metal-organic compounds
Di-μ-iodido-bis[(dimethyl 2,2′-biquinoline-4,4′-dicarboxylate-κ2N,N′)copper(I)]
aFaculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland
*Correspondence e-mail: radoslaw.starosta@chem.uni.wroc.pl
In the centrosymmetric dinuclear title complex, [Cu2I2(C22H16N2O4)2], the CuI atom is coordinated in a distorted tetrahedral geometry by an N,N′-bidentate dimethyl 2,2′-biquinoline-4,4′-dicarboxylate ligand and two symmetry-related I atoms, which act as bridges to a symmetry-related CuI atom. The distance between the CuI atoms within the dinuclear unit is 2.6723 (11) Å.
Related literature
Copper(I) complexes are a subject of high interest and have been extensively studied during the past two decades because of their diversified photo-physical properties (Lavie-Cambot et al., 2008; Vorontsov et al., 2009; Hashimoto et al., 2011). The title complex is similar to other copper(I) complexes with halides and aromatic diimines: [Cu2I2(1,10-phenanthroline)2] and Cu2X2(2,9-dimethyl-1,10-phenanthroline)2], where X = I, Br, Cl (Healy et al., 1985); [Cu2X2(1,10-phenanthroline)2], where X = Cl and I (Yu et al., 2004); [Cu2X2(NN)2], where X = Br, I and NN = bidentate imino (Oshio et al., 1996); [Cu2Cl2(dihexsyl-2,2′-biquinoline-4,4′-dicarboxylate)2] [Cu2Cl2(2,2′-biquinoline-4,4′-dicarboxylic acid)2] (Vatsadze et al., 2010). For the preparation of the dimethyl-2,2′-biquinoline-4,4′-dicarboxylate ligand, see: Pucci et al. (2011) and of the P(CH2N(CH2CH2)2O)3 phosphane ligand, see: Starosta et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812020843/kp2406sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812020843/kp2406Isup2.hkl
Crystals of the title complex were grown in the mixture of dichloromethane and acetone in an attempt to obtain crystals of [Cu(I)(dimethyl-2,2'-biquinoline-4,4'-dicarboxylate) P(CH2N(CH2CH2)2O)3] complex. CuI was purchased from Aldrich. Dimethyl-2,2'-biquinoline-4,4'- dicarboxylate ligand was prepared from 2,2'-biquinoline-4,4'-dicarboxylic acid (Aldrich) according to the literature method (Pucci et al., 2011). P(CH2N(CH2CH2)2O)3 phosphane ligand was synthesized as described previously (Starosta et al., 2010).
All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the complex showing the atom-labelling scheme and displacement ellipsoids at the 50% probability (symmmetry code used: -x + 1, -y, -z + 1). |
[Cu2I2(C22H16N2O4)2] | Z = 1 |
Mr = 1125.62 | F(000) = 552 |
Triclinic, P1 | Dx = 1.930 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.792 (3) Å | Cell parameters from 11359 reflections |
b = 9.157 (3) Å | θ = 2.9–36.8° |
c = 12.865 (4) Å | µ = 2.76 mm−1 |
α = 96.59 (3)° | T = 100 K |
β = 102.49 (3)° | Plate, orange |
γ = 103.51 (3)° | 0.15 × 0.10 × 0.10 mm |
V = 968.2 (5) Å3 |
Kuma KM-4-CCD κ-geometry diffractometer | 5471 independent reflections |
Radiation source: fine-focus sealed tube | 4606 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 30.0°, θmin = 2.9° |
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2006), based on expressions derived by Clark & Reid (1995)] | h = −10→12 |
Tmin = 0.466, Tmax = 0.912 | k = −12→11 |
15308 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.040P)2] where P = (Fo2 + 2Fc2)/3 |
5471 reflections | (Δ/σ)max = 0.001 |
273 parameters | Δρmax = 0.89 e Å−3 |
0 restraints | Δρmin = −1.16 e Å−3 |
[Cu2I2(C22H16N2O4)2] | γ = 103.51 (3)° |
Mr = 1125.62 | V = 968.2 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.792 (3) Å | Mo Kα radiation |
b = 9.157 (3) Å | µ = 2.76 mm−1 |
c = 12.865 (4) Å | T = 100 K |
α = 96.59 (3)° | 0.15 × 0.10 × 0.10 mm |
β = 102.49 (3)° |
Kuma KM-4-CCD κ-geometry diffractometer | 5471 independent reflections |
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2006), based on expressions derived by Clark & Reid (1995)] | 4606 reflections with I > 2σ(I) |
Tmin = 0.466, Tmax = 0.912 | Rint = 0.028 |
15308 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.89 e Å−3 |
5471 reflections | Δρmin = −1.16 e Å−3 |
273 parameters |
Experimental. Absorption correction: CrysAlis RED, (Oxford Diffraction, 2006). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S., 1995) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.34262 (3) | −0.02511 (3) | 0.49564 (2) | 0.01649 (7) | |
I1 | 0.495174 (17) | 0.240323 (17) | 0.478225 (12) | 0.01826 (5) | |
N1A | 0.1380 (2) | −0.1629 (2) | 0.38141 (15) | 0.0142 (3) | |
C2A | 0.0293 (3) | −0.2436 (3) | 0.42433 (18) | 0.0153 (4) | |
C3A | −0.0976 (3) | −0.3688 (3) | 0.36264 (18) | 0.0172 (4) | |
H3A | −0.1715 | −0.4265 | 0.3963 | 0.021* | |
C4A | −0.1132 (3) | −0.4064 (3) | 0.25341 (18) | 0.0165 (4) | |
C5A | −0.0028 (3) | −0.3491 (3) | 0.09277 (18) | 0.0191 (4) | |
H5A | −0.0859 | −0.4295 | 0.0451 | 0.023* | |
C6A | 0.1133 (3) | −0.2621 (3) | 0.05366 (19) | 0.0204 (5) | |
H6A | 0.1111 | −0.2840 | −0.0207 | 0.024* | |
C7A | 0.2367 (3) | −0.1399 (3) | 0.12198 (19) | 0.0200 (5) | |
H7A | 0.3155 | −0.0795 | 0.0932 | 0.024* | |
C8A | 0.2426 (3) | −0.1086 (3) | 0.22991 (19) | 0.0178 (4) | |
H8A | 0.3256 | −0.0265 | 0.2759 | 0.021* | |
C9A | 0.1252 (3) | −0.1986 (2) | 0.27237 (18) | 0.0150 (4) | |
C10A | −0.0005 (3) | −0.3205 (3) | 0.20414 (18) | 0.0158 (4) | |
C11A | −0.2508 (3) | −0.5363 (3) | 0.18690 (19) | 0.0190 (4) | |
O11A | −0.3182 (2) | −0.5417 (2) | 0.09388 (14) | 0.0281 (4) | |
O12A | −0.28999 (19) | −0.64555 (19) | 0.24393 (14) | 0.0212 (3) | |
C12A | −0.4228 (3) | −0.7757 (3) | 0.1849 (2) | 0.0245 (5) | |
H12D | −0.5155 | −0.7399 | 0.1519 | 0.037* | |
H12E | −0.4536 | −0.8435 | 0.2349 | 0.037* | |
H12F | −0.3887 | −0.8313 | 0.1283 | 0.037* | |
N1B | 0.1763 (2) | −0.0732 (2) | 0.58953 (15) | 0.0144 (3) | |
C2B | 0.0491 (2) | −0.1915 (3) | 0.54192 (17) | 0.0140 (4) | |
C3B | −0.0588 (3) | −0.2629 (3) | 0.59879 (18) | 0.0154 (4) | |
H3B | −0.1447 | −0.3501 | 0.5632 | 0.019* | |
C4B | −0.0395 (3) | −0.2061 (3) | 0.70607 (18) | 0.0155 (4) | |
C5B | 0.1212 (3) | −0.0045 (3) | 0.86815 (18) | 0.0169 (4) | |
H5B | 0.0512 | −0.0429 | 0.9113 | 0.020* | |
C6B | 0.2517 (3) | 0.1184 (3) | 0.91204 (18) | 0.0193 (4) | |
H6B | 0.2709 | 0.1642 | 0.9854 | 0.023* | |
C7B | 0.3583 (3) | 0.1782 (3) | 0.85011 (19) | 0.0188 (4) | |
H7B | 0.4489 | 0.2630 | 0.8821 | 0.023* | |
C8B | 0.3309 (3) | 0.1139 (3) | 0.74412 (18) | 0.0176 (4) | |
H8B | 0.4023 | 0.1548 | 0.7025 | 0.021* | |
C9B | 0.1967 (3) | −0.0135 (3) | 0.69604 (18) | 0.0153 (4) | |
C10B | 0.0894 (3) | −0.0752 (2) | 0.75828 (17) | 0.0145 (4) | |
C11B | −0.1583 (3) | −0.2831 (3) | 0.76375 (18) | 0.0163 (4) | |
O11B | −0.1970 (2) | −0.2197 (2) | 0.83756 (14) | 0.0220 (4) | |
O12B | −0.2166 (2) | −0.43175 (19) | 0.72286 (14) | 0.0210 (3) | |
C12B | −0.3430 (3) | −0.5141 (3) | 0.7667 (2) | 0.0241 (5) | |
H12A | −0.3126 | −0.4851 | 0.8456 | 0.036* | |
H12B | −0.3575 | −0.6240 | 0.7470 | 0.036* | |
H12C | −0.4443 | −0.4890 | 0.7371 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01350 (13) | 0.01802 (14) | 0.01445 (13) | −0.00091 (10) | 0.00308 (10) | 0.00031 (10) |
I1 | 0.01682 (7) | 0.01604 (7) | 0.01965 (8) | 0.00169 (5) | 0.00320 (5) | 0.00222 (5) |
N1A | 0.0140 (8) | 0.0151 (9) | 0.0116 (8) | 0.0030 (7) | 0.0011 (7) | 0.0007 (7) |
C2A | 0.0139 (9) | 0.0167 (10) | 0.0136 (10) | 0.0032 (8) | 0.0028 (8) | −0.0001 (8) |
C3A | 0.0139 (10) | 0.0188 (11) | 0.0161 (10) | 0.0003 (8) | 0.0029 (8) | 0.0020 (8) |
C4A | 0.0170 (10) | 0.0145 (10) | 0.0150 (10) | 0.0019 (8) | 0.0020 (8) | −0.0011 (8) |
C5A | 0.0216 (11) | 0.0190 (11) | 0.0140 (10) | 0.0038 (9) | 0.0028 (8) | −0.0011 (8) |
C6A | 0.0274 (12) | 0.0200 (11) | 0.0122 (10) | 0.0059 (9) | 0.0039 (9) | −0.0006 (8) |
C7A | 0.0227 (11) | 0.0205 (11) | 0.0170 (10) | 0.0040 (9) | 0.0063 (9) | 0.0051 (9) |
C8A | 0.0173 (10) | 0.0180 (11) | 0.0160 (10) | 0.0026 (8) | 0.0023 (8) | 0.0027 (8) |
C9A | 0.0145 (9) | 0.0146 (10) | 0.0142 (10) | 0.0028 (8) | 0.0018 (8) | 0.0016 (8) |
C10A | 0.0150 (10) | 0.0160 (10) | 0.0140 (10) | 0.0031 (8) | 0.0009 (8) | −0.0001 (8) |
C11A | 0.0157 (10) | 0.0198 (11) | 0.0186 (11) | 0.0011 (8) | 0.0053 (8) | −0.0024 (9) |
O11A | 0.0260 (9) | 0.0315 (10) | 0.0161 (8) | −0.0037 (8) | −0.0016 (7) | −0.0013 (7) |
O12A | 0.0164 (8) | 0.0178 (8) | 0.0224 (8) | −0.0030 (6) | 0.0000 (6) | 0.0000 (7) |
C12A | 0.0162 (11) | 0.0184 (11) | 0.0312 (13) | −0.0030 (9) | 0.0012 (10) | −0.0017 (10) |
N1B | 0.0129 (8) | 0.0160 (9) | 0.0123 (8) | 0.0013 (7) | 0.0024 (7) | 0.0008 (7) |
C2B | 0.0121 (9) | 0.0148 (10) | 0.0124 (9) | 0.0012 (7) | 0.0013 (7) | 0.0002 (8) |
C3B | 0.0118 (9) | 0.0170 (10) | 0.0151 (10) | 0.0016 (8) | 0.0012 (8) | 0.0016 (8) |
C4B | 0.0129 (9) | 0.0173 (10) | 0.0158 (10) | 0.0034 (8) | 0.0039 (8) | 0.0021 (8) |
C5B | 0.0176 (10) | 0.0192 (11) | 0.0138 (10) | 0.0056 (8) | 0.0036 (8) | 0.0022 (8) |
C6B | 0.0220 (11) | 0.0211 (11) | 0.0124 (10) | 0.0053 (9) | 0.0024 (8) | −0.0020 (8) |
C7B | 0.0175 (10) | 0.0162 (10) | 0.0180 (10) | 0.0004 (8) | 0.0018 (8) | −0.0021 (8) |
C8B | 0.0167 (10) | 0.0181 (11) | 0.0157 (10) | 0.0007 (8) | 0.0047 (8) | 0.0005 (8) |
C9B | 0.0141 (9) | 0.0168 (10) | 0.0142 (10) | 0.0042 (8) | 0.0023 (8) | 0.0011 (8) |
C10B | 0.0142 (9) | 0.0157 (10) | 0.0135 (10) | 0.0042 (8) | 0.0030 (8) | 0.0021 (8) |
C11B | 0.0145 (9) | 0.0182 (10) | 0.0149 (10) | 0.0035 (8) | 0.0017 (8) | 0.0036 (8) |
O11B | 0.0212 (8) | 0.0233 (9) | 0.0191 (8) | 0.0007 (7) | 0.0085 (7) | −0.0016 (7) |
O12B | 0.0214 (8) | 0.0167 (8) | 0.0250 (9) | 0.0013 (6) | 0.0110 (7) | 0.0025 (7) |
C12B | 0.0244 (12) | 0.0179 (11) | 0.0299 (13) | 0.0001 (9) | 0.0132 (10) | 0.0042 (10) |
Cu1—N1A | 2.088 (2) | C12A—H12D | 0.9800 |
Cu1—N1B | 2.092 (2) | C12A—H12E | 0.9800 |
Cu1—I1 | 2.5473 (10) | C12A—H12F | 0.9800 |
Cu1—I1i | 2.6996 (9) | N1B—C2B | 1.336 (3) |
Cu1—Cu1i | 2.6723 (11) | N1B—C9B | 1.373 (3) |
I1—Cu1i | 2.6997 (9) | C2B—C3B | 1.408 (3) |
N1A—C2A | 1.325 (3) | C3B—C4B | 1.377 (3) |
N1A—C9A | 1.377 (3) | C3B—H3B | 0.9500 |
C2A—C3A | 1.414 (3) | C4B—C10B | 1.422 (3) |
C2A—C2B | 1.493 (3) | C4B—C11B | 1.500 (3) |
C3A—C4A | 1.377 (3) | C5B—C6B | 1.368 (3) |
C3A—H3A | 0.9500 | C5B—C10B | 1.425 (3) |
C4A—C10A | 1.423 (3) | C5B—H5B | 0.9500 |
C4A—C11A | 1.502 (3) | C6B—C7B | 1.413 (3) |
C5A—C6A | 1.366 (3) | C6B—H6B | 0.9500 |
C5A—C10A | 1.421 (3) | C7B—C8B | 1.368 (3) |
C5A—H5A | 0.9500 | C7B—H7B | 0.9500 |
C6A—C7A | 1.412 (3) | C8B—C9B | 1.419 (3) |
C6A—H6A | 0.9500 | C8B—H8B | 0.9500 |
C7A—C8A | 1.372 (3) | C9B—C10B | 1.426 (3) |
C7A—H7A | 0.9500 | C11B—O11B | 1.208 (3) |
C8A—C9A | 1.412 (3) | C11B—O12B | 1.336 (3) |
C8A—H8A | 0.9500 | O12B—C12B | 1.448 (3) |
C9A—C10A | 1.420 (3) | C12B—H12A | 0.9800 |
C11A—O11A | 1.205 (3) | C12B—H12B | 0.9800 |
C11A—O12A | 1.332 (3) | C12B—H12C | 0.9800 |
O12A—C12A | 1.455 (3) | ||
N1A—Cu1—N1B | 78.10 (8) | O12A—C12A—H12F | 109.5 |
N1A—Cu1—I1 | 124.55 (6) | H12D—C12A—H12F | 109.5 |
N1B—Cu1—I1 | 125.61 (6) | H12E—C12A—H12F | 109.5 |
N1A—Cu1—I1i | 96.95 (6) | C2B—N1B—C9B | 118.65 (19) |
N1B—Cu1—I1i | 103.46 (6) | C2B—N1B—Cu1 | 113.28 (14) |
I1—Cu1—I1i | 118.85 (3) | C9B—N1B—Cu1 | 127.25 (15) |
Cu1—I1—Cu1i | 61.15 (3) | N1B—C2B—C3B | 122.3 (2) |
C2A—N1A—C9A | 119.28 (19) | N1B—C2B—C2A | 115.52 (19) |
C2A—N1A—Cu1 | 113.75 (15) | C3B—C2B—C2A | 122.14 (19) |
C9A—N1A—Cu1 | 125.41 (15) | C4B—C3B—C2B | 119.9 (2) |
N1A—C2A—C3A | 122.3 (2) | C4B—C3B—H3B | 120.1 |
N1A—C2A—C2B | 115.21 (19) | C2B—C3B—H3B | 120.1 |
C3A—C2A—C2B | 122.5 (2) | C3B—C4B—C10B | 119.5 (2) |
C4A—C3A—C2A | 119.4 (2) | C3B—C4B—C11B | 118.5 (2) |
C4A—C3A—H3A | 120.3 | C10B—C4B—C11B | 121.9 (2) |
C2A—C3A—H3A | 120.3 | C6B—C5B—C10B | 120.6 (2) |
C3A—C4A—C10A | 119.8 (2) | C6B—C5B—H5B | 119.7 |
C3A—C4A—C11A | 119.7 (2) | C10B—C5B—H5B | 119.7 |
C10A—C4A—C11A | 120.5 (2) | C5B—C6B—C7B | 121.1 (2) |
C6A—C5A—C10A | 120.6 (2) | C5B—C6B—H6B | 119.4 |
C6A—C5A—H5A | 119.7 | C7B—C6B—H6B | 119.4 |
C10A—C5A—H5A | 119.7 | C8B—C7B—C6B | 119.9 (2) |
C5A—C6A—C7A | 121.1 (2) | C8B—C7B—H7B | 120.0 |
C5A—C6A—H6A | 119.5 | C6B—C7B—H7B | 120.0 |
C7A—C6A—H6A | 119.5 | C7B—C8B—C9B | 120.4 (2) |
C8A—C7A—C6A | 120.0 (2) | C7B—C8B—H8B | 119.8 |
C8A—C7A—H7A | 120.0 | C9B—C8B—H8B | 119.8 |
C6A—C7A—H7A | 120.0 | N1B—C9B—C8B | 117.5 (2) |
C7A—C8A—C9A | 119.8 (2) | N1B—C9B—C10B | 122.5 (2) |
C7A—C8A—H8A | 120.1 | C8B—C9B—C10B | 120.0 (2) |
C9A—C8A—H8A | 120.1 | C4B—C10B—C5B | 125.0 (2) |
N1A—C9A—C8A | 117.3 (2) | C4B—C10B—C9B | 117.0 (2) |
N1A—C9A—C10A | 122.1 (2) | C5B—C10B—C9B | 118.0 (2) |
C8A—C9A—C10A | 120.6 (2) | O11B—C11B—O12B | 124.0 (2) |
C9A—C10A—C5A | 117.9 (2) | O11B—C11B—C4B | 124.8 (2) |
C9A—C10A—C4A | 117.1 (2) | O12B—C11B—C4B | 111.19 (19) |
C5A—C10A—C4A | 125.0 (2) | C11B—O12B—C12B | 115.55 (18) |
O11A—C11A—O12A | 123.9 (2) | O12B—C12B—H12A | 109.5 |
O11A—C11A—C4A | 124.7 (2) | O12B—C12B—H12B | 109.5 |
O12A—C11A—C4A | 111.4 (2) | H12A—C12B—H12B | 109.5 |
C11A—O12A—C12A | 114.73 (19) | O12B—C12B—H12C | 109.5 |
O12A—C12A—H12D | 109.5 | H12A—C12B—H12C | 109.5 |
O12A—C12A—H12E | 109.5 | H12B—C12B—H12C | 109.5 |
H12D—C12A—H12E | 109.5 | ||
N1A—Cu1—I1—Cu1i | −123.16 (7) | I1—Cu1—N1B—C2B | 140.88 (14) |
N1B—Cu1—I1—Cu1i | 136.17 (7) | I1i—Cu1—N1B—C2B | −77.71 (15) |
I1i—Cu1—I1—Cu1i | 0.0 | N1A—Cu1—N1B—C9B | −173.9 (2) |
N1B—Cu1—N1A—C2A | −17.89 (15) | I1—Cu1—N1B—C9B | −49.7 (2) |
I1—Cu1—N1A—C2A | −143.16 (14) | I1i—Cu1—N1B—C9B | 91.69 (18) |
I1i—Cu1—N1A—C2A | 84.46 (15) | C9B—N1B—C2B—C3B | −4.1 (3) |
N1B—Cu1—N1A—C9A | 176.59 (19) | Cu1—N1B—C2B—C3B | 166.34 (17) |
I1—Cu1—N1A—C9A | 51.33 (19) | C9B—N1B—C2B—C2A | 176.24 (19) |
I1i—Cu1—N1A—C9A | −81.05 (18) | Cu1—N1B—C2B—C2A | −13.4 (2) |
C9A—N1A—C2A—C3A | 1.9 (3) | N1A—C2A—C2B—N1B | −1.9 (3) |
Cu1—N1A—C2A—C3A | −164.62 (17) | C3A—C2A—C2B—N1B | 179.0 (2) |
C9A—N1A—C2A—C2B | −177.27 (19) | N1A—C2A—C2B—C3B | 178.4 (2) |
Cu1—N1A—C2A—C2B | 16.2 (2) | C3A—C2A—C2B—C3B | −0.7 (3) |
N1A—C2A—C3A—C4A | −2.1 (3) | N1B—C2B—C3B—C4B | 3.3 (3) |
C2B—C2A—C3A—C4A | 177.0 (2) | C2A—C2B—C3B—C4B | −177.0 (2) |
C2A—C3A—C4A—C10A | 0.9 (3) | C2B—C3B—C4B—C10B | 0.2 (3) |
C2A—C3A—C4A—C11A | −178.1 (2) | C2B—C3B—C4B—C11B | 178.9 (2) |
C10A—C5A—C6A—C7A | −1.2 (4) | C10B—C5B—C6B—C7B | −0.1 (4) |
C5A—C6A—C7A—C8A | 1.0 (4) | C5B—C6B—C7B—C8B | 0.6 (4) |
C6A—C7A—C8A—C9A | 0.0 (3) | C6B—C7B—C8B—C9B | −0.5 (4) |
C2A—N1A—C9A—C8A | 179.3 (2) | C2B—N1B—C9B—C8B | −178.8 (2) |
Cu1—N1A—C9A—C8A | −15.9 (3) | Cu1—N1B—C9B—C8B | 12.3 (3) |
C2A—N1A—C9A—C10A | −0.5 (3) | C2B—N1B—C9B—C10B | 1.5 (3) |
Cu1—N1A—C9A—C10A | 164.31 (16) | Cu1—N1B—C9B—C10B | −167.44 (16) |
C7A—C8A—C9A—N1A | 179.4 (2) | C7B—C8B—C9B—N1B | −179.7 (2) |
C7A—C8A—C9A—C10A | −0.8 (3) | C7B—C8B—C9B—C10B | 0.0 (3) |
N1A—C9A—C10A—C5A | −179.6 (2) | C3B—C4B—C10B—C5B | 179.2 (2) |
C8A—C9A—C10A—C5A | 0.6 (3) | C11B—C4B—C10B—C5B | 0.6 (3) |
N1A—C9A—C10A—C4A | −0.6 (3) | C3B—C4B—C10B—C9B | −2.6 (3) |
C8A—C9A—C10A—C4A | 179.5 (2) | C11B—C4B—C10B—C9B | 178.8 (2) |
C6A—C5A—C10A—C9A | 0.4 (3) | C6B—C5B—C10B—C4B | 177.8 (2) |
C6A—C5A—C10A—C4A | −178.5 (2) | C6B—C5B—C10B—C9B | −0.4 (3) |
C3A—C4A—C10A—C9A | 0.4 (3) | N1B—C9B—C10B—C4B | 1.8 (3) |
C11A—C4A—C10A—C9A | 179.4 (2) | C8B—C9B—C10B—C4B | −177.9 (2) |
C3A—C4A—C10A—C5A | 179.3 (2) | N1B—C9B—C10B—C5B | −179.8 (2) |
C11A—C4A—C10A—C5A | −1.7 (3) | C8B—C9B—C10B—C5B | 0.4 (3) |
C3A—C4A—C11A—O11A | 146.9 (3) | C3B—C4B—C11B—O11B | −149.8 (2) |
C10A—C4A—C11A—O11A | −32.1 (4) | C10B—C4B—C11B—O11B | 28.8 (3) |
C3A—C4A—C11A—O12A | −32.9 (3) | C3B—C4B—C11B—O12B | 30.2 (3) |
C10A—C4A—C11A—O12A | 148.1 (2) | C10B—C4B—C11B—O12B | −151.2 (2) |
O11A—C11A—O12A—C12A | 0.2 (3) | O11B—C11B—O12B—C12B | 5.1 (3) |
C4A—C11A—O12A—C12A | 179.96 (18) | C4B—C11B—O12B—C12B | −174.87 (19) |
N1A—Cu1—N1B—C2B | 16.69 (15) |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2I2(C22H16N2O4)2] |
Mr | 1125.62 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 8.792 (3), 9.157 (3), 12.865 (4) |
α, β, γ (°) | 96.59 (3), 102.49 (3), 103.51 (3) |
V (Å3) | 968.2 (5) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.76 |
Crystal size (mm) | 0.15 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Kuma KM-4-CCD κ-geometry diffractometer |
Absorption correction | Analytical [CrysAlis RED (Oxford Diffraction, 2006), based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.466, 0.912 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15308, 5471, 4606 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.065, 1.02 |
No. of reflections | 5471 |
No. of parameters | 273 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.89, −1.16 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).
Cu1—N1A | 2.088 (2) | Cu1—I1i | 2.6996 (9) |
Cu1—N1B | 2.092 (2) | Cu1—Cu1i | 2.6723 (11) |
Cu1—I1 | 2.5473 (10) |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
The authors are grateful to Dr Miłosz Siczek for the crystal measurements and help with the preparation of this manuscript.
References
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hashimoto, M., Igawa, S., Yashima, M., Kawata, I., Hoshino, M. & Osawa, M. (2011). J. Am. Chem. Soc. 133, 10348–10351. Web of Science CSD CrossRef CAS PubMed Google Scholar
Healy, P. C., Pakawatchai, Ch. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 2531–2539. CSD CrossRef Web of Science Google Scholar
Lavie-Cambot, A., Cantuel, M., Leydet, Y., Jonusauskas, G., Bassani, D. M. & McClenaghan, N. D. (2008). Coord. Chem. Rev. 252, 2572–2588. CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472–479. CSD CrossRef PubMed CAS Web of Science Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Pucci, D., Crispini, A., Ghedini, M., Szerb, E. I. & La Deda, M. (2011). Dalton Trans. 40, 4614–4622. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, R., Florek, M., Król, J., Puchalska, M. & Kochel, A. (2010). New J. Chem. 34, 1441–1449. Web of Science CSD CrossRef CAS Google Scholar
Vatsadze, S. Z., Dolganov, A. V., Yakimanskii, A. V., Goikhman, M. Ya., Podeshvo, I. V., Lyssenko, K. A., Maksimov, A. L. & Magdesieva, T. V. (2010). Russ. Chem. Bull. Int. Ed. 59, 724–732. Web of Science CrossRef CAS Google Scholar
Vorontsov, I. I., Graber, T., Kovalevsky, A. Yu., Novozhilova, I. V., Gembicky, M., Chen, Y.-S. & Coppens, P. (2009). J. Am. Chem. Soc. 131, 6566–6573. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, J.-H., Lü, Z.-L., Xu, J.-Q., Bie, H.-Y., Lu, J. & Zhang, X. (2004). New J. Chem. 28, 940–945. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The asymmetric unit of the studied bis((µ-iodo)-(dimethyl-2,2'-biquinoline-4,4'-dicarboxylate))-di-copper(I) complex consist of the [(dimethyl-2,2'-biquinoline-4,4'-dicarboxylate)Cu(I)] moiety (Fig. 1, Table 1). CuI atoms are bridged by two iodide ions forming the planar rhombic Cu2(µ-I)2 core. Additionally coordinated by the imine nitrogen atoms of the dimethyl-2,2'-biquinoline-4,4'-dicarboxylate ligand, each CuI atom reveals a distorted tetrahedral geometry. Connected quinoline rings of the coordinated molecule of dimethyl-2,2'-biquinoline-4,4'-dicarboxylate are not coplanar, the angle between their planes is 5.40 (7)°.