organic compounds
4-Cyanopyridinium dihydrogen phosphate–isonicotinonitrile–phosphoric acid (1/1/1)
aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wangyc33@yahoo.com.cn
The 6H5N2+·H2PO4−·C6H4N2·H3PO4, contains one 4-cyanopyridinium cation, one H2PO4− anion, one independent isonicotinonitrile molecule and one independent H3PO4 molecule. The dihedral angle between the mean planes of the separate protonated and unprotonated pyridine rings is 9.93 (8)°. In the crystal, N—H⋯O and O—H⋯N hydrogen bonds and weak C—H⋯O and C—H⋯N intermolecular interactions connect the organic molecules into a two-dimensional network parallel to the ac plane. O—H⋯O hydrogen-bonding interactions involving the H2PO4− anions and H3PO4 molecules provide additional support from the inorganic groups Weak π–π stacking interactions between the pyridine rings of neighbouring organic molecules [centroid–centroid distances = 3.711 (4) and 3.784 (2) Å] further link the layers into a three-dimensional network.
of the title compound, CRelated literature
For the properties of related compounds, see: Chen et al. (2001); Huang et al. (1999); Zhang et al. (2001). For related structures, see: Wang et al. (2002); Xue et al. (2002); Ye et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812020430/jj2136sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812020430/jj2136Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812020430/jj2136Isup3.cml
Isonicotinonitrile (10 mmol and stirred at 60°C for 2 h. The precipitate was then filtrated. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution.
H2, H3, H4, H6 and H8 were refined freely. In the last stages of the
these atoms were restrained with N3—H3 = 0.90 (2)Å and O2—H2, O4—H4, O6–H6, O8—H8 all = 0.82 (2)Å with Uiso(H) = 1.2Ueq(N) and Uiso(H)=1.5Ueq(O). All the remaining H atoms attached to C atoms were placed in calculated positions and then refined using the riding model with C—H lengths of 0.95 Å (CH). The isotropic displcement parameers for these atoms were set to 1.2 (CH) times Ueq of the parent atom.Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids for one cation-anion unit and bimolecular unit in the asymmetric unit. | |
Fig. 2. Crystal packing of the title compound viewed along the b axis showing O—H···O, O—H···N, hydrogen bonds (dotted lines), weak C—H···O, C—H···N intermolecular interactions (dotted lines) and weak π—π stacking interactions (dashed lines). | |
Fig. 3. Crystal packing of the title compound viewed along the c axis showing the O—H···O hydrogen bonds (dotted line). |
C6H5N2+·H2O4P−·C6H4N2·H3O4P | Z = 2 |
Mr = 404.21 | F(000) = 416 |
Triclinic, P1 | Dx = 1.589 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1040 (5) Å | Cell parameters from 3798 reflections |
b = 8.8872 (9) Å | θ = 2.6–27.5° |
c = 12.1606 (8) Å | µ = 0.31 mm−1 |
α = 81.491 (1)° | T = 173 K |
β = 82.009 (1)° | Block, colorless |
γ = 79.133 (1)° | 0.10 × 0.05 × 0.05 mm |
V = 845.07 (11) Å3 |
Rigaku Mercury2 diffractometer | 3798 independent reflections |
Radiation source: fine-focus sealed tube | 3306 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 2.6° |
CCD profile fitting scans | h = −10→10 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −11→11 |
Tmin = 0.910, Tmax = 1.000 | l = −15→15 |
8963 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0597P)2] where P = (Fo2 + 2Fc2)/3 |
3798 reflections | (Δ/σ)max = 0.001 |
235 parameters | Δρmax = 0.34 e Å−3 |
6 restraints | Δρmin = −0.40 e Å−3 |
C6H5N2+·H2O4P−·C6H4N2·H3O4P | γ = 79.133 (1)° |
Mr = 404.21 | V = 845.07 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1040 (5) Å | Mo Kα radiation |
b = 8.8872 (9) Å | µ = 0.31 mm−1 |
c = 12.1606 (8) Å | T = 173 K |
α = 81.491 (1)° | 0.10 × 0.05 × 0.05 mm |
β = 82.009 (1)° |
Rigaku Mercury2 diffractometer | 3798 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 3306 reflections with I > 2σ(I) |
Tmin = 0.910, Tmax = 1.000 | Rint = 0.023 |
8963 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 6 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.34 e Å−3 |
3798 reflections | Δρmin = −0.40 e Å−3 |
235 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 1.02100 (16) | 0.12068 (15) | 0.59294 (11) | 0.0141 (3) | |
N2 | 0.39938 (18) | 0.32104 (18) | 0.46853 (13) | 0.0273 (4) | |
C4 | 0.83067 (19) | 0.30110 (18) | 0.48280 (13) | 0.0158 (3) | |
H4A | 0.8118 | 0.3903 | 0.4294 | 0.019* | |
C5 | 0.98861 (19) | 0.24689 (18) | 0.51769 (13) | 0.0155 (3) | |
H5A | 1.0784 | 0.3010 | 0.4873 | 0.019* | |
C6 | 0.5317 (2) | 0.27525 (19) | 0.49470 (14) | 0.0188 (3) | |
C2 | 0.73050 (19) | 0.09074 (18) | 0.60593 (13) | 0.0152 (3) | |
H2A | 0.6429 | 0.0347 | 0.6378 | 0.018* | |
C3 | 0.69979 (19) | 0.22094 (18) | 0.52833 (13) | 0.0142 (3) | |
C1 | 0.89403 (19) | 0.04504 (18) | 0.63541 (13) | 0.0146 (3) | |
H1A | 0.9166 | −0.0442 | 0.6883 | 0.018* | |
N3 | 0.50667 (15) | 0.28063 (14) | 0.85938 (11) | 0.0138 (3) | |
H3 | 0.4049 | 0.2582 | 0.8897 | 0.017* | |
N4 | 1.12529 (17) | 0.40818 (17) | 0.74487 (12) | 0.0216 (3) | |
C11 | 0.63720 (19) | 0.18015 (18) | 0.89738 (13) | 0.0146 (3) | |
H11A | 0.6178 | 0.0886 | 0.9447 | 0.017* | |
C8 | 0.6851 (2) | 0.44610 (18) | 0.75916 (13) | 0.0158 (3) | |
H8A | 0.7008 | 0.5377 | 0.7107 | 0.019* | |
C9 | 0.82275 (18) | 0.34390 (17) | 0.79861 (12) | 0.0128 (3) | |
C10 | 0.79957 (19) | 0.20896 (18) | 0.86819 (13) | 0.0149 (3) | |
H10A | 0.8932 | 0.1385 | 0.8949 | 0.018* | |
C7 | 0.52563 (19) | 0.41132 (18) | 0.79207 (13) | 0.0162 (3) | |
H7A | 0.4294 | 0.4798 | 0.7671 | 0.019* | |
C12 | 0.9921 (2) | 0.37991 (18) | 0.76837 (13) | 0.0158 (3) | |
P1 | 0.15691 (4) | 0.29108 (4) | 1.05923 (3) | 0.00975 (11) | |
O1 | 0.24327 (13) | 0.17698 (12) | 0.97909 (9) | 0.0140 (2) | |
O2 | 0.21239 (13) | 0.23350 (12) | 1.17856 (9) | 0.0145 (2) | |
H2 | 0.3149 | 0.2034 | 1.1716 | 0.022* | |
O3 | −0.03370 (12) | 0.32218 (12) | 1.06993 (9) | 0.0131 (2) | |
O4 | 0.22876 (13) | 0.44436 (12) | 1.01948 (9) | 0.0140 (2) | |
H4 | 0.1635 | 0.5162 | 0.9902 | 0.021* | |
P2 | 0.31115 (5) | 0.91637 (4) | 0.78249 (3) | 0.01113 (11) | |
O5 | 0.47632 (13) | 0.89331 (13) | 0.82709 (9) | 0.0184 (3) | |
O6 | 0.32346 (13) | 1.01043 (13) | 0.66430 (9) | 0.0163 (2) | |
H6 | 0.2317 | 1.0444 | 0.6412 | 0.024* | |
O7 | 0.16276 (13) | 1.00119 (12) | 0.85896 (9) | 0.0153 (2) | |
H7 | 0.1963 | 1.0539 | 0.8984 | 0.023* | |
O8 | 0.24974 (14) | 0.76550 (12) | 0.76809 (9) | 0.0167 (2) | |
H8 | 0.1813 | 0.7401 | 0.8206 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0147 (6) | 0.0160 (6) | 0.0114 (7) | −0.0017 (5) | −0.0025 (5) | −0.0017 (5) |
N2 | 0.0158 (7) | 0.0357 (9) | 0.0274 (9) | −0.0039 (6) | −0.0062 (6) | 0.0085 (7) |
C4 | 0.0170 (7) | 0.0155 (7) | 0.0138 (8) | −0.0025 (6) | −0.0025 (6) | 0.0015 (6) |
C5 | 0.0148 (7) | 0.0173 (8) | 0.0143 (8) | −0.0042 (6) | −0.0015 (6) | −0.0006 (6) |
C6 | 0.0162 (8) | 0.0215 (8) | 0.0173 (8) | −0.0039 (6) | −0.0015 (6) | 0.0027 (6) |
C2 | 0.0154 (7) | 0.0172 (8) | 0.0134 (8) | −0.0046 (6) | −0.0009 (6) | −0.0013 (6) |
C3 | 0.0129 (7) | 0.0169 (7) | 0.0128 (8) | −0.0006 (6) | −0.0032 (6) | −0.0029 (6) |
C1 | 0.0175 (8) | 0.0144 (7) | 0.0113 (7) | −0.0017 (6) | −0.0024 (6) | −0.0006 (6) |
N3 | 0.0107 (6) | 0.0164 (6) | 0.0145 (7) | −0.0030 (5) | 0.0010 (5) | −0.0043 (5) |
N4 | 0.0176 (7) | 0.0241 (8) | 0.0239 (8) | −0.0074 (6) | −0.0024 (6) | −0.0010 (6) |
C11 | 0.0155 (7) | 0.0148 (7) | 0.0130 (8) | −0.0034 (6) | −0.0005 (6) | −0.0004 (6) |
C8 | 0.0185 (8) | 0.0148 (7) | 0.0149 (8) | −0.0049 (6) | −0.0039 (6) | 0.0000 (6) |
C9 | 0.0131 (7) | 0.0159 (7) | 0.0111 (7) | −0.0038 (6) | −0.0012 (6) | −0.0057 (6) |
C10 | 0.0131 (7) | 0.0147 (7) | 0.0160 (8) | 0.0004 (6) | −0.0025 (6) | −0.0013 (6) |
C7 | 0.0147 (7) | 0.0155 (7) | 0.0181 (8) | −0.0001 (6) | −0.0053 (6) | −0.0013 (6) |
C12 | 0.0178 (8) | 0.0167 (8) | 0.0136 (8) | −0.0044 (6) | −0.0023 (6) | −0.0019 (6) |
P1 | 0.00801 (19) | 0.00916 (19) | 0.0115 (2) | −0.00048 (14) | −0.00172 (14) | −0.00001 (14) |
O1 | 0.0128 (5) | 0.0137 (5) | 0.0159 (6) | −0.0019 (4) | −0.0008 (4) | −0.0043 (4) |
O2 | 0.0110 (5) | 0.0181 (6) | 0.0123 (6) | 0.0013 (4) | −0.0024 (4) | 0.0014 (4) |
O3 | 0.0088 (5) | 0.0123 (5) | 0.0169 (6) | −0.0009 (4) | −0.0020 (4) | 0.0019 (4) |
O4 | 0.0108 (5) | 0.0093 (5) | 0.0213 (6) | −0.0010 (4) | −0.0052 (4) | 0.0021 (4) |
P2 | 0.00841 (19) | 0.0120 (2) | 0.0126 (2) | −0.00073 (14) | −0.00240 (14) | −0.00054 (15) |
O5 | 0.0098 (5) | 0.0251 (6) | 0.0198 (6) | 0.0011 (4) | −0.0054 (4) | −0.0024 (5) |
O6 | 0.0110 (5) | 0.0196 (6) | 0.0164 (6) | −0.0024 (4) | −0.0037 (4) | 0.0049 (4) |
O7 | 0.0109 (5) | 0.0162 (5) | 0.0206 (6) | −0.0022 (4) | −0.0016 (4) | −0.0082 (4) |
O8 | 0.0186 (6) | 0.0138 (5) | 0.0173 (6) | −0.0051 (4) | 0.0047 (4) | −0.0037 (4) |
N1—C1 | 1.337 (2) | C8—C9 | 1.392 (2) |
N1—C5 | 1.3477 (19) | C8—H8A | 0.9500 |
N2—C6 | 1.144 (2) | C9—C10 | 1.389 (2) |
C4—C5 | 1.381 (2) | C9—C12 | 1.453 (2) |
C4—C3 | 1.394 (2) | C10—H10A | 0.9500 |
C4—H4A | 0.9500 | C7—H7A | 0.9500 |
C5—H5A | 0.9500 | P1—O3 | 1.5077 (10) |
C6—C3 | 1.450 (2) | P1—O1 | 1.5176 (11) |
C2—C3 | 1.387 (2) | P1—O2 | 1.5635 (11) |
C2—C1 | 1.391 (2) | P1—O4 | 1.5666 (11) |
C2—H2A | 0.9500 | O2—H2 | 0.8195 |
C1—H1A | 0.9500 | O4—H4 | 0.8198 |
N3—C11 | 1.3370 (19) | P2—O5 | 1.4811 (11) |
N3—C7 | 1.339 (2) | P2—O6 | 1.5526 (11) |
N3—H3 | 0.9008 | P2—O8 | 1.5560 (11) |
N4—C12 | 1.142 (2) | P2—O7 | 1.5601 (11) |
C11—C10 | 1.376 (2) | O6—H6 | 0.8196 |
C11—H11A | 0.9500 | O7—H7 | 0.8208 |
C8—C7 | 1.377 (2) | O8—H8 | 0.8198 |
C1—N1—C5 | 118.22 (13) | C10—C9—C12 | 119.62 (14) |
C5—C4—C3 | 117.97 (14) | C8—C9—C12 | 119.72 (14) |
C5—C4—H4A | 121.0 | C11—C10—C9 | 118.16 (14) |
C3—C4—H4A | 121.0 | C11—C10—H10A | 120.9 |
N1—C5—C4 | 122.96 (14) | C9—C10—H10A | 120.9 |
N1—C5—H5A | 118.5 | N3—C7—C8 | 119.76 (14) |
C4—C5—H5A | 118.5 | N3—C7—H7A | 120.1 |
N2—C6—C3 | 178.62 (18) | C8—C7—H7A | 120.1 |
C3—C2—C1 | 117.73 (14) | N4—C12—C9 | 179.83 (17) |
C3—C2—H2A | 121.1 | O3—P1—O1 | 115.74 (6) |
C1—C2—H2A | 121.1 | O3—P1—O2 | 108.01 (6) |
C2—C3—C4 | 119.98 (14) | O1—P1—O2 | 109.65 (6) |
C2—C3—C6 | 120.42 (14) | O3—P1—O4 | 110.60 (6) |
C4—C3—C6 | 119.60 (14) | O1—P1—O4 | 106.72 (6) |
N1—C1—C2 | 123.16 (14) | O2—P1—O4 | 105.66 (6) |
N1—C1—H1A | 118.4 | P1—O2—H2 | 107.9 |
C2—C1—H1A | 118.4 | P1—O4—H4 | 115.8 |
C11—N3—C7 | 122.80 (13) | O5—P2—O6 | 109.29 (6) |
C11—N3—H3 | 113.8 | O5—P2—O8 | 115.10 (6) |
C7—N3—H3 | 123.0 | O6—P2—O8 | 105.90 (6) |
N3—C11—C10 | 120.21 (14) | O5—P2—O7 | 113.15 (6) |
N3—C11—H11A | 119.9 | O6—P2—O7 | 109.13 (6) |
C10—C11—H11A | 119.9 | O8—P2—O7 | 103.84 (6) |
C7—C8—C9 | 118.43 (15) | P2—O6—H6 | 114.0 |
C7—C8—H8A | 120.8 | P2—O7—H7 | 111.9 |
C9—C8—H8A | 120.8 | P2—O8—H8 | 112.0 |
C10—C9—C8 | 120.65 (14) | ||
C1—N1—C5—C4 | 0.0 (2) | C7—N3—C11—C10 | 0.3 (2) |
C3—C4—C5—N1 | 0.2 (2) | C7—C8—C9—C10 | 0.9 (2) |
C1—C2—C3—C4 | 0.0 (2) | C7—C8—C9—C12 | −177.97 (14) |
C1—C2—C3—C6 | −179.54 (14) | N3—C11—C10—C9 | −0.2 (2) |
C5—C4—C3—C2 | −0.2 (2) | C8—C9—C10—C11 | −0.5 (2) |
C5—C4—C3—C6 | 179.34 (14) | C12—C9—C10—C11 | 178.46 (14) |
C5—N1—C1—C2 | −0.2 (2) | C11—N3—C7—C8 | 0.2 (2) |
C3—C2—C1—N1 | 0.2 (2) | C9—C8—C7—N3 | −0.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O5i | 0.82 | 1.75 | 2.5576 (14) | 169 |
O4—H4···O3ii | 0.82 | 1.74 | 2.5611 (14) | 176 |
O6—H6···N1iii | 0.82 | 1.86 | 2.6749 (17) | 178 |
O7—H7···O1iv | 0.82 | 1.70 | 2.5150 (15) | 173 |
O8—H8···O3ii | 0.82 | 1.76 | 2.5795 (15) | 177 |
N3—H3···O1 | 0.90 | 1.77 | 2.6466 (16) | 162 |
C1—H1A···O2v | 0.95 | 2.44 | 3.2549 (19) | 144 |
C8—H8A···N2vi | 0.95 | 2.51 | 3.273 (2) | 138 |
C10—H10A···O7vii | 0.95 | 2.31 | 3.1631 (19) | 149 |
C11—H11A···O1v | 0.95 | 2.52 | 3.3321 (19) | 144 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z+2; (iii) x−1, y+1, z; (iv) x, y+1, z; (v) −x+1, −y, −z+2; (vi) −x+1, −y+1, −z+1; (vii) x+1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C6H5N2+·H2O4P−·C6H4N2·H3O4P |
Mr | 404.21 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 8.1040 (5), 8.8872 (9), 12.1606 (8) |
α, β, γ (°) | 81.491 (1), 82.009 (1), 79.133 (1) |
V (Å3) | 845.07 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.10 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.910, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8963, 3798, 3306 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.096, 1.14 |
No. of reflections | 3798 |
No. of parameters | 235 |
No. of restraints | 6 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.40 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O5i | 0.82 | 1.75 | 2.5576 (14) | 168.8 |
O4—H4···O3ii | 0.82 | 1.74 | 2.5611 (14) | 176.0 |
O6—H6···N1iii | 0.82 | 1.86 | 2.6749 (17) | 178.4 |
O7—H7···O1iv | 0.82 | 1.70 | 2.5150 (15) | 173.2 |
O8—H8···O3ii | 0.82 | 1.76 | 2.5795 (15) | 177.2 |
N3—H3···O1 | 0.90 | 1.77 | 2.6466 (16) | 162.4 |
C1—H1A···O2v | 0.95 | 2.44 | 3.2549 (19) | 144 |
C8—H8A···N2vi | 0.95 | 2.51 | 3.273 (2) | 138 |
C10—H10A···O7vii | 0.95 | 2.31 | 3.1631 (19) | 149 |
C11—H11A···O1v | 0.95 | 2.52 | 3.3321 (19) | 144 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z+2; (iii) x−1, y+1, z; (iv) x, y+1, z; (v) −x+1, −y, −z+2; (vi) −x+1, −y+1, −z+1; (vii) x+1, y−1, z. |
Acknowledgements
This work was supported by a start-up grant from Southeast University, China.
References
Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349. Web of Science CSD CrossRef CAS Google Scholar
Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95–98. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194. CAS Google Scholar
Xue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495–497. CSD CrossRef CAS Google Scholar
Ye, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P. W. H. & Huang, S. P. D. (2008). Inorg. Chem. 47, 772–774. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Simple organic salts containing strong intrermolecular H-bonds have attracted attention as materials which display ferroelectric-paraelectric phase transitions (Chen et al., 2001; Huang, et al. 1999; Zhang, et al. 2001). In an effort to obtain phase transition crystals of organic salts, various organic molecules have been studied with a series of new crystal materials (Wang et al., 2002; Xue, et al. 2002; Ye et al., 2008). Herewith, we present the synthesis and crystal structure of the title compound, C6H5N2+.H2PO4-.C6H4N2.H3PO4,(I).
The asymmetric unit of (I) is comprised of one 4-cyanopyridinium cation, one H2PO4- anion, one independent isonicotinonitrile molecule and one independent H3PO4 molecule (Fig. 1). The two separate pyridine rings in the asymmetric unit are almost planar with the largest deviation from the least-squares plane being 0.001 (1) Å and 0.003 (1) Å, respectively. The dihedral angle between the mean planes of the two separate pyridine rings is 9.93 (8)°. Bond lengths and angles in each of these units are in normal ranges.
In the crystal N—H···O and O—H···N hydrogen bonds and weak C—H···O and C—H···N intermolecular interactions bring the organic molecules into a 2D network (Fig. 2). Also, O—H···O hydrogen bonding interactions involving the H2PO4- anions and H3PO4 molecules provide additional support for the 2D network from the inorganic groups (Table 1, Fig. 3). In addition, weak π–π stacking interactions between the pyridine rings of neighbouring organic molecules further link the layers into a 3D network (Cg1···Cg2 = 3.711 (4) Å and Cg1···Cg2 = 3.784 (2) Å, where Cg1 and Cg2 are the centroids of the pyridine rings, N1/C1/C2/C3/C4/C5 and N3/C7/C8/C9/C10/C11, respectively).