelles, M. C., Rogolino, D., Solinas, C. & Zani, F. (2005). J. Inorg. Biochem. 99, 397-408.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N6O2S·C4H8O

  • Mr = 436.49

  • Triclinic, [P \overline 1]

  • a = 8.4768 (1) Å

  • b = 11.4765 (2) Å

  • c = 11.9091 (2) Å

  • α = 75.206 (1)°

  • β = 72.553 (1)°

  • γ = 69.416 (1)°

  • V = 1020.02 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.33 × 0.25 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.938, Tmax = 0.975

  • 9421 measured reflections

  • 4451 independent reflections

  • 3628 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.121

  • S = 1.05

  • 4451 reflections

  • 338 parameters

  • 30 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 (1) 1.96 (2) 2.829 (15) 168 (2)
N1—H1⋯O3′i 0.88 (1) 1.98 (3) 2.84 (2) 167 (2)
N3—H3⋯O1 0.85 (1) 2.18 (2) 2.8369 (16) 134 (2)
N4—H4⋯O2 0.86 (1) 2.10 (2) 2.7857 (16) 136 (2)
N6—H6⋯O1ii 0.84 (1) 2.32 (2) 3.0522 (16) 146 (2)
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, a series of isatin-based thiocarbonohydrazides and the related Sn(IV) complexes were synthesized and studied for their antimicrobial and mutagenic properties (Bacchi et al., 2005). The title compound, being among those, was re-synthesized and grown as X-ray quality crystals from THF by our research group. In the crystal structure, the hydrazone molecule is roughly planar with the maximum deviation from the least-squares plane of all non-H atoms being 0.481 (2) Å for atom C14. The configurations around the C—N bonds, stabilized by intramolecular N—H···O hydrogen bonding (Table 1), are same as those observed in the N-methylisatin analogous. The hydrazone molecule is co-crystallized with one molecule of THF which suffers from disorder. The crystal packing contains chains along the b axis formed by intermolecular N6—H6···O1 hydrogen bonds (Table 1 and Fig. 2). The THF molecules are N—H···O bonded to the chain.

Related literature top

For the structures of the N-methylisatin analogue and its Sn(IV) complex and also the spectroscopic characterization of the title thiocarbonohydrazide, see: Bacchi et al. (2005).

Experimental top

The Schiff base was prepared as described previously (Bacchi et al., 2005) and grown as X-ray quality crystals from a THF solution at room temperature.

