organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1850-o1851

4-[(E)-2-(2-Chloro­benzyl­­idene)hydrazin-1-yl]quinolin-1-ium chloride dihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, dInstituto de Tecnologia em Fármacos–Farmanguinhos, FioCruz–Fundação, Oswaldo Cruz, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, and ePrograma de Pós-Graduaçõ em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 May 2012; accepted 18 May 2012; online 23 May 2012)

In the title hydrated salt, C16H13ClN3+·Cl·2H2O, a small twist is evident in the cation so that the chloro­benzene ring is not coplanar with the central hydrazinyl group [the N—C—C—C torsion angle = −4.8 (12)°]. The conformation about the imine N=C bond [1.284 (10) Å] is E. The components of the structure are connected into a three-dimensional architecture via O—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds. One water H atom is disposed over two sites of equal occupancy.

Related literature

For the biological activity, including the anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009[Souza, M. V. N. de, Pais, K. C., Kaiser, C. R., Peralta, M. A., Ferreira, M. de L. & Lourenco, M. C. S. (2009). Bioorg. Med. Chem. 17, 1474-1480.]); Candea et al. (2009[Candea, A. L. P., Ferreira, M. de L., Pais, K. C., Cardoso, L. N. de F., Kaiser, C. R., Henriques, M., das, G. M. de O., Lourenco, M. C. S., Bezerra, F. A. F. M. & de Souza, M. V. N. (2009). Bioorg. Med. Chem. Lett. 19, 6272-6274.]); Montenegro et al. (2011[Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. Do O., Rodriques, F. A. R., Bispo, M. L. F., Cardoso, L. N. F., Kaiser, C. R. & de Souza, M. V. N. (2011). Med. Chem. 7, 599-604.], 2012[Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. do O., Rodriques, F. A. R., Bispo, M. L. F., Freire, B. A., Kaiser, C. R. & de Souza, M. V. N. (2012). Lett. Drug Des. Disc, 9, 251-256.]). For related structures, see: Howie et al. (2010[Howie, R. A., de Souza, M. V. N., Ferreira, M. de L., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440-447.]); de Souza et al. (2010[Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698-o699.], 2012[Souza, M. V. N. de, Ferreira, M. de L., Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1244-o1245.]); Ferreira et al. (2012[Ferreira, M. de L., Souza, M. V. N. de, Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1214-o1215.]); Wardell et al. (2012[Wardell, S. M. S. V., Tiekink, E. R. T., Wardell, J. L., Ferreira, M. de L. & Souza, M. V. N. de (2012). Acta Cryst. E68, o1232-o1233.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClN3+·Cl·2H2O

  • Mr = 354.23

  • Monoclinic, P 21 /c

  • a = 4.5946 (3) Å

  • b = 20.1550 (19) Å

  • c = 18.2192 (17) Å

  • β = 96.660 (5)°

  • V = 1675.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 120 K

  • 0.33 × 0.02 × 0.01 mm

Data collection
  • Bruker–Nonius Roper CCD camera on a κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.786, Tmax = 1.000

  • 14027 measured reflections

  • 2924 independent reflections

  • 1565 reflections with I > 2σ(I)

  • Rint = 0.146

Refinement
  • R[F2 > 2σ(F2)] = 0.096

  • wR(F2) = 0.223

  • S = 1.06

  • 2924 reflections

  • 229 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯Cl2 0.88 (5) 2.32 (5) 3.192 (7) 173 (6)
O1w—H1w⋯Cl2 0.84 (6) 2.37 (6) 3.207 (7) 177 (11)
N2—H2n⋯Cl2i 0.88 (6) 2.49 (6) 3.349 (7) 166 (7)
O1w—H2w⋯Cl2ii 0.84 (5) 2.42 (7) 3.192 (7) 154 (8)
O2w—H3w⋯O1wiii 0.84 (7) 1.96 (7) 2.801 (9) 174 (10)
O2w—H4w⋯O2wiv 0.84 (8) 2.08 (10) 2.804 (10) 144 (11)
O2w—H5w⋯O2wiii 0.83 (12) 2.05 (13) 2.804 (10) 151 (10)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A wide range of pharmacological activities have been noted for compounds containing the quinoline nucleus (de Souza et al., 2009), including anti-tubercular (Candea et al., 2009) and anti-tumour (Montenegro et al., 2012) activities. Recently, we have focused attention on arylaldehyde 7-chloroquinoline-4-hydrazone derivatives (Candea et al., 2009; Montenegro et al., 2011). Complementing synthetic studies are crystallographic investigations of these hydrazones (Howie et al., 2010; de Souza et al., 2010; Ferreira et al., 2012; de Souza et al., 2012). We have recently turned our attention to arylaldehyde quinoline-4-hydrazone derivatives (Wardell et al., 2012) and now wish to report the crystal structure of the title hydrated salt, (I).

The asymmetric unit of (I), Fig. 1, comprises a 4-[(E)-2-[(2-Chlorophenyl)methylidene]hydrazin-1-yl]quinolin-1-ium cation, a chloride anion and two lattice water molecules. The quinolinyl residue is co-planar with the central hydrazinyl group [the N3—N2—C3—C2 torsional angle is -1.3 (11)°], but the chlorobenzene ring is slightly twisted out of this plane [N3—C10—C11—C16 = -4.8 (12)°]. The conformation about the N3C10 bond [1.284 (10) Å] is E. The molecular structure of (I) resembles very closely that of the 2,4-dichloro analogue (Wardell et al., 2012).

The crystal packing in (I) is dominated by hydrogen bonding interactions, Table 1. The water molecules aggregate into chains along the a axis, Fig. 2. One of the O2w—H atoms forms a hydrogen bond to the O1w—O atom. The remaining H atom on O2w is disordered over two positions of equal weight. These interact with adjacent O2w-water molecules as shown in Fig. 2. The two H atoms of O1w form hydrogen bonds with translationally related Cl anions, Fig. 2. Finally, each Cl anion is connected in turn to two quinolinium-H atoms to connect the components of (I) into a three-dimensional architecture, Fig. 3.

Related literature top

For the biological activity, including the anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009); Candea et al. (2009); Montenegro et al. (2011, 2012). For related structures, see: Howie et al. (2010); de Souza et al. (2010, 2012); Ferreira et al. (2012); Wardell et al. (2012).

Experimental top

A solution of 4-hydrazinoquinoline hydrochloride 1 (1.03 mmol) and 2-chlorobenzaldehyde 2 (1.24 mmol) in ethanol (5 ml) was stirred for 8 h at room temperature and then rotary evaporated. The solid residue was washed with cold Et2O (3 \x 10 ml), and recrystallized from EtOH to give the title salt as a dihydrate; M.pt 554–555 K. 1H NMR (400 MHz, DMSO-d6) δ: 14.38 (ls, 1H, NH), 13.07 (ls, 1H, NH), 9.29 (s, 1H, H3'), 8.87 (d, J = 8.4 Hz, 1H, H5), 8.72 (d, J = 6.8 Hz, 1H, H2), (t, J = 7.7 Hz, 1H, H7'), 8.11 (d, J = 8.4 Hz, 1H, H8), 8.04 (t, J = 8.4 Hz, 1H, H7), 7.83 (t, J = 8.4 Hz, 1H, H6), 7.71 (d, J = 6.8 Hz, 1H, H3), 7.60 (d, J = 7.3 Hz, 1H, H8'), 7.57 – 7.47 (m, 2H, H6' and H9').

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound and O-bound H-atoms were located in a difference Fourier map and refined with a O—H = 0.84±0.01 Å [Uiso(H) = 1.5Ueq(O)] and N—H = 0.88±0.01 Å [Uiso(H) = 1.2Ueq(N)]. One of the O2w—H H atoms was found to be disordered over two sites of equal occupancy with each involved in a significant hydrogen bonding interaction. While the structure has been determined unambiguously, the authors acknowledge that the structure determined is not optimal as seen, for example, in the poor precision in the C—C bonds.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only one position of the disordered H atoms of the O2w water molecule is shown.
[Figure 2] Fig. 2. Detail of the hydrogen bonding along the a axis in (I). The O—H···O, O—H···Cl and N—H···Cl hydrogen bonds are shown as orange, green and blue dashed lines, respectively. Only the chloride anions, water molecules and N-bound H atoms are illustrated. The water molecule was disordered with sites of equal weight being resolved for one water-H atom (see text).
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I). The O—H···O, O—H···Cl and N—H···Cl hydrogen bonds are shown as orange, green and blue dashed lines, respectively.
4-[(E)-2-(2-Chlorobenzylidene)hydrazin-1-yl]quinolin-1-ium chloride dihydrate top
Crystal data top
C16H13ClN3+·Cl·2H2OF(000) = 736
Mr = 354.23Dx = 1.404 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20901 reflections
a = 4.5946 (3) Åθ = 2.9–27.5°
b = 20.1550 (19) ŵ = 0.40 mm1
c = 18.2192 (17) ÅT = 120 K
β = 96.660 (5)°Needle, colourless
V = 1675.8 (2) Å30.33 × 0.02 × 0.01 mm
Z = 4
Data collection top
Bruker–Nonius Roper CCD camera on a κ-goniostat
diffractometer
2924 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1565 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.146
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.2°
ϕ and ω scansh = 55
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2323
Tmin = 0.786, Tmax = 1.000l = 2121
14027 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.096Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.P)2 + 18.2957P]
where P = (Fo2 + 2Fc2)/3
2924 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.46 e Å3
11 restraintsΔρmin = 0.55 e Å3
Crystal data top
C16H13ClN3+·Cl·2H2OV = 1675.8 (2) Å3
Mr = 354.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.5946 (3) ŵ = 0.40 mm1
b = 20.1550 (19) ÅT = 120 K
c = 18.2192 (17) Å0.33 × 0.02 × 0.01 mm
β = 96.660 (5)°
Data collection top
Bruker–Nonius Roper CCD camera on a κ-goniostat
diffractometer
2924 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1565 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 1.000Rint = 0.146
14027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.09611 restraints
wR(F2) = 0.223H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.P)2 + 18.2957P]
where P = (Fo2 + 2Fc2)/3
2924 reflectionsΔρmax = 0.46 e Å3
229 parametersΔρmin = 0.55 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.2444 (5)0.37879 (12)0.03537 (12)0.0356 (6)
N11.3893 (15)0.3016 (3)0.4691 (4)0.0277 (17)
H1N1.492 (15)0.299 (4)0.513 (2)0.033*
N20.8798 (14)0.3126 (3)0.2682 (4)0.0242 (15)
H2N0.891 (17)0.283 (3)0.233 (3)0.029*
N30.6721 (14)0.3622 (3)0.2585 (4)0.0268 (16)
C11.1941 (17)0.3493 (4)0.4555 (4)0.0269 (19)
H11.17040.38060.49340.032*
C21.0242 (17)0.3555 (4)0.3889 (4)0.0248 (19)
H20.88910.39120.38090.030*
C31.0490 (16)0.3096 (4)0.3328 (4)0.0202 (17)
C41.2699 (17)0.2574 (4)0.3463 (4)0.0230 (18)
C51.3246 (16)0.2098 (4)0.2931 (4)0.0226 (18)
H51.21590.21070.24550.027*
C61.5348 (18)0.1623 (4)0.3100 (4)0.0278 (19)
H61.57080.13030.27390.033*
C71.6980 (17)0.1602 (4)0.3803 (4)0.0265 (19)
H71.84150.12660.39140.032*
C81.6507 (17)0.2062 (4)0.4325 (4)0.0252 (19)
H81.76310.20540.47960.030*
C91.4343 (17)0.2546 (4)0.4157 (4)0.0247 (19)
C100.5259 (16)0.3655 (4)0.1942 (5)0.0259 (19)
H100.56430.33530.15650.031*
C110.3006 (18)0.4161 (4)0.1795 (4)0.0263 (19)
C120.1484 (17)0.4252 (4)0.1102 (4)0.0257 (19)
C130.0717 (18)0.4732 (4)0.0953 (5)0.034 (2)
H130.17370.47840.04720.041*
C140.1342 (18)0.5130 (4)0.1541 (5)0.033 (2)
H140.28190.54600.14580.040*
C150.0101 (19)0.5057 (4)0.2227 (5)0.036 (2)
H150.03750.53360.26160.043*
C160.2242 (18)0.4586 (4)0.2365 (5)0.030 (2)
H160.32320.45430.28500.036*
Cl21.8077 (5)0.28801 (11)0.62092 (11)0.0351 (6)
O1W1.3131 (14)0.3975 (3)0.6374 (4)0.0408 (16)
H1W1.446 (13)0.369 (3)0.635 (6)0.061*
H2W1.150 (9)0.379 (4)0.640 (6)0.061*
O2W0.7300 (15)0.4920 (3)0.4565 (4)0.0455 (17)
H3W0.72 (2)0.527 (3)0.431 (5)0.068*
H4W0.563 (12)0.484 (7)0.469 (8)0.068*0.50
H5W0.85 (3)0.495 (7)0.494 (5)0.068*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0366 (12)0.0402 (13)0.0283 (11)0.0061 (11)0.0034 (9)0.0028 (10)
N10.031 (4)0.028 (4)0.022 (4)0.004 (3)0.007 (3)0.003 (3)
N20.026 (4)0.024 (4)0.022 (4)0.002 (3)0.001 (3)0.002 (3)
N30.024 (4)0.027 (4)0.027 (4)0.000 (3)0.005 (3)0.005 (3)
C10.030 (5)0.035 (5)0.015 (4)0.001 (4)0.002 (4)0.002 (4)
C20.027 (4)0.018 (4)0.030 (5)0.002 (4)0.005 (4)0.002 (4)
C30.020 (4)0.020 (4)0.020 (4)0.003 (3)0.001 (3)0.002 (3)
C40.028 (4)0.023 (5)0.016 (4)0.000 (4)0.004 (3)0.008 (3)
C50.021 (4)0.028 (5)0.019 (4)0.000 (4)0.002 (3)0.001 (4)
C60.031 (5)0.022 (5)0.030 (5)0.002 (4)0.003 (4)0.000 (4)
C70.024 (4)0.029 (5)0.025 (4)0.004 (4)0.002 (3)0.010 (4)
C80.027 (4)0.035 (5)0.013 (4)0.007 (4)0.003 (3)0.001 (4)
C90.027 (4)0.029 (5)0.017 (4)0.000 (4)0.002 (3)0.004 (4)
C100.023 (4)0.021 (5)0.032 (5)0.005 (4)0.002 (4)0.001 (4)
C110.031 (5)0.022 (5)0.025 (4)0.006 (4)0.002 (4)0.002 (4)
C120.026 (4)0.023 (5)0.028 (5)0.003 (4)0.003 (4)0.001 (4)
C130.026 (5)0.030 (5)0.045 (6)0.003 (4)0.004 (4)0.013 (4)
C140.024 (4)0.024 (5)0.052 (6)0.006 (4)0.006 (4)0.008 (4)
C150.038 (5)0.029 (5)0.042 (6)0.002 (4)0.010 (5)0.001 (4)
C160.024 (4)0.034 (5)0.032 (5)0.000 (4)0.002 (4)0.002 (4)
Cl20.0372 (12)0.0408 (13)0.0258 (11)0.0028 (11)0.0026 (9)0.0033 (10)
O1W0.043 (4)0.046 (4)0.034 (4)0.001 (3)0.009 (3)0.006 (3)
O2W0.057 (4)0.033 (4)0.049 (4)0.009 (4)0.018 (4)0.007 (3)
Geometric parameters (Å, º) top
Cl1—C121.752 (8)C7—H70.9500
N1—C11.319 (10)C8—C91.401 (11)
N1—C91.390 (10)C8—H80.9500
N1—H1N0.882 (10)C10—C111.456 (11)
N2—C31.335 (9)C10—H100.9500
N2—N31.380 (9)C11—C121.382 (11)
N2—H2N0.880 (10)C11—C161.421 (12)
N3—C101.284 (10)C12—C131.404 (11)
C1—C21.371 (10)C13—C141.393 (12)
C1—H10.9500C13—H130.9500
C2—C31.392 (10)C14—C151.353 (12)
C2—H20.9500C14—H140.9500
C3—C41.463 (11)C15—C161.369 (12)
C4—C91.398 (10)C15—H150.9500
C4—C51.406 (11)C16—H160.9500
C5—C61.370 (11)O1W—H1W0.842 (10)
C5—H50.9500O1W—H2W0.840 (10)
C6—C71.407 (11)O2W—H3W0.841 (10)
C6—H60.9500O2W—H4W0.841 (11)
C7—C81.363 (11)O2W—H5W0.840 (10)
C1—N1—C9121.3 (7)C9—C8—H8120.4
C1—N1—H1N120 (6)N1—C9—C4119.8 (7)
C9—N1—H1N119 (6)N1—C9—C8118.8 (7)
C3—N2—N3117.9 (6)C4—C9—C8121.4 (7)
C3—N2—H2N123 (5)N3—C10—C11119.3 (8)
N3—N2—H2N119 (5)N3—C10—H10120.4
C10—N3—N2115.8 (7)C11—C10—H10120.4
N1—C1—C2122.5 (8)C12—C11—C16116.5 (8)
N1—C1—H1118.7C12—C11—C10122.2 (8)
C2—C1—H1118.7C16—C11—C10121.3 (7)
C1—C2—C3120.2 (8)C11—C12—C13123.0 (8)
C1—C2—H2119.9C11—C12—Cl1119.6 (6)
C3—C2—H2119.9C13—C12—Cl1117.3 (6)
N2—C3—C2121.9 (7)C14—C13—C12117.1 (8)
N2—C3—C4120.1 (7)C14—C13—H13121.4
C2—C3—C4118.0 (7)C12—C13—H13121.4
C9—C4—C5118.3 (7)C15—C14—C13121.6 (8)
C9—C4—C3118.2 (7)C15—C14—H14119.2
C5—C4—C3123.4 (7)C13—C14—H14119.2
C6—C5—C4120.0 (7)C14—C15—C16120.7 (9)
C6—C5—H5120.0C14—C15—H15119.7
C4—C5—H5120.0C16—C15—H15119.7
C5—C6—C7120.9 (8)C15—C16—C11121.1 (8)
C5—C6—H6119.6C15—C16—H16119.5
C7—C6—H6119.6C11—C16—H16119.5
C8—C7—C6120.2 (8)H1W—O1W—H2W111 (6)
C8—C7—H7119.9H3W—O2W—H4W108 (6)
C6—C7—H7119.9H3W—O2W—H5W112 (6)
C7—C8—C9119.2 (7)H4W—O2W—H5W110 (6)
C7—C8—H8120.4
C3—N2—N3—C10176.2 (7)C3—C4—C9—N11.4 (11)
C9—N1—C1—C20.3 (13)C5—C4—C9—C80.6 (12)
N1—C1—C2—C31.4 (13)C3—C4—C9—C8179.7 (7)
N3—N2—C3—C21.3 (11)C7—C8—C9—N1179.5 (7)
N3—N2—C3—C4179.2 (7)C7—C8—C9—C41.2 (12)
C1—C2—C3—N2177.5 (7)N2—N3—C10—C11179.5 (7)
C1—C2—C3—C43.0 (11)N3—C10—C11—C12175.7 (8)
N2—C3—C4—C9177.5 (7)N3—C10—C11—C164.8 (12)
C2—C3—C4—C92.9 (11)C16—C11—C12—C130.2 (12)
N2—C3—C4—C52.2 (12)C10—C11—C12—C13179.3 (8)
C2—C3—C4—C5177.3 (7)C16—C11—C12—Cl1175.8 (6)
C9—C4—C5—C60.0 (12)C10—C11—C12—Cl14.7 (11)
C3—C4—C5—C6179.7 (7)C11—C12—C13—C140.2 (12)
C4—C5—C6—C70.0 (12)Cl1—C12—C13—C14175.9 (6)
C5—C6—C7—C80.7 (13)C12—C13—C14—C150.1 (13)
C6—C7—C8—C91.2 (12)C13—C14—C15—C160.0 (14)
C1—N1—C9—C40.2 (12)C14—C15—C16—C110.0 (13)
C1—N1—C9—C8178.1 (8)C12—C11—C16—C150.1 (12)
C5—C4—C9—N1178.9 (7)C10—C11—C16—C15179.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···Cl20.88 (5)2.32 (5)3.192 (7)173 (6)
O1w—H1w···Cl20.84 (6)2.37 (6)3.207 (7)177 (11)
N2—H2n···Cl2i0.88 (6)2.49 (6)3.349 (7)166 (7)
O1w—H2w···Cl2ii0.84 (5)2.42 (7)3.192 (7)154 (8)
O2w—H3w···O1wiii0.84 (7)1.96 (7)2.801 (9)174 (10)
O2w—H4w···O2wiv0.84 (8)2.08 (10)2.804 (10)144 (11)
O2w—H5w···O2wiii0.83 (12)2.05 (13)2.804 (10)151 (10)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H13ClN3+·Cl·2H2O
Mr354.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)4.5946 (3), 20.1550 (19), 18.2192 (17)
β (°) 96.660 (5)
V3)1675.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.33 × 0.02 × 0.01
Data collection
DiffractometerBruker–Nonius Roper CCD camera on a κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.786, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14027, 2924, 1565
Rint0.146
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.096, 0.223, 1.06
No. of reflections2924
No. of parameters229
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.P)2 + 18.2957P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.46, 0.55

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···Cl20.88 (5)2.32 (5)3.192 (7)173 (6)
O1w—H1w···Cl20.84 (6)2.37 (6)3.207 (7)177 (11)
N2—H2n···Cl2i0.88 (6)2.49 (6)3.349 (7)166 (7)
O1w—H2w···Cl2ii0.84 (5)2.42 (7)3.192 (7)154 (8)
O2w—H3w···O1wiii0.84 (7)1.96 (7)2.801 (9)174 (10)
O2w—H4w···O2wiv0.84 (8)2.08 (10)2.804 (10)144 (11)
O2w—H5w···O2wiii0.83 (12)2.05 (13)2.804 (10)151 (10)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCandea, A. L. P., Ferreira, M. de L., Pais, K. C., Cardoso, L. N. de F., Kaiser, C. R., Henriques, M., das, G. M. de O., Lourenco, M. C. S., Bezerra, F. A. F. M. & de Souza, M. V. N. (2009). Bioorg. Med. Chem. Lett. 19, 6272–6274.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira, M. de L., Souza, M. V. N. de, Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1214–o1215.  CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHowie, R. A., de Souza, M. V. N., Ferreira, M. de L., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440–447.  Web of Science CSD CrossRef CAS Google Scholar
First citationMontenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. do O., Rodriques, F. A. R., Bispo, M. L. F., Freire, B. A., Kaiser, C. R. & de Souza, M. V. N. (2012). Lett. Drug Des. Disc, 9, 251–256.  CAS Google Scholar
First citationMontenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. Do O., Rodriques, F. A. R., Bispo, M. L. F., Cardoso, L. N. F., Kaiser, C. R. & de Souza, M. V. N. (2011). Med. Chem. 7, 599–604.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Ferreira, M. de L., Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1244–o1245.  CSD CrossRef IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698–o699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Pais, K. C., Kaiser, C. R., Peralta, M. A., Ferreira, M. de L. & Lourenco, M. C. S. (2009). Bioorg. Med. Chem. 17, 1474–1480.  Web of Science PubMed Google Scholar
First citationWardell, S. M. S. V., Tiekink, E. R. T., Wardell, J. L., Ferreira, M. de L. & Souza, M. V. N. de (2012). Acta Cryst. E68, o1232–o1233.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1850-o1851
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds