organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1755-o1756

syn-5,10,15-Tris(di­chloro­meth­yl)-5,10,15-trihy­dr­oxy-5H-di­indeno­[1,2-a:1′,2′-c]fluorene di­chloro­methane 0.82-solvate

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 1 May 2012; accepted 8 May 2012; online 16 May 2012)

The title compound, C30H18Cl6O3·0.82CH2Cl2, consists of a slightly cup-shaped seven-ring truxene nucleus with hy­droxy and dichloro­methyl substituents at stereocenters 5R/S, 10R/S and 15R/S. C—Cl distances are in the range 1.759 (4)–1.783 (3) Å. Solvent channels parallel to the b axis appear to be partially occupied by highly disordered dichloro­methane solvent mol­ecules, the contribution of which were removed from the refinement with the SQUEEZE procedure in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]. Only one of the OH groups forms a hydrogen bond, which is inter­molecular to another OH group, forming centrosymmetric dimers in the crystal.

Related literature

For further details of the synthesis and information on the synthesis of buckybowls, see: Abdourazak et al. (1995[Abdourazak, A. H., Marcinow, Z., Sygula, A., Sygula, R. & Rabideau, P. W. (1995). J. Am. Chem. Soc. 117, 6410-6411.]). For applications of truxenes, see: Diring & Ziessel (2009[Diring, S. & Ziessel, R. (2009). Tetrahedron Lett. 50, 1203-1208.]). Similar structures have been reported by De Frutos et al. (1999[De Frutos, O., Gomez-Lor, B., Granier, T., Gutierrez-Puebla, E., Monge, M. A. & Echavarren, A. M. (1999). Angew. Chem. Int. Ed. 38, 204-207.]); Amsharov & Jansen (2007[Amsharov, K. Y. & Jansen, M. (2007). Z. Naturforsch. Teil B, 62, 1497-1508.]) and Menard et al. (2011[Menard, M. C., Fronczek, F. R., Watkins, S. F. & Dhar, R. K. (2011). Acta Cryst. E67, o1-o2.]).

[Scheme 1]

Experimental

Crystal data
  • C30H18Cl6O3·0.82CH2Cl2

  • Mr = 708.78

  • Triclinic, [P \overline 1]

  • a = 10.9719 (4) Å

  • b = 11.6186 (3) Å

  • c = 14.0431 (5) Å

  • α = 71.009 (2)°

  • β = 85.291 (2)°

  • γ = 68.798 (2)°

  • V = 1576.88 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 90 K

  • 0.38 × 0.13 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer with an Oxford Cryostream cooler

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.814, Tmax = 0.972

  • 10851 measured reflections

  • 5744 independent reflections

  • 3608 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.156

  • S = 0.97

  • 5744 reflections

  • 356 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H91⋯O3i 0.84 2.04 2.834 (3) 158
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: COLLECT (Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The nucleus of the title compound is truxene (C27H18, CAS: 548–35-6), a nearly planar seven-ring aromatic molecule. Compounds containing this ring system have been previously investigated for use in liquid crystal devices, chiral recognition systems, and fluorescent probes (Diring & Ziessel, 2009). The title compound was synthesized as an intermediate material in the formation of buckybowls (half-buckminsterfullerenes, Abdourazak et al., 1995). Two isomers were separated by chromatography, and the yellow component is herein shown to be the syn isomer, with all three OH groups on the same side of the truxene nucleus. The molecule has a slightly cupped shape, with three hydroxy groups oriented toward the inside of the cup and three dichloromethyl groups on the outside of the cup. Relative to the mean plane of the central 6-ring (which is a slightly puckered crown, δ(r.m.s.) = 0.01 (1) Å), the three pairs of carbon atoms on the outer rim of the molecule average 0.36 (1) (C4, C5), 0.15 (1) (C13, C14) and 0.07 (1) (C22, C23) Å above the plane. Of the three OH groups available for hydrogen bond formation, only O1 forms a hydrogen bond, to OH group O3 at 2 - x, 1 - y, 1 - z, thus there are centrosymmetric dimers about 1, 1/2, 1/2, as shown in Fig. 2. A solvent channel with a unit cell volume of 330 Å3, parallel to the b axis and centered at 1/2a, displays residual electron density which presumably represents remnants of disordered solvent molecules most of which have evaporated from the crystal since the original synthesis. Procedure SQUEEZE, as implemented in PLATON (Spek, 2009), subtracted 69 electrons from the observed structure amplitudes as an approximate solvent contribution.

Related literature top

For further details of the synthesis and information on the synthesis of buckybowls, see: Abdourazak et al. (1995). For applications of truxenes, see: Diring & Ziessel (2009). Similar structures have been reported by De Frutos et al. (1999); Amsharov & Jansen (2007) and Menard et al. (2011).

Experimental top

A solution of lithium dicyclohexylamine was prepared by adding 93 mmol dicyclohexeylamine and 93 mmol n-butyllithium to 75 ml of dried tetrahydrofuran (THF). This solution was added dropwise over one hour to a suspension of 7.3 mmol truxenone in 100 ml of THF and 6 ml of dichloromethane (DCM) at 273 K. The solution was stirred for one hour and then quenched with aqueous ammonium chloride. The THF was removed under reduced pressure and the remaining mixture was extracted with DCM. The resulting organic layer was washed with aqueous citric acid, dried and evaporated. Flash chromatography (silica gel, DCM) was used to isolate 5,10,15-tris(dichloromethyl)-5,10,15-trihydroxy-5H-Diindeno[1,2 - a:1',2'-c] fluorene and further chromatography (silica gel, DCM-hexane 3:1) was used to separate the compound into two components. The syn- component reported here crystallized from DCM as yellow blades.

Refinement top

Observed structure amplitudes were modified by PLATON to eliminate diffuse electron density found in the solvent accessible channel. All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95 (aromatic-H) and 1.00 (alkyl-H) Å, O—H distances 0.84 Å, and displacement parameters Uiso=1.2Ueq (aromatic and alkyl C) and 1.5Ueq (hydroxyl-O), and thereafter refined as riding. A torsional parameter was refined for each OH group.

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound (50% probability displacement ellipsoids). H atoms are not shown.
[Figure 2] Fig. 2. Hydrogen-bonded dimer with 40% probability ellipsoids. Only OH hydrogen atoms are illustrated.
syn-5,10,15-Tris(dichloromethyl)-5,10,15-trihydroxy- 5H-diindeno[1,2-a:1',2'-c]fluorene dichloromethane 0.82-solvate top
Crystal data top
C30H18Cl6O3·0.82CH2Cl2Z = 2
Mr = 708.78F(000) = 717
Triclinic, P1Dx = 1.493 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9719 (4) ÅCell parameters from 5548 reflections
b = 11.6186 (3) Åθ = 2.6–25.4°
c = 14.0431 (5) ŵ = 0.72 mm1
α = 71.009 (2)°T = 90 K
β = 85.291 (2)°Blade, yellow
γ = 68.798 (2)°0.38 × 0.13 × 0.05 mm
V = 1576.88 (9) Å3
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryostream cooler
5744 independent reflections
Radiation source: fine-focus sealed tube3608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9 pixels mm-1θmax = 25.4°, θmin = 2.6°
CCD rotation images, thick slices scansh = 1313
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1313
Tmin = 0.814, Tmax = 0.972l = 1616
10851 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0932P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
5744 reflectionsΔρmax = 0.42 e Å3
356 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0066 (17)
Primary atom site location: structure-invariant direct methods
Crystal data top
C30H18Cl6O3·0.82CH2Cl2γ = 68.798 (2)°
Mr = 708.78V = 1576.88 (9) Å3
Triclinic, P1Z = 2
a = 10.9719 (4) ÅMo Kα radiation
b = 11.6186 (3) ŵ = 0.72 mm1
c = 14.0431 (5) ÅT = 90 K
α = 71.009 (2)°0.38 × 0.13 × 0.05 mm
β = 85.291 (2)°
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryostream cooler
5744 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3608 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.972Rint = 0.046
10851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 0.97Δρmax = 0.42 e Å3
5744 reflectionsΔρmin = 0.32 e Å3
356 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9165 (3)0.2835 (3)0.4130 (2)0.0263 (8)
C21.0278 (3)0.2228 (3)0.3532 (2)0.0285 (8)
C31.0854 (4)0.0926 (3)0.3608 (3)0.0350 (9)
H31.05340.02940.4050.042*
C41.1916 (4)0.0571 (3)0.3017 (3)0.0456 (10)
H41.23230.03190.30590.055*
C51.2389 (4)0.1469 (3)0.2375 (3)0.0457 (10)
H51.310.11980.19670.055*
C61.1834 (4)0.2786 (3)0.2315 (3)0.0364 (9)
H61.2170.34090.18790.044*
C71.0783 (3)0.3157 (3)0.2909 (2)0.0290 (8)
C81.0065 (3)0.4414 (3)0.3096 (2)0.0256 (8)
C91.0110 (3)0.5655 (3)0.2661 (2)0.0287 (8)
C101.0801 (4)0.6173 (3)0.1721 (3)0.0354 (9)
C111.0489 (4)0.7564 (3)0.1689 (2)0.0373 (9)
C121.1007 (5)0.8464 (4)0.1053 (3)0.0513 (11)
H121.16110.82430.0560.062*
C131.0610 (5)0.9699 (4)0.1163 (3)0.0573 (12)
H131.09461.03290.07390.069*
C140.9740 (5)1.0007 (3)0.1877 (3)0.0511 (11)
H140.94731.08560.19340.061*
C150.9236 (4)0.9111 (3)0.2522 (3)0.0393 (9)
H150.8640.93380.30180.047*
C160.9621 (4)0.7877 (3)0.2427 (2)0.0341 (9)
C170.9350 (3)0.6691 (3)0.3023 (2)0.0290 (8)
C180.8517 (3)0.6459 (3)0.3803 (2)0.0268 (8)
C190.7502 (3)0.7421 (3)0.4248 (2)0.0286 (8)
C200.6942 (3)0.6552 (3)0.5068 (2)0.0306 (8)
C210.6064 (4)0.6882 (3)0.5771 (3)0.0379 (9)
H210.57250.77540.57840.046*
C220.5674 (4)0.5929 (4)0.6468 (3)0.0430 (10)
H220.50650.61460.69590.052*
C230.6178 (4)0.4662 (4)0.6442 (3)0.0409 (9)
H230.58880.4020.69060.049*
C240.7099 (4)0.4311 (3)0.5749 (2)0.0328 (8)
H240.74580.34340.57510.039*
C250.7485 (3)0.5262 (3)0.5056 (2)0.0273 (8)
C260.8442 (3)0.5207 (3)0.4249 (2)0.0259 (7)
C270.9198 (3)0.4203 (3)0.3888 (2)0.0250 (7)
C280.7807 (3)0.2974 (3)0.3769 (2)0.0301 (8)
H280.71260.34750.41470.036*
C291.0181 (4)0.6046 (3)0.0826 (2)0.0381 (9)
H291.02980.51090.09820.046*
C300.6479 (4)0.8437 (3)0.3406 (3)0.0382 (9)
H300.69550.88510.28410.046*
Cl10.75059 (9)0.38564 (9)0.24653 (6)0.0407 (3)
Cl20.76348 (10)0.14417 (8)0.40087 (7)0.0441 (3)
Cl30.84936 (10)0.69516 (9)0.06527 (7)0.0513 (3)
Cl41.09646 (12)0.65136 (9)0.03237 (7)0.0540 (3)
Cl50.53505 (11)0.96814 (9)0.38451 (9)0.0596 (3)
Cl60.56204 (12)0.76978 (10)0.29285 (9)0.0644 (4)
O10.9273 (2)0.21078 (19)0.51741 (15)0.0296 (5)
H911.00260.19310.54030.044*
O21.2147 (3)0.5482 (3)0.17035 (19)0.0452 (7)
H921.25330.54550.22070.068*
O30.8099 (2)0.8111 (2)0.46100 (17)0.0318 (6)
H930.7640.83840.50540.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.030 (2)0.0224 (14)0.0263 (17)0.0106 (14)0.0010 (15)0.0066 (13)
C20.026 (2)0.0287 (16)0.0279 (18)0.0063 (14)0.0052 (15)0.0080 (14)
C30.032 (2)0.0283 (16)0.043 (2)0.0056 (15)0.0052 (18)0.0143 (15)
C40.039 (2)0.0364 (19)0.059 (3)0.0018 (18)0.004 (2)0.0236 (19)
C50.033 (2)0.048 (2)0.053 (2)0.0002 (19)0.001 (2)0.029 (2)
C60.034 (2)0.0423 (19)0.0331 (19)0.0113 (17)0.0019 (17)0.0151 (16)
C70.027 (2)0.0331 (16)0.0288 (18)0.0097 (15)0.0005 (16)0.0140 (15)
C80.0245 (19)0.0295 (16)0.0249 (17)0.0098 (14)0.0005 (15)0.0107 (14)
C90.032 (2)0.0347 (17)0.0242 (17)0.0182 (15)0.0033 (15)0.0093 (14)
C100.038 (2)0.0448 (19)0.0316 (19)0.0234 (18)0.0078 (17)0.0142 (16)
C110.057 (3)0.0422 (19)0.0252 (18)0.0323 (18)0.0001 (18)0.0098 (16)
C120.079 (3)0.064 (2)0.032 (2)0.050 (2)0.018 (2)0.0173 (19)
C130.098 (4)0.054 (2)0.039 (2)0.056 (3)0.001 (3)0.0072 (19)
C140.092 (4)0.0381 (19)0.036 (2)0.039 (2)0.001 (2)0.0082 (17)
C150.061 (3)0.0322 (17)0.0283 (18)0.0247 (18)0.0066 (18)0.0034 (15)
C160.044 (2)0.0349 (17)0.0269 (18)0.0211 (16)0.0052 (17)0.0050 (15)
C170.035 (2)0.0275 (15)0.0279 (18)0.0148 (15)0.0020 (16)0.0088 (14)
C180.030 (2)0.0279 (15)0.0244 (17)0.0108 (14)0.0003 (15)0.0099 (14)
C190.031 (2)0.0244 (15)0.0323 (18)0.0115 (14)0.0024 (16)0.0094 (14)
C200.027 (2)0.0344 (17)0.0325 (19)0.0086 (15)0.0002 (16)0.0150 (15)
C210.030 (2)0.0397 (18)0.047 (2)0.0106 (16)0.0038 (19)0.0201 (17)
C220.033 (2)0.059 (2)0.045 (2)0.0178 (19)0.0121 (19)0.0277 (19)
C230.042 (2)0.054 (2)0.037 (2)0.0279 (19)0.0097 (19)0.0162 (18)
C240.039 (2)0.0364 (17)0.0286 (18)0.0171 (16)0.0061 (17)0.0143 (15)
C250.027 (2)0.0311 (16)0.0253 (17)0.0093 (15)0.0008 (15)0.0115 (14)
C260.028 (2)0.0259 (15)0.0241 (17)0.0112 (14)0.0016 (15)0.0061 (13)
C270.0277 (19)0.0213 (14)0.0256 (17)0.0089 (14)0.0002 (15)0.0066 (13)
C280.036 (2)0.0278 (15)0.0273 (17)0.0127 (15)0.0015 (16)0.0082 (14)
C290.052 (3)0.0415 (18)0.0271 (18)0.0252 (18)0.0081 (18)0.0115 (15)
C300.038 (2)0.0342 (17)0.042 (2)0.0103 (16)0.0083 (18)0.0120 (16)
Cl10.0387 (6)0.0539 (5)0.0282 (5)0.0186 (4)0.0025 (4)0.0078 (4)
Cl20.0459 (6)0.0337 (4)0.0604 (6)0.0205 (4)0.0039 (5)0.0163 (4)
Cl30.0539 (7)0.0569 (6)0.0443 (6)0.0206 (5)0.0086 (5)0.0141 (5)
Cl40.0835 (9)0.0613 (6)0.0301 (5)0.0419 (6)0.0162 (5)0.0163 (4)
Cl50.0493 (7)0.0383 (5)0.0795 (8)0.0047 (5)0.0130 (6)0.0230 (5)
Cl60.0675 (8)0.0548 (6)0.0770 (8)0.0218 (5)0.0331 (6)0.0202 (5)
O10.0374 (15)0.0285 (11)0.0235 (12)0.0147 (11)0.0026 (11)0.0046 (9)
O20.0409 (18)0.0636 (15)0.0411 (15)0.0277 (14)0.0087 (13)0.0209 (13)
O30.0332 (15)0.0343 (12)0.0341 (13)0.0123 (11)0.0019 (11)0.0185 (10)
Geometric parameters (Å, º) top
C1—O11.424 (4)C16—C171.481 (5)
C1—C21.514 (5)C17—C181.388 (5)
C1—C271.526 (4)C18—C261.415 (4)
C1—C281.550 (5)C18—C191.523 (4)
C2—C31.383 (4)C19—O31.424 (4)
C2—C71.406 (5)C19—C201.516 (5)
C3—C41.390 (5)C19—C301.550 (5)
C3—H30.95C20—C211.369 (5)
C4—C51.369 (6)C20—C251.403 (4)
C4—H40.95C21—C221.392 (5)
C5—C61.403 (5)C21—H210.95
C5—H50.95C22—C231.384 (5)
C6—C71.389 (5)C22—H220.95
C6—H60.95C23—C241.391 (5)
C7—C81.485 (4)C23—H230.95
C8—C91.388 (4)C24—C251.384 (4)
C8—C271.421 (4)C24—H240.95
C9—C171.416 (4)C25—C261.481 (4)
C9—C101.525 (4)C26—C271.387 (4)
C10—O21.406 (4)C28—Cl11.773 (3)
C10—C111.512 (5)C28—Cl21.778 (3)
C10—C291.549 (5)C28—H281
C11—C161.396 (5)C29—Cl31.759 (4)
C11—C121.397 (5)C29—Cl41.783 (3)
C12—C131.398 (5)C29—H291
C12—H120.95C30—Cl61.772 (4)
C13—C141.370 (6)C30—Cl51.779 (4)
C13—H130.95C30—H301
C14—C151.389 (5)O1—H910.84
C14—H140.95O2—H920.84
C15—C161.389 (4)O3—H930.84
C15—H150.95
O1—C1—C2113.5 (2)C9—C17—C16108.6 (3)
O1—C1—C27115.3 (3)C17—C18—C26121.1 (3)
C2—C1—C27102.3 (3)C17—C18—C19129.2 (3)
O1—C1—C28104.8 (3)C26—C18—C19109.5 (3)
C2—C1—C28113.4 (3)O3—C19—C20113.9 (3)
C27—C1—C28107.7 (2)O3—C19—C18110.5 (3)
C3—C2—C7121.1 (3)C20—C19—C18102.7 (2)
C3—C2—C1127.6 (3)O3—C19—C30107.4 (2)
C7—C2—C1111.0 (3)C20—C19—C30113.4 (3)
C2—C3—C4118.0 (3)C18—C19—C30108.8 (3)
C2—C3—H3121C21—C20—C25121.2 (3)
C4—C3—H3121C21—C20—C19128.3 (3)
C5—C4—C3121.8 (3)C25—C20—C19110.5 (3)
C5—C4—H4119.1C20—C21—C22119.3 (3)
C3—C4—H4119.1C20—C21—H21120.3
C4—C5—C6120.6 (4)C22—C21—H21120.3
C4—C5—H5119.7C23—C22—C21119.8 (3)
C6—C5—H5119.7C23—C22—H22120.1
C7—C6—C5118.5 (3)C21—C22—H22120.1
C7—C6—H6120.8C22—C23—C24121.2 (3)
C5—C6—H6120.8C22—C23—H23119.4
C6—C7—C2120.0 (3)C24—C23—H23119.4
C6—C7—C8132.0 (3)C25—C24—C23118.9 (3)
C2—C7—C8107.9 (3)C25—C24—H24120.5
C9—C8—C27119.1 (3)C23—C24—H24120.5
C9—C8—C7132.6 (3)C24—C25—C20119.6 (3)
C27—C8—C7108.4 (3)C24—C25—C26132.1 (3)
C8—C9—C17121.0 (3)C20—C25—C26108.3 (3)
C8—C9—C10129.1 (3)C27—C26—C18119.2 (3)
C17—C9—C10109.6 (3)C27—C26—C25132.1 (3)
O2—C10—C11113.4 (3)C18—C26—C25108.6 (3)
O2—C10—C9116.3 (3)C26—C27—C8120.7 (3)
C11—C10—C9101.9 (3)C26—C27—C1129.5 (3)
O2—C10—C29104.8 (3)C8—C27—C1109.4 (3)
C11—C10—C29113.9 (3)C1—C28—Cl1111.0 (2)
C9—C10—C29106.7 (3)C1—C28—Cl2112.4 (2)
C16—C11—C12121.1 (3)Cl1—C28—Cl2109.33 (18)
C16—C11—C10111.7 (3)C1—C28—H28108
C12—C11—C10127.2 (3)Cl1—C28—H28108
C11—C12—C13118.1 (4)Cl2—C28—H28108
C11—C12—H12120.9C10—C29—Cl3112.3 (2)
C13—C12—H12120.9C10—C29—Cl4112.2 (3)
C14—C13—C12120.5 (4)Cl3—C29—Cl4109.22 (19)
C14—C13—H13119.8C10—C29—H29107.6
C12—C13—H13119.8Cl3—C29—H29107.6
C13—C14—C15121.7 (3)Cl4—C29—H29107.6
C13—C14—H14119.2C19—C30—Cl6111.6 (2)
C15—C14—H14119.2C19—C30—Cl5111.2 (2)
C16—C15—C14118.7 (4)Cl6—C30—Cl5109.7 (2)
C16—C15—H15120.6C19—C30—H30108.1
C14—C15—H15120.6Cl6—C30—H30108.1
C15—C16—C11119.9 (3)Cl5—C30—H30108.1
C15—C16—C17132.3 (3)C1—O1—H91109.5
C11—C16—C17107.7 (3)C10—O2—H92109.5
C18—C17—C9118.9 (3)C19—O3—H93109.5
C18—C17—C16132.5 (3)
O1—C1—C2—C342.4 (5)C17—C18—C19—C20179.8 (3)
C27—C1—C2—C3167.2 (3)C26—C18—C19—C205.5 (3)
C28—C1—C2—C377.1 (4)C17—C18—C19—C3059.8 (4)
O1—C1—C2—C7132.3 (3)C26—C18—C19—C30114.9 (3)
C27—C1—C2—C77.4 (3)O3—C19—C20—C2154.4 (5)
C28—C1—C2—C7108.3 (3)C18—C19—C20—C21174.0 (3)
C7—C2—C3—C42.6 (5)C30—C19—C20—C2168.8 (5)
C1—C2—C3—C4176.8 (3)O3—C19—C20—C25123.5 (3)
C2—C3—C4—C50.0 (6)C18—C19—C20—C253.9 (4)
C3—C4—C5—C61.8 (6)C30—C19—C20—C25113.3 (3)
C4—C5—C6—C71.0 (6)C25—C20—C21—C222.0 (5)
C5—C6—C7—C21.5 (5)C19—C20—C21—C22179.7 (3)
C5—C6—C7—C8173.5 (3)C20—C21—C22—C230.1 (6)
C3—C2—C7—C63.4 (5)C21—C22—C23—C241.8 (6)
C1—C2—C7—C6178.4 (3)C22—C23—C24—C251.9 (5)
C3—C2—C7—C8172.7 (3)C23—C24—C25—C200.0 (5)
C1—C2—C7—C82.4 (4)C23—C24—C25—C26178.7 (3)
C6—C7—C8—C98.3 (6)C21—C20—C25—C242.0 (5)
C2—C7—C8—C9176.2 (4)C19—C20—C25—C24179.9 (3)
C6—C7—C8—C27171.2 (3)C21—C20—C25—C26177.1 (3)
C2—C7—C8—C274.3 (4)C19—C20—C25—C261.0 (4)
C27—C8—C9—C172.7 (5)C17—C18—C26—C271.1 (5)
C7—C8—C9—C17176.7 (3)C19—C18—C26—C27174.1 (3)
C27—C8—C9—C10170.7 (3)C17—C18—C26—C25179.6 (3)
C7—C8—C9—C109.8 (6)C19—C18—C26—C255.2 (4)
C8—C9—C10—O254.7 (5)C24—C25—C26—C274.6 (6)
C17—C9—C10—O2131.2 (3)C20—C25—C26—C27176.5 (3)
C8—C9—C10—C11178.6 (3)C24—C25—C26—C18176.3 (4)
C17—C9—C10—C117.4 (4)C20—C25—C26—C182.6 (4)
C8—C9—C10—C2961.8 (4)C18—C26—C27—C81.6 (5)
C17—C9—C10—C29112.2 (3)C25—C26—C27—C8179.4 (3)
O2—C10—C11—C16131.7 (3)C18—C26—C27—C1170.7 (3)
C9—C10—C11—C166.0 (4)C25—C26—C27—C18.4 (6)
C29—C10—C11—C16108.5 (3)C9—C8—C27—C262.4 (5)
O2—C10—C11—C1245.7 (5)C7—C8—C27—C26177.2 (3)
C9—C10—C11—C12171.4 (4)C9—C8—C27—C1171.3 (3)
C29—C10—C11—C1274.1 (5)C7—C8—C27—C19.1 (4)
C16—C11—C12—C131.3 (6)O1—C1—C27—C2653.4 (5)
C10—C11—C12—C13178.4 (4)C2—C1—C27—C26177.1 (3)
C11—C12—C13—C140.1 (6)C28—C1—C27—C2663.2 (4)
C12—C13—C14—C150.9 (7)O1—C1—C27—C8133.7 (3)
C13—C14—C15—C160.7 (6)C2—C1—C27—C810.0 (3)
C14—C15—C16—C110.5 (5)C28—C1—C27—C8109.8 (3)
C14—C15—C16—C17175.1 (4)O1—C1—C28—Cl1179.55 (18)
C12—C11—C16—C151.5 (6)C2—C1—C28—Cl155.2 (3)
C10—C11—C16—C15179.0 (3)C27—C1—C28—Cl157.2 (3)
C12—C11—C16—C17175.1 (3)O1—C1—C28—Cl256.7 (3)
C10—C11—C16—C172.4 (4)C2—C1—C28—Cl267.6 (3)
C8—C9—C17—C182.2 (5)C27—C1—C28—Cl2179.9 (2)
C10—C9—C17—C18172.3 (3)O2—C10—C29—Cl3175.6 (2)
C8—C9—C17—C16179.0 (3)C11—C10—C29—Cl351.1 (4)
C10—C9—C17—C166.4 (4)C9—C10—C29—Cl360.5 (3)
C15—C16—C17—C188.0 (7)O2—C10—C29—Cl452.1 (3)
C11—C16—C17—C18176.0 (4)C11—C10—C29—Cl472.4 (4)
C15—C16—C17—C9173.5 (4)C9—C10—C29—Cl4176.0 (2)
C11—C16—C17—C92.5 (4)O3—C19—C30—Cl6177.7 (2)
C9—C17—C18—C261.4 (5)C20—C19—C30—Cl650.9 (3)
C16—C17—C18—C26179.8 (3)C18—C19—C30—Cl662.7 (3)
C9—C17—C18—C19172.7 (3)O3—C19—C30—Cl554.8 (3)
C16—C17—C18—C195.7 (6)C20—C19—C30—Cl571.9 (3)
C17—C18—C19—O357.9 (4)C18—C19—C30—Cl5174.5 (2)
C26—C18—C19—O3127.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H91···O3i0.842.042.834 (3)158
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H18Cl6O3·0.82CH2Cl2
Mr708.78
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)10.9719 (4), 11.6186 (3), 14.0431 (5)
α, β, γ (°)71.009 (2), 85.291 (2), 68.798 (2)
V3)1576.88 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.38 × 0.13 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer with an Oxford Cryostream cooler
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.814, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
10851, 5744, 3608
Rint0.046
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.156, 0.97
No. of reflections5744
No. of parameters356
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.32

Computer programs: COLLECT (Bruker, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H91···O3i0.842.042.834 (3)157.7
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. We thank A. H. Abdourazak and P. W. Rabideau for providing the sample.

References

First citationAbdourazak, A. H., Marcinow, Z., Sygula, A., Sygula, R. & Rabideau, P. W. (1995). J. Am. Chem. Soc. 117, 6410–6411.  CrossRef CAS Web of Science Google Scholar
First citationAmsharov, K. Y. & Jansen, M. (2007). Z. Naturforsch. Teil B, 62, 1497–1508.  CAS Google Scholar
First citationBruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Frutos, O., Gomez-Lor, B., Granier, T., Gutierrez-Puebla, E., Monge, M. A. & Echavarren, A. M. (1999). Angew. Chem. Int. Ed. 38, 204–207.  CAS Google Scholar
First citationDiring, S. & Ziessel, R. (2009). Tetrahedron Lett. 50, 1203–1208.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMenard, M. C., Fronczek, F. R., Watkins, S. F. & Dhar, R. K. (2011). Acta Cryst. E67, o1–o2.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1755-o1756
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds