organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(5-Bromo-2-hy­dr­oxy­benzyl­­idene)amino]-3-propyl-1H-1,2,4-triazole-5(4H)-thione

aCollege of Arts and Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China, bInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China, cDepartment of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China, and dJincheng Tap Water Company, Jincheng, Shanxi 048000, People's Republic of China
*Correspondence e-mail: cxyuan@sxu.edu.cn, miaoli@sxu.edu.cn

(Received 7 April 2012; accepted 2 May 2012; online 12 May 2012)

The asymmetric unit of the title compound, C12H13BrN4OS, contains two independent mol­ecules in which the dihedral angles between the triazole and benzene rings are 2.9 (3) and 7.5 (3)°. The thione group is of the form R2C=S. An intra­molecular O—H⋯N hydrogen bond occurs in each mol­ecule. The crystal structure features weak N—H⋯S inter­actions and ππ stacking of the benzene rings [centroid–centroid distance = 3.667 (3) Å].

Related literature

For the pharmacological activity of 1,2,4-triazole-substituted and Schiff base compounds, see: Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Ma et al. (2011[Ma, L., Lu, L. P., Zhu, M. L., Wang, Q. M., Li, Y., Xing, S., Fu, X. Q., Gao, Z. Q. & Dong, Y. H. (2011). Dalton Trans. 40, 6532-6540.]). For copper complexes containing 1,2,4-triazole Schiff base ligands, see: Wen et al. (2004[Wen, L. R., Li, M., Wang, S. W., Zhang, S. S., Li, X. M. & Ou Yang, P. K. (2004). Chem. Res. Chin. Univ. 20, 722-724.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13BrN4OS

  • Mr = 341.23

  • Triclinic, [P \overline 1]

  • a = 8.042 (5) Å

  • b = 13.187 (8) Å

  • c = 13.408 (8) Å

  • α = 97.406 (9)°

  • β = 92.956 (10)°

  • γ = 95.916 (9)°

  • V = 1399.5 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.08 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.458, Tmax = 0.578

  • 14278 measured reflections

  • 4939 independent reflections

  • 3061 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.102

  • S = 0.93

  • 4939 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N4 0.82 1.93 2.644 (4) 145
O2—H2⋯N8 0.82 1.90 2.612 (4) 144
N1—H1A⋯S1i 0.86 2.46 3.300 (4) 164
N5—H5⋯S2ii 0.86 2.41 3.252 (4) 165
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,2,4-triazole and its derivatives possess a variety of pharmacological properties (Isloor et al., 2009). Schiff bases derived from substituted salicylaldehydes form numerous metal complexes (Wen et al., 2004). Also, copper complexes containing 1,2,4-triazole Schiff base ligands are potential inhibitors of PTP1B (protein tyrosine phosphatase 1B), TCPTP (T-cell protein tyrosine phosphatase), PTP-MEG2 (megakaryocyte protein tyrosine phosphatase) and SHP-1 (Src homology phosphatase 1) (Ma et al., 2011). In continuation of our work in this area, we report here the synthesis and crystal structure of the title compound, C12H13BrN4OS, (I).

The title compound, (I), crystallizes with two independent molecules in the asymmetric unit (Fig. 1). The dihedral angles between the triazole and phenyl rings are 2.9 (3)° and 7.5 (3)°, respectively. The thione group is of the form R2C=S with a Cdb\S distance of 1.673 (4)Å and 1.675 (4)Å indicating significant double bond character. Intramolecular O—H···N hydrogen bonds, weak N—H···S intermolecular interactions (Table 1) and ππ stacking of the benzene rings [centroid–centroid distance = 3.667 (3) Å] are observed that may influence crystal packing.

Related literature top

For the pharmacological activity of 1,2,4-triazole-substituted and Schiff base compounds, see: Isloor et al. (2009); Ma et al. (2011). For copper complexes containing 1,2,4-triazole Schiff base ligands, see: Wen et al. (2004).

Experimental top

0.5 mmol 5-Bromosalicylaldehyde in 10 ml of ethanol was added to a solution of 4-amino-5-propyl-1,2,4-triazole-3-thione (0.5 mmol) in 20 ml of ethanol, and then refluxed for 2 h. The resulting solution was filterd and recrystallized from ethanol. X-ray quality Yellow crystals of the title compound were formed upon slow evaporation of the resulting soluton.

Refinement top

All of the H atoms were placed in their calculated positions and the refined using the riding model with C—H lengths of 0.93Å (CH), 0.97Å (CH2), 0.97 Å (CH3), 0.86 (NH) or 0.82Å. The isotropoc displacement parameters for these atoms were set to 1.2 (CH, CH2, O, N) or 1.5 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, (I), with displacement ellipsoids drawn at the 50% probability level. Dashed lines indicate O—H···N intramolecular hydrogen bonding.
[Figure 2] Fig. 2. Packing of the title compound, (I),viewed along the aaxis. Dashed lines indicate O—H···N intramolecular hydrogen bonds and weak N—H···S intermolecular interactions. Remaining hydrogen atoms have been removed for clarity.
4-[(5-Bromo-2-hydroxybenzylidene)amino]-3-propyl-1H-1,2,4-triazole- 5(4H)-thione top
Crystal data top
C12H13BrN4OSZ = 4
Mr = 341.23F(000) = 688
Triclinic, P1Dx = 1.620 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.042 (5) ÅCell parameters from 2374 reflections
b = 13.187 (8) Åθ = 2.5–23.6°
c = 13.408 (8) ŵ = 3.08 mm1
α = 97.406 (9)°T = 298 K
β = 92.956 (10)°Block, yellow
γ = 95.916 (9)°0.30 × 0.25 × 0.20 mm
V = 1399.5 (15) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
4939 independent reflections
Radiation source: fine-focus sealed tube3061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 11.72 pixels mm-1θmax = 25.0°, θmin = 1.5°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 1515
Tmin = 0.458, Tmax = 0.578l = 1515
14278 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
4939 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C12H13BrN4OSγ = 95.916 (9)°
Mr = 341.23V = 1399.5 (15) Å3
Triclinic, P1Z = 4
a = 8.042 (5) ÅMo Kα radiation
b = 13.187 (8) ŵ = 3.08 mm1
c = 13.408 (8) ÅT = 298 K
α = 97.406 (9)°0.30 × 0.25 × 0.20 mm
β = 92.956 (10)°
Data collection top
Bruker SMART 1K CCD
diffractometer
4939 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3061 reflections with I > 2σ(I)
Tmin = 0.458, Tmax = 0.578Rint = 0.055
14278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.93Δρmax = 0.49 e Å3
4939 reflectionsΔρmin = 0.55 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.38916 (7)0.16296 (4)0.59088 (4)0.06736 (19)
S10.49656 (16)0.40893 (8)0.14062 (8)0.0530 (3)
O10.1987 (5)0.5771 (2)0.5179 (2)0.0666 (10)
H10.20890.58600.45900.100*
N10.4061 (5)0.5891 (3)0.0953 (2)0.0521 (10)
H1A0.44510.58050.03660.062*
N20.3314 (5)0.6750 (3)0.1302 (3)0.0512 (10)
N30.3366 (4)0.5663 (2)0.2414 (2)0.0378 (8)
N40.3044 (4)0.5369 (2)0.3350 (2)0.0400 (8)
C10.4132 (5)0.5203 (3)0.1597 (3)0.0389 (10)
C20.2882 (5)0.6584 (3)0.2197 (3)0.0424 (10)
C30.1971 (6)0.7272 (3)0.2879 (3)0.0462 (11)
H3A0.25880.74280.35310.055*
H3B0.08810.69220.29750.055*
C40.1740 (6)0.8271 (3)0.2457 (3)0.0540 (12)
H4A0.28320.86240.23700.065*
H4B0.11430.81110.17990.065*
C50.0785 (7)0.8980 (4)0.3133 (4)0.0833 (18)
H5A0.03160.86470.31970.125*
H5B0.06950.96040.28440.125*
H5C0.13680.91400.37860.125*
C60.3493 (5)0.4529 (3)0.3590 (3)0.0420 (11)
H60.40270.41040.31310.050*
C70.3181 (5)0.4230 (3)0.4566 (3)0.0368 (10)
C80.2452 (5)0.4844 (3)0.5321 (3)0.0466 (11)
C90.2203 (6)0.4511 (4)0.6243 (3)0.0554 (13)
H90.17340.49260.67430.066*
C100.2647 (6)0.3566 (4)0.6423 (3)0.0562 (13)
H100.24750.33410.70430.067*
C110.3349 (5)0.2955 (3)0.5681 (3)0.0458 (11)
C120.3633 (5)0.3282 (3)0.4773 (3)0.0442 (11)
H120.41330.28680.42870.053*
Br20.51614 (6)0.08187 (4)0.31301 (4)0.06348 (19)
S20.14032 (16)0.37417 (8)0.08568 (8)0.0509 (3)
O20.1831 (4)0.0214 (2)0.0781 (2)0.0544 (8)
H20.16800.03890.09430.082*
N60.0208 (5)0.3668 (3)0.1823 (2)0.0499 (9)
N50.0102 (5)0.4074 (2)0.0951 (2)0.0516 (10)
H50.01450.46740.08530.062*
N70.0963 (4)0.2607 (2)0.0741 (2)0.0374 (8)
N80.1549 (4)0.1671 (2)0.0448 (2)0.0385 (8)
C130.0814 (5)0.3467 (3)0.0267 (3)0.0418 (10)
C140.0324 (5)0.2768 (3)0.1686 (3)0.0413 (10)
C150.0280 (5)0.2020 (3)0.2411 (3)0.0441 (11)
H15A0.14160.18920.25900.053*
H15B0.03250.13750.20940.053*
C160.0556 (6)0.2392 (3)0.3367 (3)0.0495 (12)
H16A0.00350.30430.36790.059*
H16B0.17000.25050.31910.059*
C170.0559 (7)0.1630 (4)0.4107 (3)0.0694 (15)
H17A0.11740.09910.38080.104*
H17B0.10780.18930.47010.104*
H17C0.05730.15190.42850.104*
C180.2235 (5)0.1495 (3)0.0384 (3)0.0414 (10)
H180.23780.20060.07990.050*
C190.2791 (5)0.0495 (3)0.0681 (3)0.0368 (10)
C200.2579 (5)0.0309 (3)0.0101 (3)0.0395 (10)
C210.3146 (6)0.1252 (3)0.0421 (3)0.0497 (12)
H210.30090.17840.00300.060*
C220.3909 (5)0.1398 (3)0.1314 (3)0.0490 (11)
H220.42840.20290.15290.059*
C230.4117 (5)0.0604 (3)0.1893 (3)0.0428 (10)
C240.3565 (5)0.0322 (3)0.1588 (3)0.0427 (11)
H240.37040.08460.19890.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0834 (4)0.0674 (3)0.0629 (3)0.0222 (3)0.0151 (3)0.0374 (3)
S10.0863 (9)0.0448 (7)0.0363 (6)0.0296 (6)0.0219 (6)0.0124 (5)
O10.104 (3)0.053 (2)0.053 (2)0.0347 (19)0.038 (2)0.0096 (16)
N10.081 (3)0.045 (2)0.039 (2)0.027 (2)0.028 (2)0.0140 (17)
N20.076 (3)0.042 (2)0.043 (2)0.0232 (19)0.025 (2)0.0148 (17)
N30.054 (2)0.0365 (19)0.0274 (18)0.0125 (16)0.0092 (16)0.0128 (14)
N40.052 (2)0.040 (2)0.0313 (19)0.0078 (17)0.0147 (17)0.0110 (15)
C10.052 (3)0.039 (2)0.030 (2)0.011 (2)0.008 (2)0.0099 (18)
C20.048 (3)0.043 (2)0.040 (2)0.011 (2)0.010 (2)0.0129 (19)
C30.057 (3)0.039 (2)0.049 (3)0.018 (2)0.021 (2)0.015 (2)
C40.072 (3)0.045 (3)0.051 (3)0.019 (2)0.018 (3)0.017 (2)
C50.115 (5)0.056 (3)0.097 (4)0.045 (3)0.057 (4)0.028 (3)
C60.061 (3)0.037 (2)0.031 (2)0.010 (2)0.016 (2)0.0079 (18)
C70.047 (3)0.038 (2)0.025 (2)0.0033 (19)0.0080 (19)0.0050 (17)
C80.052 (3)0.051 (3)0.039 (3)0.009 (2)0.015 (2)0.009 (2)
C90.074 (4)0.061 (3)0.034 (3)0.013 (3)0.023 (2)0.003 (2)
C100.062 (3)0.078 (4)0.034 (3)0.008 (3)0.014 (2)0.022 (2)
C110.052 (3)0.049 (3)0.040 (2)0.004 (2)0.009 (2)0.020 (2)
C120.060 (3)0.043 (2)0.032 (2)0.009 (2)0.009 (2)0.0082 (19)
Br20.0799 (4)0.0558 (3)0.0581 (3)0.0235 (3)0.0309 (3)0.0026 (2)
S20.0755 (9)0.0429 (6)0.0419 (6)0.0249 (6)0.0211 (6)0.0133 (5)
O20.085 (2)0.0426 (17)0.0434 (18)0.0200 (17)0.0240 (17)0.0158 (14)
N60.068 (3)0.049 (2)0.037 (2)0.0223 (19)0.0166 (19)0.0066 (17)
N50.083 (3)0.039 (2)0.041 (2)0.0294 (19)0.023 (2)0.0109 (16)
N70.051 (2)0.0321 (18)0.0332 (18)0.0170 (16)0.0127 (16)0.0046 (14)
N80.051 (2)0.0298 (18)0.0369 (19)0.0156 (16)0.0104 (17)0.0020 (14)
C130.055 (3)0.034 (2)0.038 (2)0.015 (2)0.007 (2)0.0039 (18)
C140.049 (3)0.041 (3)0.036 (2)0.013 (2)0.013 (2)0.0047 (19)
C150.055 (3)0.044 (2)0.037 (2)0.015 (2)0.010 (2)0.0093 (19)
C160.063 (3)0.053 (3)0.034 (2)0.015 (2)0.014 (2)0.002 (2)
C170.097 (4)0.076 (4)0.042 (3)0.023 (3)0.015 (3)0.019 (3)
C180.055 (3)0.036 (2)0.037 (2)0.014 (2)0.014 (2)0.0087 (18)
C190.044 (3)0.031 (2)0.037 (2)0.0097 (19)0.005 (2)0.0057 (18)
C200.046 (3)0.036 (2)0.039 (2)0.010 (2)0.006 (2)0.0096 (19)
C210.067 (3)0.030 (2)0.055 (3)0.010 (2)0.004 (3)0.013 (2)
C220.060 (3)0.037 (2)0.053 (3)0.021 (2)0.007 (2)0.001 (2)
C230.047 (3)0.042 (2)0.041 (2)0.013 (2)0.013 (2)0.0011 (19)
C240.055 (3)0.039 (2)0.039 (2)0.017 (2)0.014 (2)0.0085 (19)
Geometric parameters (Å, º) top
Br1—C111.902 (4)Br2—C231.900 (4)
S1—C11.673 (4)S2—C131.675 (4)
O1—C81.348 (5)O2—C201.351 (4)
O1—H10.8200O2—H20.8200
N1—C11.334 (5)N6—C141.297 (5)
N1—N21.377 (4)N6—N51.371 (4)
N1—H1A0.8600N5—C131.330 (5)
N2—C21.304 (5)N5—H50.8600
N3—C21.375 (5)N7—C131.381 (5)
N3—C11.385 (5)N7—N81.384 (4)
N3—N41.390 (4)N7—C141.391 (5)
N4—C61.274 (5)N8—C181.274 (4)
C2—C31.479 (5)C14—C151.470 (5)
C3—C41.524 (5)C15—C161.527 (5)
C3—H3A0.9700C15—H15A0.9700
C3—H3B0.9700C15—H15B0.9700
C4—C51.512 (6)C16—C171.500 (6)
C4—H4A0.9700C16—H16A0.9700
C4—H4B0.9700C16—H16B0.9700
C5—H5A0.9600C17—H17A0.9600
C5—H5B0.9600C17—H17B0.9600
C5—H5C0.9600C17—H17C0.9600
C6—C71.442 (5)C18—C191.450 (5)
C6—H60.9300C18—H180.9300
C7—C121.394 (5)C19—C201.395 (5)
C7—C81.404 (5)C19—C241.398 (5)
C8—C91.381 (5)C20—C211.392 (5)
C9—C101.378 (6)C21—C221.374 (6)
C9—H90.9300C21—H210.9300
C10—C111.380 (6)C22—C231.383 (6)
C10—H100.9300C22—H220.9300
C11—C121.366 (5)C23—C241.363 (5)
C12—H120.9300C24—H240.9300
C8—O1—H1109.5C20—O2—H2109.5
C1—N1—N2114.6 (3)C14—N6—N5104.5 (3)
C1—N1—H1A122.7C13—N5—N6114.8 (3)
N2—N1—H1A122.7C13—N5—H5122.6
C2—N2—N1104.0 (3)N6—N5—H5122.6
C2—N3—C1109.1 (3)C13—N7—N8133.1 (3)
C2—N3—N4118.4 (3)C13—N7—C14108.8 (3)
C1—N3—N4132.6 (3)N8—N7—C14118.0 (3)
C6—N4—N3120.6 (3)C18—N8—N7121.2 (3)
N1—C1—N3102.0 (3)N5—C13—N7102.2 (3)
N1—C1—S1126.4 (3)N5—C13—S2126.8 (3)
N3—C1—S1131.5 (3)N7—C13—S2131.0 (3)
N2—C2—N3110.3 (3)N6—C14—N7109.7 (3)
N2—C2—C3125.3 (4)N6—C14—C15125.9 (3)
N3—C2—C3124.4 (3)N7—C14—C15124.3 (3)
C2—C3—C4111.6 (3)C14—C15—C16112.5 (3)
C2—C3—H3A109.3C14—C15—H15A109.1
C4—C3—H3A109.3C16—C15—H15A109.1
C2—C3—H3B109.3C14—C15—H15B109.1
C4—C3—H3B109.3C16—C15—H15B109.1
H3A—C3—H3B108.0H15A—C15—H15B107.8
C5—C4—C3112.6 (3)C17—C16—C15111.8 (3)
C5—C4—H4A109.1C17—C16—H16A109.3
C3—C4—H4A109.1C15—C16—H16A109.3
C5—C4—H4B109.1C17—C16—H16B109.3
C3—C4—H4B109.1C15—C16—H16B109.3
H4A—C4—H4B107.8H16A—C16—H16B107.9
C4—C5—H5A109.5C16—C17—H17A109.5
C4—C5—H5B109.5C16—C17—H17B109.5
H5A—C5—H5B109.5H17A—C17—H17B109.5
C4—C5—H5C109.5C16—C17—H17C109.5
H5A—C5—H5C109.5H17A—C17—H17C109.5
H5B—C5—H5C109.5H17B—C17—H17C109.5
N4—C6—C7120.7 (4)N8—C18—C19119.7 (3)
N4—C6—H6119.7N8—C18—H18120.1
C7—C6—H6119.7C19—C18—H18120.1
C12—C7—C8118.3 (4)C20—C19—C24118.3 (3)
C12—C7—C6118.2 (3)C20—C19—C18122.8 (3)
C8—C7—C6123.5 (4)C24—C19—C18118.9 (3)
O1—C8—C9118.0 (4)O2—C20—C21117.4 (3)
O1—C8—C7121.8 (4)O2—C20—C19122.4 (3)
C9—C8—C7120.3 (4)C21—C20—C19120.2 (4)
C10—C9—C8120.2 (4)C22—C21—C20120.2 (4)
C10—C9—H9119.9C22—C21—H21119.9
C8—C9—H9119.9C20—C21—H21119.9
C9—C10—C11119.7 (4)C21—C22—C23119.8 (4)
C9—C10—H10120.1C21—C22—H22120.1
C11—C10—H10120.1C23—C22—H22120.1
C12—C11—C10120.7 (4)C24—C23—C22120.6 (4)
C12—C11—Br1119.3 (3)C24—C23—Br2120.0 (3)
C10—C11—Br1120.0 (3)C22—C23—Br2119.4 (3)
C11—C12—C7120.7 (4)C23—C24—C19120.9 (4)
C11—C12—H12119.6C23—C24—H24119.6
C7—C12—H12119.6C19—C24—H24119.6
C1—N1—N2—C20.8 (5)C14—N6—N5—C130.2 (5)
C2—N3—N4—C6178.9 (4)C13—N7—N8—C186.2 (6)
C1—N3—N4—C60.5 (6)C14—N7—N8—C18176.1 (4)
N2—N1—C1—N30.2 (5)N6—N5—C13—N70.2 (5)
N2—N1—C1—S1179.6 (3)N6—N5—C13—S2178.1 (3)
C2—N3—C1—N10.5 (4)N8—N7—C13—N5177.7 (4)
N4—N3—C1—N1178.9 (4)C14—N7—C13—N50.1 (4)
C2—N3—C1—S1179.8 (3)N8—N7—C13—S24.1 (7)
N4—N3—C1—S10.8 (7)C14—N7—C13—S2178.1 (3)
N1—N2—C2—N31.1 (5)N5—N6—C14—N70.0 (5)
N1—N2—C2—C3177.7 (4)N5—N6—C14—C15179.8 (4)
C1—N3—C2—N21.0 (5)C13—N7—C14—N60.1 (5)
N4—N3—C2—N2178.5 (3)N8—N7—C14—N6178.2 (3)
C1—N3—C2—C3177.8 (4)C13—N7—C14—C15179.7 (4)
N4—N3—C2—C32.7 (6)N8—N7—C14—C152.1 (6)
N2—C2—C3—C45.9 (6)N6—C14—C15—C162.6 (6)
N3—C2—C3—C4175.5 (4)N7—C14—C15—C16177.8 (4)
C2—C3—C4—C5179.0 (4)C14—C15—C16—C17178.8 (4)
N3—N4—C6—C7179.1 (4)N7—N8—C18—C19178.2 (3)
N4—C6—C7—C12177.3 (4)N8—C18—C19—C201.4 (6)
N4—C6—C7—C83.0 (7)N8—C18—C19—C24179.0 (4)
C12—C7—C8—O1179.8 (4)C24—C19—C20—O2179.4 (4)
C6—C7—C8—O10.0 (7)C18—C19—C20—O20.3 (6)
C12—C7—C8—C90.3 (6)C24—C19—C20—C210.7 (6)
C6—C7—C8—C9179.5 (4)C18—C19—C20—C21179.7 (4)
O1—C8—C9—C10179.6 (4)O2—C20—C21—C22179.6 (4)
C7—C8—C9—C100.9 (7)C19—C20—C21—C220.4 (7)
C8—C9—C10—C110.3 (7)C20—C21—C22—C230.2 (7)
C9—C10—C11—C121.0 (7)C21—C22—C23—C240.3 (7)
C9—C10—C11—Br1177.8 (4)C21—C22—C23—Br2179.6 (3)
C10—C11—C12—C71.6 (7)C22—C23—C24—C190.6 (7)
Br1—C11—C12—C7177.1 (3)Br2—C23—C24—C19179.9 (3)
C8—C7—C12—C111.0 (6)C20—C19—C24—C230.8 (6)
C6—C7—C12—C11179.3 (4)C18—C19—C24—C23179.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N40.821.932.644 (4)145
O2—H2···N80.821.902.612 (4)144
N1—H1A···S1i0.862.463.300 (4)164
N5—H5···S2ii0.862.413.252 (4)165
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H13BrN4OS
Mr341.23
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.042 (5), 13.187 (8), 13.408 (8)
α, β, γ (°)97.406 (9), 92.956 (10), 95.916 (9)
V3)1399.5 (15)
Z4
Radiation typeMo Kα
µ (mm1)3.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.458, 0.578
No. of measured, independent and
observed [I > 2σ(I)] reflections
14278, 4939, 3061
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.102, 0.93
No. of reflections4939
No. of parameters347
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.55

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N40.821.932.644 (4)144.9
O2—H2···N80.821.902.612 (4)143.8
N1—H1A···S1i0.862.463.300 (4)164.1
N5—H5···S2ii0.862.413.252 (4)165.3
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China for Youth (grant No. 21001070), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 20111401110002) and the Natural Science Foundation of Shanxi Province of China (grant No. 2011021006–2).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, L., Lu, L. P., Zhu, M. L., Wang, Q. M., Li, Y., Xing, S., Fu, X. Q., Gao, Z. Q. & Dong, Y. H. (2011). Dalton Trans. 40, 6532–6540.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, L. R., Li, M., Wang, S. W., Zhang, S. S., Li, X. M. & Ou Yang, P. K. (2004). Chem. Res. Chin. Univ. 20, 722–724.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds