organic compounds
4-[(E)-2-(2-Chlorobenzylidene)hydrazin-1-yl]quinolin-1-ium chloride dihydrate
aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, dInstituto de Tecnologia em Fármacos–Farmanguinhos, FioCruz–Fundação, Oswaldo Cruz, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, and ePrograma de Pós-Graduaçõ em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com
In the title hydrated salt, C16H13ClN3+·Cl−·2H2O, a small twist is evident in the cation so that the chlorobenzene ring is not coplanar with the central hydrazinyl group [the N—C—C—C torsion angle = −4.8 (12)°]. The conformation about the imine N=C bond [1.284 (10) Å] is E. The components of the structure are connected into a three-dimensional architecture via O—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds. One water H atom is disposed over two sites of equal occupancy.
Related literature
For the biological activity, including the anti-tubercular and anti-tumour activity, of compounds containing the quinolinyl nucleus, see: de Souza et al. (2009); Candea et al. (2009); Montenegro et al. (2011, 2012). For related structures, see: Howie et al. (2010); de Souza et al. (2010, 2012); Ferreira et al. (2012); Wardell et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812022660/kj2202sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812022660/kj2202Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812022660/kj2202Isup3.cml
A solution of 4-hydrazinoquinoline hydrochloride 1 (1.03 mmol) and 2-chlorobenzaldehyde 2 (1.24 mmol) in ethanol (5 ml) was stirred for 8 h at room temperature and then rotary evaporated. The solid residue was washed with cold Et2O (3 \x 10 ml), and recrystallized from EtOH to give the title salt as a dihydrate; M.pt 554–555 K. 1H NMR (400 MHz, DMSO-d6) δ: 14.38 (ls, 1H, NH), 13.07 (ls, 1H, NH), 9.29 (s, 1H, H3'), 8.87 (d, J = 8.4 Hz, 1H, H5), 8.72 (d, J = 6.8 Hz, 1H, H2), (t, J = 7.7 Hz, 1H, H7'), 8.11 (d, J = 8.4 Hz, 1H, H8), 8.04 (t, J = 8.4 Hz, 1H, H7), 7.83 (t, J = 8.4 Hz, 1H, H6), 7.71 (d, J = 6.8 Hz, 1H, H3), 7.60 (d, J = 7.3 Hz, 1H, H8'), 7.57 – 7.47 (m, 2H, H6' and H9').
The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound and O-bound H-atoms were located in a difference Fourier map and refined with a O—H = 0.84±0.01 Å [Uiso(H) = 1.5Ueq(O)] and N—H = 0.88±0.01 Å [Uiso(H) = 1.2Ueq(N)]. One of the O2w—H H atoms was found to be disordered over two sites of equal occupancy with each involved in a significant hydrogen bonding interaction. While the structure has been determined unambiguously, the authors acknowledge that the structure determined is not optimal as seen, for example, in the poor precision in the C—C bonds.
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only one position of the disordered H atoms of the O2w water molecule is shown. | |
Fig. 2. Detail of the hydrogen bonding along the a axis in (I). The O—H···O, O—H···Cl and N—H···Cl hydrogen bonds are shown as orange, green and blue dashed lines, respectively. Only the chloride anions, water molecules and N-bound H atoms are illustrated. The water molecule was disordered with sites of equal weight being resolved for one water-H atom (see text). | |
Fig. 3. A view in projection down the a axis of the unit-cell contents of (I). The O—H···O, O—H···Cl and N—H···Cl hydrogen bonds are shown as orange, green and blue dashed lines, respectively. |
C16H13ClN3+·Cl−·2H2O | F(000) = 736 |
Mr = 354.23 | Dx = 1.404 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 20901 reflections |
a = 4.5946 (3) Å | θ = 2.9–27.5° |
b = 20.1550 (19) Å | µ = 0.40 mm−1 |
c = 18.2192 (17) Å | T = 120 K |
β = 96.660 (5)° | Needle, colourless |
V = 1675.8 (2) Å3 | 0.33 × 0.02 × 0.01 mm |
Z = 4 |
Bruker–Nonius Roper CCD camera on a κ-goniostat diffractometer | 2924 independent reflections |
Radiation source: Bruker–Nonius FR591 rotating anode | 1565 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.146 |
Detector resolution: 9.091 pixels mm-1 | θmax = 25.0°, θmin = 3.2° |
ϕ and ω scans | h = −5→5 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −23→23 |
Tmin = 0.786, Tmax = 1.000 | l = −21→21 |
14027 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.096 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.223 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.P)2 + 18.2957P] where P = (Fo2 + 2Fc2)/3 |
2924 reflections | (Δ/σ)max < 0.001 |
229 parameters | Δρmax = 0.46 e Å−3 |
11 restraints | Δρmin = −0.55 e Å−3 |
C16H13ClN3+·Cl−·2H2O | V = 1675.8 (2) Å3 |
Mr = 354.23 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.5946 (3) Å | µ = 0.40 mm−1 |
b = 20.1550 (19) Å | T = 120 K |
c = 18.2192 (17) Å | 0.33 × 0.02 × 0.01 mm |
β = 96.660 (5)° |
Bruker–Nonius Roper CCD camera on a κ-goniostat diffractometer | 2924 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 1565 reflections with I > 2σ(I) |
Tmin = 0.786, Tmax = 1.000 | Rint = 0.146 |
14027 measured reflections |
R[F2 > 2σ(F2)] = 0.096 | 11 restraints |
wR(F2) = 0.223 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.P)2 + 18.2957P] where P = (Fo2 + 2Fc2)/3 |
2924 reflections | Δρmax = 0.46 e Å−3 |
229 parameters | Δρmin = −0.55 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.2444 (5) | 0.37879 (12) | 0.03537 (12) | 0.0356 (6) | |
N1 | 1.3893 (15) | 0.3016 (3) | 0.4691 (4) | 0.0277 (17) | |
H1N | 1.492 (15) | 0.299 (4) | 0.513 (2) | 0.033* | |
N2 | 0.8798 (14) | 0.3126 (3) | 0.2682 (4) | 0.0242 (15) | |
H2N | 0.891 (17) | 0.283 (3) | 0.233 (3) | 0.029* | |
N3 | 0.6721 (14) | 0.3622 (3) | 0.2585 (4) | 0.0268 (16) | |
C1 | 1.1941 (17) | 0.3493 (4) | 0.4555 (4) | 0.0269 (19) | |
H1 | 1.1704 | 0.3806 | 0.4934 | 0.032* | |
C2 | 1.0242 (17) | 0.3555 (4) | 0.3889 (4) | 0.0248 (19) | |
H2 | 0.8891 | 0.3912 | 0.3809 | 0.030* | |
C3 | 1.0490 (16) | 0.3096 (4) | 0.3328 (4) | 0.0202 (17) | |
C4 | 1.2699 (17) | 0.2574 (4) | 0.3463 (4) | 0.0230 (18) | |
C5 | 1.3246 (16) | 0.2098 (4) | 0.2931 (4) | 0.0226 (18) | |
H5 | 1.2159 | 0.2107 | 0.2455 | 0.027* | |
C6 | 1.5348 (18) | 0.1623 (4) | 0.3100 (4) | 0.0278 (19) | |
H6 | 1.5708 | 0.1303 | 0.2739 | 0.033* | |
C7 | 1.6980 (17) | 0.1602 (4) | 0.3803 (4) | 0.0265 (19) | |
H7 | 1.8415 | 0.1266 | 0.3914 | 0.032* | |
C8 | 1.6507 (17) | 0.2062 (4) | 0.4325 (4) | 0.0252 (19) | |
H8 | 1.7631 | 0.2054 | 0.4796 | 0.030* | |
C9 | 1.4343 (17) | 0.2546 (4) | 0.4157 (4) | 0.0247 (19) | |
C10 | 0.5259 (16) | 0.3655 (4) | 0.1942 (5) | 0.0259 (19) | |
H10 | 0.5643 | 0.3353 | 0.1565 | 0.031* | |
C11 | 0.3006 (18) | 0.4161 (4) | 0.1795 (4) | 0.0263 (19) | |
C12 | 0.1484 (17) | 0.4252 (4) | 0.1102 (4) | 0.0257 (19) | |
C13 | −0.0717 (18) | 0.4732 (4) | 0.0953 (5) | 0.034 (2) | |
H13 | −0.1737 | 0.4784 | 0.0472 | 0.041* | |
C14 | −0.1342 (18) | 0.5130 (4) | 0.1541 (5) | 0.033 (2) | |
H14 | −0.2819 | 0.5460 | 0.1458 | 0.040* | |
C15 | 0.0101 (19) | 0.5057 (4) | 0.2227 (5) | 0.036 (2) | |
H15 | −0.0375 | 0.5336 | 0.2616 | 0.043* | |
C16 | 0.2242 (18) | 0.4586 (4) | 0.2365 (5) | 0.030 (2) | |
H16 | 0.3232 | 0.4543 | 0.2850 | 0.036* | |
Cl2 | 1.8077 (5) | 0.28801 (11) | 0.62092 (11) | 0.0351 (6) | |
O1W | 1.3131 (14) | 0.3975 (3) | 0.6374 (4) | 0.0408 (16) | |
H1W | 1.446 (13) | 0.369 (3) | 0.635 (6) | 0.061* | |
H2W | 1.150 (9) | 0.379 (4) | 0.640 (6) | 0.061* | |
O2W | 0.7300 (15) | 0.4920 (3) | 0.4565 (4) | 0.0455 (17) | |
H3W | 0.72 (2) | 0.527 (3) | 0.431 (5) | 0.068* | |
H4W | 0.563 (12) | 0.484 (7) | 0.469 (8) | 0.068* | 0.50 |
H5W | 0.85 (3) | 0.495 (7) | 0.494 (5) | 0.068* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0366 (12) | 0.0402 (13) | 0.0283 (11) | 0.0061 (11) | −0.0034 (9) | −0.0028 (10) |
N1 | 0.031 (4) | 0.028 (4) | 0.022 (4) | 0.004 (3) | −0.007 (3) | 0.003 (3) |
N2 | 0.026 (4) | 0.024 (4) | 0.022 (4) | −0.002 (3) | −0.001 (3) | −0.002 (3) |
N3 | 0.024 (4) | 0.027 (4) | 0.027 (4) | 0.000 (3) | −0.005 (3) | 0.005 (3) |
C1 | 0.030 (5) | 0.035 (5) | 0.015 (4) | 0.001 (4) | −0.002 (4) | 0.002 (4) |
C2 | 0.027 (4) | 0.018 (4) | 0.030 (5) | 0.002 (4) | 0.005 (4) | −0.002 (4) |
C3 | 0.020 (4) | 0.020 (4) | 0.020 (4) | −0.003 (3) | 0.001 (3) | 0.002 (3) |
C4 | 0.028 (4) | 0.023 (5) | 0.016 (4) | 0.000 (4) | −0.004 (3) | 0.008 (3) |
C5 | 0.021 (4) | 0.028 (5) | 0.019 (4) | 0.000 (4) | 0.002 (3) | 0.001 (4) |
C6 | 0.031 (5) | 0.022 (5) | 0.030 (5) | 0.002 (4) | 0.003 (4) | 0.000 (4) |
C7 | 0.024 (4) | 0.029 (5) | 0.025 (4) | 0.004 (4) | −0.002 (3) | 0.010 (4) |
C8 | 0.027 (4) | 0.035 (5) | 0.013 (4) | −0.007 (4) | −0.003 (3) | 0.001 (4) |
C9 | 0.027 (4) | 0.029 (5) | 0.017 (4) | 0.000 (4) | −0.002 (3) | 0.004 (4) |
C10 | 0.023 (4) | 0.021 (5) | 0.032 (5) | −0.005 (4) | −0.002 (4) | 0.001 (4) |
C11 | 0.031 (5) | 0.022 (5) | 0.025 (4) | −0.006 (4) | 0.002 (4) | 0.002 (4) |
C12 | 0.026 (4) | 0.023 (5) | 0.028 (5) | −0.003 (4) | 0.003 (4) | 0.001 (4) |
C13 | 0.026 (5) | 0.030 (5) | 0.045 (6) | −0.003 (4) | −0.004 (4) | 0.013 (4) |
C14 | 0.024 (4) | 0.024 (5) | 0.052 (6) | 0.006 (4) | 0.006 (4) | 0.008 (4) |
C15 | 0.038 (5) | 0.029 (5) | 0.042 (6) | 0.002 (4) | 0.010 (5) | 0.001 (4) |
C16 | 0.024 (4) | 0.034 (5) | 0.032 (5) | 0.000 (4) | 0.002 (4) | 0.002 (4) |
Cl2 | 0.0372 (12) | 0.0408 (13) | 0.0258 (11) | −0.0028 (11) | −0.0026 (9) | 0.0033 (10) |
O1W | 0.043 (4) | 0.046 (4) | 0.034 (4) | 0.001 (3) | 0.009 (3) | 0.006 (3) |
O2W | 0.057 (4) | 0.033 (4) | 0.049 (4) | 0.009 (4) | 0.018 (4) | 0.007 (3) |
Cl1—C12 | 1.752 (8) | C7—H7 | 0.9500 |
N1—C1 | 1.319 (10) | C8—C9 | 1.401 (11) |
N1—C9 | 1.390 (10) | C8—H8 | 0.9500 |
N1—H1N | 0.882 (10) | C10—C11 | 1.456 (11) |
N2—C3 | 1.335 (9) | C10—H10 | 0.9500 |
N2—N3 | 1.380 (9) | C11—C12 | 1.382 (11) |
N2—H2N | 0.880 (10) | C11—C16 | 1.421 (12) |
N3—C10 | 1.284 (10) | C12—C13 | 1.404 (11) |
C1—C2 | 1.371 (10) | C13—C14 | 1.393 (12) |
C1—H1 | 0.9500 | C13—H13 | 0.9500 |
C2—C3 | 1.392 (10) | C14—C15 | 1.353 (12) |
C2—H2 | 0.9500 | C14—H14 | 0.9500 |
C3—C4 | 1.463 (11) | C15—C16 | 1.369 (12) |
C4—C9 | 1.398 (10) | C15—H15 | 0.9500 |
C4—C5 | 1.406 (11) | C16—H16 | 0.9500 |
C5—C6 | 1.370 (11) | O1W—H1W | 0.842 (10) |
C5—H5 | 0.9500 | O1W—H2W | 0.840 (10) |
C6—C7 | 1.407 (11) | O2W—H3W | 0.841 (10) |
C6—H6 | 0.9500 | O2W—H4W | 0.841 (11) |
C7—C8 | 1.363 (11) | O2W—H5W | 0.840 (10) |
C1—N1—C9 | 121.3 (7) | C9—C8—H8 | 120.4 |
C1—N1—H1N | 120 (6) | N1—C9—C4 | 119.8 (7) |
C9—N1—H1N | 119 (6) | N1—C9—C8 | 118.8 (7) |
C3—N2—N3 | 117.9 (6) | C4—C9—C8 | 121.4 (7) |
C3—N2—H2N | 123 (5) | N3—C10—C11 | 119.3 (8) |
N3—N2—H2N | 119 (5) | N3—C10—H10 | 120.4 |
C10—N3—N2 | 115.8 (7) | C11—C10—H10 | 120.4 |
N1—C1—C2 | 122.5 (8) | C12—C11—C16 | 116.5 (8) |
N1—C1—H1 | 118.7 | C12—C11—C10 | 122.2 (8) |
C2—C1—H1 | 118.7 | C16—C11—C10 | 121.3 (7) |
C1—C2—C3 | 120.2 (8) | C11—C12—C13 | 123.0 (8) |
C1—C2—H2 | 119.9 | C11—C12—Cl1 | 119.6 (6) |
C3—C2—H2 | 119.9 | C13—C12—Cl1 | 117.3 (6) |
N2—C3—C2 | 121.9 (7) | C14—C13—C12 | 117.1 (8) |
N2—C3—C4 | 120.1 (7) | C14—C13—H13 | 121.4 |
C2—C3—C4 | 118.0 (7) | C12—C13—H13 | 121.4 |
C9—C4—C5 | 118.3 (7) | C15—C14—C13 | 121.6 (8) |
C9—C4—C3 | 118.2 (7) | C15—C14—H14 | 119.2 |
C5—C4—C3 | 123.4 (7) | C13—C14—H14 | 119.2 |
C6—C5—C4 | 120.0 (7) | C14—C15—C16 | 120.7 (9) |
C6—C5—H5 | 120.0 | C14—C15—H15 | 119.7 |
C4—C5—H5 | 120.0 | C16—C15—H15 | 119.7 |
C5—C6—C7 | 120.9 (8) | C15—C16—C11 | 121.1 (8) |
C5—C6—H6 | 119.6 | C15—C16—H16 | 119.5 |
C7—C6—H6 | 119.6 | C11—C16—H16 | 119.5 |
C8—C7—C6 | 120.2 (8) | H1W—O1W—H2W | 111 (6) |
C8—C7—H7 | 119.9 | H3W—O2W—H4W | 108 (6) |
C6—C7—H7 | 119.9 | H3W—O2W—H5W | 112 (6) |
C7—C8—C9 | 119.2 (7) | H4W—O2W—H5W | 110 (6) |
C7—C8—H8 | 120.4 | ||
C3—N2—N3—C10 | 176.2 (7) | C3—C4—C9—N1 | −1.4 (11) |
C9—N1—C1—C2 | 0.3 (13) | C5—C4—C9—C8 | 0.6 (12) |
N1—C1—C2—C3 | 1.4 (13) | C3—C4—C9—C8 | −179.7 (7) |
N3—N2—C3—C2 | −1.3 (11) | C7—C8—C9—N1 | −179.5 (7) |
N3—N2—C3—C4 | 179.2 (7) | C7—C8—C9—C4 | −1.2 (12) |
C1—C2—C3—N2 | 177.5 (7) | N2—N3—C10—C11 | 179.5 (7) |
C1—C2—C3—C4 | −3.0 (11) | N3—C10—C11—C12 | 175.7 (8) |
N2—C3—C4—C9 | −177.5 (7) | N3—C10—C11—C16 | −4.8 (12) |
C2—C3—C4—C9 | 2.9 (11) | C16—C11—C12—C13 | −0.2 (12) |
N2—C3—C4—C5 | 2.2 (12) | C10—C11—C12—C13 | 179.3 (8) |
C2—C3—C4—C5 | −177.3 (7) | C16—C11—C12—Cl1 | 175.8 (6) |
C9—C4—C5—C6 | 0.0 (12) | C10—C11—C12—Cl1 | −4.7 (11) |
C3—C4—C5—C6 | −179.7 (7) | C11—C12—C13—C14 | 0.2 (12) |
C4—C5—C6—C7 | 0.0 (12) | Cl1—C12—C13—C14 | −175.9 (6) |
C5—C6—C7—C8 | −0.7 (13) | C12—C13—C14—C15 | −0.1 (13) |
C6—C7—C8—C9 | 1.2 (12) | C13—C14—C15—C16 | 0.0 (14) |
C1—N1—C9—C4 | −0.2 (12) | C14—C15—C16—C11 | 0.0 (13) |
C1—N1—C9—C8 | 178.1 (8) | C12—C11—C16—C15 | 0.1 (12) |
C5—C4—C9—N1 | 178.9 (7) | C10—C11—C16—C15 | −179.3 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···Cl2 | 0.88 (5) | 2.32 (5) | 3.192 (7) | 173 (6) |
O1w—H1w···Cl2 | 0.84 (6) | 2.37 (6) | 3.207 (7) | 177 (11) |
N2—H2n···Cl2i | 0.88 (6) | 2.49 (6) | 3.349 (7) | 166 (7) |
O1w—H2w···Cl2ii | 0.84 (5) | 2.42 (7) | 3.192 (7) | 154 (8) |
O2w—H3w···O1wiii | 0.84 (7) | 1.96 (7) | 2.801 (9) | 174 (10) |
O2w—H4w···O2wiv | 0.84 (8) | 2.08 (10) | 2.804 (10) | 144 (11) |
O2w—H5w···O2wiii | 0.83 (12) | 2.05 (13) | 2.804 (10) | 151 (10) |
Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x−1, y, z; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H13ClN3+·Cl−·2H2O |
Mr | 354.23 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 4.5946 (3), 20.1550 (19), 18.2192 (17) |
β (°) | 96.660 (5) |
V (Å3) | 1675.8 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.40 |
Crystal size (mm) | 0.33 × 0.02 × 0.01 |
Data collection | |
Diffractometer | Bruker–Nonius Roper CCD camera on a κ-goniostat diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.786, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14027, 2924, 1565 |
Rint | 0.146 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.096, 0.223, 1.06 |
No. of reflections | 2924 |
No. of parameters | 229 |
No. of restraints | 11 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
w = 1/[σ2(Fo2) + (0.P)2 + 18.2957P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.46, −0.55 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···Cl2 | 0.88 (5) | 2.32 (5) | 3.192 (7) | 173 (6) |
O1w—H1w···Cl2 | 0.84 (6) | 2.37 (6) | 3.207 (7) | 177 (11) |
N2—H2n···Cl2i | 0.88 (6) | 2.49 (6) | 3.349 (7) | 166 (7) |
O1w—H2w···Cl2ii | 0.84 (5) | 2.42 (7) | 3.192 (7) | 154 (8) |
O2w—H3w···O1wiii | 0.84 (7) | 1.96 (7) | 2.801 (9) | 174 (10) |
O2w—H4w···O2wiv | 0.84 (8) | 2.08 (10) | 2.804 (10) | 144 (11) |
O2w—H5w···O2wiii | 0.83 (12) | 2.05 (13) | 2.804 (10) | 151 (10) |
Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x−1, y, z; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+1, −z+1. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Candea, A. L. P., Ferreira, M. de L., Pais, K. C., Cardoso, L. N. de F., Kaiser, C. R., Henriques, M., das, G. M. de O., Lourenco, M. C. S., Bezerra, F. A. F. M. & de Souza, M. V. N. (2009). Bioorg. Med. Chem. Lett. 19, 6272–6274. Web of Science PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Ferreira, M. de L., Souza, M. V. N. de, Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1214–o1215. CSD CrossRef IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Howie, R. A., de Souza, M. V. N., Ferreira, M. de L., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Z. Kristallogr. 225, 440–447. Web of Science CSD CrossRef CAS Google Scholar
Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. do O., Rodriques, F. A. R., Bispo, M. L. F., Freire, B. A., Kaiser, C. R. & de Souza, M. V. N. (2012). Lett. Drug Des. Disc, 9, 251–256. CAS Google Scholar
Montenegro, R. C., Lotufo, L. V., de Moraes, M. O., Pessoa, C. Do O., Rodriques, F. A. R., Bispo, M. L. F., Cardoso, L. N. F., Kaiser, C. R. & de Souza, M. V. N. (2011). Med. Chem. 7, 599–604. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Souza, M. V. N. de, Ferreira, M. de L., Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1244–o1245. CSD CrossRef IUCr Journals Google Scholar
Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698–o699. Web of Science CSD CrossRef IUCr Journals Google Scholar
Souza, M. V. N. de, Pais, K. C., Kaiser, C. R., Peralta, M. A., Ferreira, M. de L. & Lourenco, M. C. S. (2009). Bioorg. Med. Chem. 17, 1474–1480. Web of Science PubMed Google Scholar
Wardell, S. M. S. V., Tiekink, E. R. T., Wardell, J. L., Ferreira, M. de L. & Souza, M. V. N. de (2012). Acta Cryst. E68, o1232–o1233. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A wide range of pharmacological activities have been noted for compounds containing the quinoline nucleus (de Souza et al., 2009), including anti-tubercular (Candea et al., 2009) and anti-tumour (Montenegro et al., 2012) activities. Recently, we have focused attention on arylaldehyde 7-chloroquinoline-4-hydrazone derivatives (Candea et al., 2009; Montenegro et al., 2011). Complementing synthetic studies are crystallographic investigations of these hydrazones (Howie et al., 2010; de Souza et al., 2010; Ferreira et al., 2012; de Souza et al., 2012). We have recently turned our attention to arylaldehyde quinoline-4-hydrazone derivatives (Wardell et al., 2012) and now wish to report the crystal structure of the title hydrated salt, (I).
The asymmetric unit of (I), Fig. 1, comprises a 4-[(E)-2-[(2-Chlorophenyl)methylidene]hydrazin-1-yl]quinolin-1-ium cation, a chloride anion and two lattice water molecules. The quinolinyl residue is co-planar with the central hydrazinyl group [the N3—N2—C3—C2 torsional angle is -1.3 (11)°], but the chlorobenzene ring is slightly twisted out of this plane [N3—C10—C11—C16 = -4.8 (12)°]. The conformation about the N3═C10 bond [1.284 (10) Å] is E. The molecular structure of (I) resembles very closely that of the 2,4-dichloro analogue (Wardell et al., 2012).
The crystal packing in (I) is dominated by hydrogen bonding interactions, Table 1. The water molecules aggregate into chains along the a axis, Fig. 2. One of the O2w—H atoms forms a hydrogen bond to the O1w—O atom. The remaining H atom on O2w is disordered over two positions of equal weight. These interact with adjacent O2w-water molecules as shown in Fig. 2. The two H atoms of O1w form hydrogen bonds with translationally related Cl anions, Fig. 2. Finally, each Cl anion is connected in turn to two quinolinium-H atoms to connect the components of (I) into a three-dimensional architecture, Fig. 3.