Refinement top

C-bound hydrogen atoms were placed at the calculated positions and refined in riding mode with C—H distances of 0.93 Å. The amino hydrogen atoms were located in a difference Fourier map and refined with N—H distance restraints of 0.86 (2) Å. For all the hydrogen atoms Uiso(H) were set to 1.2 Ueq(carrier atoms). The tetrahydrofuran molecule was found to be disordered over two positions, the site occupancy factor for the major component refined to 0.561 (11). The geometrical parameters of the two disordered components were kept similar by using the SAME command in SHELXL97.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the title compound at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Only the major component of the disordered tetrahydrofuran molecule is shown.
[Figure 2] Fig. 2. A packing diagram, showing the N—H···O hydrogen bonded chain along the b axis. Hydrogen bonds are depicted as red dashed lines.
1,5-Bis(2-oxoindolin-3-ylidene)thiocarbonohydrazide tetrahydrofuran monosolvate top
Crystal data top
C17H12N6O2S·C4H8OZ = 2
Mr = 436.49F(000) = 456
Triclinic, P1Dx = 1.421 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4768 (1) ÅCell parameters from 4598 reflections
b = 11.4765 (2) Åθ = 2.4–29.1°
c = 11.9091 (2) ŵ = 0.20 mm1
α = 75.206 (1)°T = 296 K
β = 72.553 (1)°Block, yellow
γ = 69.416 (1)°0.33 × 0.25 × 0.13 mm
V = 1020.02 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4451 independent reflections
Radiation source: fine-focus sealed tube3628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.938, Tmax = 0.975k = 1414
9421 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.1602P]
where P = (Fo2 + 2Fc2)/3
4451 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.20 e Å3
30 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H12N6O2S·C4H8Oγ = 69.416 (1)°
Mr = 436.49V = 1020.02 (3) Å3
Triclinic, P1Z = 2
a = 8.4768 (1) ÅMo Kα radiation
b = 11.4765 (2) ŵ = 0.20 mm1
c = 11.9091 (2) ÅT = 296 K
α = 75.206 (1)°0.33 × 0.25 × 0.13 mm
β = 72.553 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4451 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3628 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.975Rint = 0.016
9421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04030 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
4451 reflectionsΔρmin = 0.28 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.05012 (6)0.21013 (4)0.21038 (4)0.05637 (15)
O10.25587 (17)0.15327 (11)0.48629 (10)0.0564 (3)
O20.20530 (16)0.44464 (11)0.49172 (9)0.0529 (3)
N10.38131 (19)0.19240 (13)0.64563 (12)0.0498 (3)
H10.402 (2)0.2746 (14)0.6651 (16)0.060*
N20.21787 (17)0.11827 (12)0.49897 (11)0.0435 (3)
N30.16236 (18)0.11149 (12)0.40644 (12)0.0455 (3)
H30.163 (2)0.0406 (14)0.3970 (16)0.055*
N40.13631 (18)0.32009 (11)0.34784 (11)0.0437 (3)
H40.167 (2)0.3167 (17)0.4115 (13)0.052*
N50.11499 (16)0.42919 (11)0.26740 (11)0.0411 (3)
N60.18651 (18)0.64925 (12)0.39333 (11)0.0470 (3)
H60.217 (2)0.6750 (18)0.4406 (15)0.056*
C10.3000 (2)0.11911 (14)0.55902 (13)0.0448 (3)
C20.2764 (2)0.01502 (14)0.56776 (13)0.0417 (3)
C30.3419 (2)0.00786 (15)0.66947 (13)0.0442 (3)
C40.3523 (3)0.09899 (18)0.72112 (17)0.0617 (5)
H4A0.31140.18430.69090.074*
C50.4251 (3)0.0596 (2)0.81909 (18)0.0709 (5)
H50.43320.11930.85550.085*
C60.4860 (3)0.0675 (2)0.86359 (16)0.0634 (5)
H6A0.53420.09160.92970.076*
C70.4769 (2)0.15979 (17)0.81209 (14)0.0542 (4)
H70.51840.24510.84210.065*
C80.4042 (2)0.11990 (15)0.71482 (13)0.0441 (3)
C90.1173 (2)0.21704 (14)0.32405 (13)0.0423 (3)
C100.1806 (2)0.52963 (14)0.40708 (13)0.0425 (3)
C110.13649 (18)0.52272 (13)0.29545 (12)0.0388 (3)
C120.12560 (19)0.64527 (13)0.21980 (13)0.0399 (3)
C130.0978 (2)0.69308 (15)0.10567 (13)0.0469 (4)
H130.07460.64480.06410.056*
C140.1054 (2)0.81390 (16)0.05535 (15)0.0558 (4)
H140.08810.84730.02130.067*
C150.1386 (3)0.88613 (16)0.11776 (17)0.0600 (5)
H150.14320.96740.08200.072*
C160.1649 (2)0.84010 (15)0.23188 (16)0.0544 (4)
H160.18600.88910.27370.065*
C170.1587 (2)0.71911 (14)0.28141 (13)0.0426 (3)
O30.446 (3)0.5472 (16)0.7408 (9)0.054 (3)0.561 (11)
C180.3597 (15)0.4754 (11)0.7110 (8)0.073 (3)0.561 (11)
H18C0.44320.40710.67100.087*0.561 (11)
H18D0.28330.52880.65920.087*0.561 (11)
C190.2583 (7)0.4248 (5)0.8281 (7)0.0748 (19)0.561 (11)
H19C0.24490.34510.82560.090*0.561 (11)
H19D0.14470.48430.85050.090*0.561 (11)
C200.3706 (7)0.4076 (5)0.9136 (5)0.0656 (13)0.561 (11)
H20C0.30650.40150.99630.079*0.561 (11)
H20D0.47310.33510.90420.079*0.561 (11)
C210.4135 (17)0.5314 (11)0.8674 (8)0.062 (2)0.561 (11)
H21C0.31720.60070.89760.075*0.561 (11)
H21D0.51510.52780.89140.075*0.561 (11)
O3'0.471 (3)0.545 (2)0.7353 (11)0.049 (2)0.439 (11)
C18'0.3702 (17)0.5049 (11)0.6829 (10)0.058 (2)0.439 (11)
H18A0.43410.48370.60470.070*0.439 (11)
H18B0.26230.57050.67540.070*0.439 (11)
C19'0.3368 (12)0.3903 (7)0.7693 (8)0.078 (2)0.439 (11)
H19A0.43850.31700.76180.094*0.439 (11)
H19B0.23980.37110.75910.094*0.439 (11)
C20'0.2948 (18)0.4357 (11)0.8886 (8)0.109 (4)0.439 (11)
H20A0.17630.48950.90790.131*0.439 (11)
H20B0.31400.36520.95350.131*0.439 (11)
C21'0.4234 (19)0.5088 (14)0.8621 (11)0.062 (3)0.439 (11)
H21A0.37140.58320.90000.074*0.439 (11)
H21B0.52490.45670.89220.074*0.439 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0781 (3)0.0465 (2)0.0592 (3)0.0176 (2)0.0398 (2)0.00685 (18)
O10.0811 (8)0.0489 (6)0.0550 (7)0.0291 (6)0.0329 (6)0.0013 (5)
O20.0720 (8)0.0532 (6)0.0403 (6)0.0235 (6)0.0238 (5)0.0002 (5)
N10.0666 (9)0.0398 (7)0.0513 (8)0.0214 (6)0.0276 (7)0.0027 (6)
N20.0528 (7)0.0407 (6)0.0406 (6)0.0147 (5)0.0171 (5)0.0045 (5)
N30.0621 (8)0.0359 (6)0.0462 (7)0.0167 (6)0.0251 (6)0.0024 (5)
N40.0616 (8)0.0368 (6)0.0390 (6)0.0157 (6)0.0221 (6)0.0031 (5)
N50.0518 (7)0.0361 (6)0.0380 (6)0.0123 (5)0.0171 (5)0.0041 (5)
N60.0634 (8)0.0460 (7)0.0417 (7)0.0197 (6)0.0196 (6)0.0108 (5)
C10.0539 (9)0.0416 (8)0.0438 (8)0.0205 (7)0.0171 (7)0.0002 (6)
C20.0484 (8)0.0412 (7)0.0386 (7)0.0162 (6)0.0132 (6)0.0042 (6)
C30.0511 (8)0.0457 (8)0.0376 (7)0.0151 (6)0.0140 (6)0.0046 (6)
C40.0863 (13)0.0511 (9)0.0559 (10)0.0162 (9)0.0307 (9)0.0118 (8)
C50.1002 (16)0.0693 (12)0.0592 (11)0.0239 (11)0.0358 (11)0.0190 (9)
C60.0763 (12)0.0757 (12)0.0461 (9)0.0234 (10)0.0281 (9)0.0061 (8)
C70.0612 (10)0.0577 (10)0.0451 (8)0.0196 (8)0.0212 (7)0.0023 (7)
C80.0474 (8)0.0483 (8)0.0396 (7)0.0197 (7)0.0124 (6)0.0017 (6)
C90.0478 (8)0.0392 (7)0.0431 (8)0.0128 (6)0.0159 (6)0.0062 (6)
C100.0492 (8)0.0453 (8)0.0374 (7)0.0155 (6)0.0140 (6)0.0080 (6)
C110.0450 (8)0.0382 (7)0.0350 (7)0.0121 (6)0.0124 (6)0.0063 (5)
C120.0451 (8)0.0370 (7)0.0387 (7)0.0116 (6)0.0115 (6)0.0069 (6)
C130.0564 (9)0.0452 (8)0.0407 (8)0.0138 (7)0.0158 (7)0.0065 (6)
C140.0693 (11)0.0483 (9)0.0450 (8)0.0145 (8)0.0188 (8)0.0026 (7)
C150.0777 (12)0.0387 (8)0.0625 (10)0.0189 (8)0.0206 (9)0.0008 (7)
C160.0696 (11)0.0410 (8)0.0587 (10)0.0185 (7)0.0184 (8)0.0118 (7)
C170.0483 (8)0.0388 (7)0.0423 (8)0.0110 (6)0.0130 (6)0.0092 (6)
O30.066 (6)0.049 (3)0.053 (3)0.023 (4)0.019 (2)0.003 (2)
C180.085 (4)0.078 (7)0.080 (4)0.035 (4)0.037 (3)0.019 (4)
C190.059 (3)0.053 (2)0.115 (5)0.020 (2)0.028 (3)0.005 (3)
C200.070 (3)0.053 (2)0.073 (3)0.0203 (19)0.032 (2)0.0115 (18)
C210.098 (6)0.048 (3)0.041 (3)0.029 (4)0.004 (3)0.012 (2)
O3'0.055 (5)0.054 (4)0.047 (4)0.015 (2)0.021 (3)0.014 (3)
C18'0.057 (4)0.047 (4)0.080 (5)0.012 (3)0.029 (4)0.016 (4)
C19'0.072 (4)0.057 (3)0.112 (5)0.028 (3)0.014 (4)0.022 (3)
C20'0.152 (11)0.123 (8)0.079 (5)0.090 (8)0.025 (6)0.009 (5)
C21'0.066 (5)0.059 (6)0.059 (5)0.005 (3)0.016 (3)0.023 (3)
Geometric parameters (Å, º) top
S1—C91.6467 (15)C13—H130.9300
O1—C11.2307 (18)C14—C151.387 (3)
O2—C101.2215 (18)C14—H140.9300
N1—C11.350 (2)C15—C161.381 (3)
N1—C81.403 (2)C15—H150.9300
N1—H10.877 (14)C16—C171.376 (2)
N2—C21.2868 (19)C16—H160.9300
N2—N31.3498 (17)O3—C211.424 (9)
N3—C91.3670 (19)O3—C181.438 (9)
N3—H30.847 (14)C18—C191.496 (9)
N4—C91.3557 (19)C18—H18C0.9700
N4—N51.3601 (17)C18—H18D0.9700
N4—H40.860 (14)C19—C201.527 (6)
N5—C111.2861 (18)C19—H19C0.9700
N6—C101.357 (2)C19—H19D0.9700
N6—C171.4088 (19)C20—C211.516 (9)
N6—H60.837 (14)C20—H20C0.9700
C1—C21.508 (2)C20—H20D0.9700
C2—C31.450 (2)C21—H21C0.9700
C3—C41.380 (2)C21—H21D0.9700
C3—C81.394 (2)O3'—C21'1.430 (11)
C4—C51.383 (3)O3'—C18'1.438 (11)
C4—H4A0.9300C18'—C19'1.504 (9)
C5—C61.384 (3)C18'—H18A0.9700
C5—H50.9300C18'—H18B0.9700
C6—C71.386 (3)C19'—C20'1.536 (10)
C6—H6A0.9300C19'—H19A0.9700
C7—C81.375 (2)C19'—H19B0.9700
C7—H70.9300C20'—C21'1.515 (11)
C10—C111.5123 (19)C20'—H20A0.9700
C11—C121.4525 (19)C20'—H20B0.9700
C12—C131.387 (2)C21'—H21A0.9700
C12—C171.394 (2)C21'—H21B0.9700
C13—C141.379 (2)
C1—N1—C8111.71 (13)C14—C15—H15119.3
C1—N1—H1124.8 (13)C17—C16—C15117.62 (15)
C8—N1—H1122.7 (13)C17—C16—H16121.2
C2—N2—N3118.31 (12)C15—C16—H16121.2
N2—N3—C9119.91 (12)C16—C17—C12121.62 (14)
N2—N3—H3119.6 (12)C16—C17—N6128.80 (14)
C9—N3—H3120.3 (12)C12—C17—N6109.57 (12)
C9—N4—N5119.78 (12)C21—O3—C18108.8 (8)
C9—N4—H4121.0 (12)O3—C18—C19104.9 (7)
N5—N4—H4119.1 (12)O3—C18—H18C110.8
C11—N5—N4116.37 (12)C19—C18—H18C110.8
C10—N6—C17111.43 (12)O3—C18—H18D110.8
C10—N6—H6124.2 (13)C19—C18—H18D110.8
C17—N6—H6123.8 (13)H18C—C18—H18D108.8
O1—C1—N1127.78 (14)C18—C19—C20102.6 (5)
O1—C1—C2126.52 (14)C18—C19—H19C111.3
N1—C1—C2105.69 (12)C20—C19—H19C111.3
N2—C2—C3124.33 (14)C18—C19—H19D111.3
N2—C2—C1129.33 (13)C20—C19—H19D111.3
C3—C2—C1106.29 (12)H19C—C19—H19D109.2
C4—C3—C8120.65 (15)C21—C20—C1997.6 (5)
C4—C3—C2132.58 (15)C21—C20—H20C112.2
C8—C3—C2106.77 (13)C19—C20—H20C112.2
C3—C4—C5118.04 (17)C21—C20—H20D112.2
C3—C4—H4A121.0C19—C20—H20D112.2
C5—C4—H4A121.0H20C—C20—H20D109.8
C4—C5—C6120.79 (18)O3—C21—C20105.2 (8)
C4—C5—H5119.6O3—C21—H21C110.7
C6—C5—H5119.6C20—C21—H21C110.7
C5—C6—C7121.64 (16)O3—C21—H21D110.7
C5—C6—H6A119.2C20—C21—H21D110.7
C7—C6—H6A119.2H21C—C21—H21D108.8
C8—C7—C6117.22 (16)C21'—O3'—C18'108.2 (10)
C8—C7—H7121.4O3'—C18'—C19'103.9 (9)
C6—C7—H7121.4O3'—C18'—H18A111.0
C7—C8—C3121.65 (15)C19'—C18'—H18A111.0
C7—C8—N1128.92 (15)O3'—C18'—H18B111.0
C3—C8—N1109.42 (13)C19'—C18'—H18B111.0
N4—C9—N3112.67 (13)H18A—C18'—H18B109.0
N4—C9—S1126.85 (11)C18'—C19'—C20'100.5 (7)
N3—C9—S1120.48 (11)C18'—C19'—H19A111.7
O2—C10—N6127.57 (14)C20'—C19'—H19A111.7
O2—C10—C11126.71 (13)C18'—C19'—H19B111.7
N6—C10—C11105.72 (12)C20'—C19'—H19B111.7
N5—C11—C12124.64 (13)H19A—C19'—H19B109.4
N5—C11—C10129.04 (13)C21'—C20'—C19'101.2 (8)
C12—C11—C10106.31 (12)C21'—C20'—H20A111.5
C13—C12—C17120.17 (13)C19'—C20'—H20A111.5
C13—C12—C11132.86 (13)C21'—C20'—H20B111.5
C17—C12—C11106.91 (12)C19'—C20'—H20B111.5
C14—C13—C12118.37 (15)H20A—C20'—H20B109.3
C14—C13—H13120.8O3'—C21'—C20'107.5 (9)
C12—C13—H13120.8O3'—C21'—H21A110.2
C13—C14—C15120.77 (15)C20'—C21'—H21A110.2
C13—C14—H14119.6O3'—C21'—H21B110.2
C15—C14—H14119.6C20'—C21'—H21B110.2
C16—C15—C14121.45 (15)H21A—C21'—H21B108.5
C16—C15—H15119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.88 (1)1.96 (2)2.829 (15)168 (2)
N1—H1···O3i0.88 (1)1.98 (3)2.84 (2)167 (2)
N3—H3···O10.85 (1)2.18 (2)2.8369 (16)134 (2)
N4—H4···O20.86 (1)2.10 (2)2.7857 (16)136 (2)
N6—H6···O1ii0.84 (1)2.32 (2)3.0522 (16)146 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H12N6O2S·C4H8O
Mr436.49
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.4768 (1), 11.4765 (2), 11.9091 (2)
α, β, γ (°)75.206 (1), 72.553 (1), 69.416 (1)
V3)1020.02 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.33 × 0.25 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.938, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
9421, 4451, 3628
Rint0.016
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.121, 1.05
No. of reflections4451
No. of parameters338
No. of restraints30
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SAINT (Bruker, 2007, SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.877 (14)1.96 (2)2.829 (15)168.3 (18)
N1—H1···O3'i0.877 (14)1.98 (3)2.84 (2)167.4 (18)
N3—H3···O10.847 (14)2.183 (16)2.8369 (16)133.9 (16)
N4—H4···O20.860 (14)2.101 (16)2.7857 (16)136.2 (16)
N6—H6···O1ii0.837 (14)2.322 (16)3.0522 (16)146.0 (17)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

We thank the University of Malaya for funding this study (ERGS grant No. ER009–2011 A).

References

First citationBacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, G., Rodriguez-Arguelles, M. C., Rogolino, D., Solinas, C. & Zani, F. (2005). J. Inorg. Biochem. 99, 397–408.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds