organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-6-Eth­­oxy-3,3a,4,9b-tetra­hydro-1,3-di­phenyl-1H-chromeno[4,3-c]isoxazole-3a-carbo­nitrile

aPost Graduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 20 April 2012; accepted 27 April 2012; online 5 May 2012)

The title compound, C25H22N2O3, with three stereogenic centres, crystallizes in a centrosymmetric space group as a racemate. The pyran ring adopts a sofa conformation and the five-membered isoxazole ring exhibits an envelope conformation. The dihedral angle between the benzene ring and the mean plane through the near coplanar atoms of the pyran ring is 10.54 (9)°. In the crystal, no significant intermolecular interactions are observed.

Related literature

For the biological activity of the title compound, see: Rozman et al. (2002[Rozman, B., Praprotnik, S., Logar, D., Tomsic, M., Hojnik, M., Kos-Golja, M., Accetto, R. & Dolenc, P. (2002). Ann. Rheum. Dis. 61, 567-569.]); Winn et al. (1976[Winn, M., Arendsen, D., Dodge, P., Dren, A., Dunnigan, D., Hallas, R., Hwang, K., Kyncl, J., Lee, Y. H., Plotnikoff, N., Young Zaugg, H., Dalzell, H. & Razdan, R. K. (1976). J. Med. Chem. 19, 461-471.]). For N-atom hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For conformational analysis and puckering parameters, see: Cremer & Pople, (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Kanchanadevi et al. (2011[Kanchanadevi, J., Anbalagan, G., Srinivasan, J., Bakthadoss, M. & Manivannan, V. (2011). Acta Cryst. E67, o1989.]); Swaminathan et al. (2012[Swaminathan, K., Sethusankar, K., Srinivasan, J. & Bakthadoss, M. (2012). Acta Cryst. E68, o283-o284.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22N2O3

  • Mr = 398.45

  • Monoclinic, P 21 /c

  • a = 15.2994 (9) Å

  • b = 7.5421 (5) Å

  • c = 18.7248 (12) Å

  • β = 107.596 (4)°

  • V = 2059.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 18432 measured reflections

  • 5109 independent reflections

  • 2805 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.164

  • S = 1.04

  • 5109 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isoxazole derivative is used for the treatment of rheumatoid arthritis (Rozman et al., 2002) whereas benzopyran derivatives exhibit anti-depressant activities (Winn et al., 1976). On this grounds, the title compound was chosen for X-ray structure analysis (Fig.1).

The pyran ring (O1/C1/C6—C9) adopts a sofa conformation with the puckering parameters (Cremer & Pople, 1975) being q2=0.426 (1) Å, q3=0.291 (1) Å, QT=0.516 (1) Å and the five-membered isoxazole ring (N1/O2/C7/C8/C11) adopts an envelope conformation with puckering parameters (Cremer & Pople, 1975) being q2=0.521 (19) Å and Φ2=219.3 (2)°. The dihedral angle between the pyran and the benzene rings (C1—C6) is 7.68 (5)°. Also the dihedral angle between the chromeno ring (fusion of benzene and pyran rings) and isoxazole ring is 40.31 (5)°.

In the chromenoisoxazole moiety, the dihedral angle between the benzene and isoxazole ring is 36.41 (5)° and the dihedral angle between the pyran and isoxazole ring is 42.56 (6)°.

The sum of the bond angles around N1 [321.17 (39)°] indicates sp3 hybridization (Beddoes et al.,1986).

The geometric parameters of the title compound (Fig. 1) agree well with the reported similar structures (Kanchanadevi et al., 2011; Swaminathan et al., 2012).

The molecular structure is stabilized by C— H··· N intramolecular interaction and the crystal packing is stabilised by C— H··· O and C— H··· N hydrogen bonds (Table 1).

Related literature top

For the biological activity of the title compound, see: Rozman et al. (2002); Winn et al. (1976). For N-atom hybridization, see: Beddoes et al. (1986). For conformational analysis and pukering parameters, see: Cremer & Pople, (1975). For related structures, see: Kanchanadevi et al. (2011); Swaminathan et al. (2012).

Experimental top

A mixture of (E)-2-((2-ethoxy-6-formylphenoxy)methyl)-3-phenylacrylonitrile (2 mmol, 0.61 g) and N-phenylhydroxylamine (3 mmol, 0.33 g) in ethanol (10 mL) was refluxed for 6 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (15 mL) and extracted with ethyl acetate (3 × 15 mL). The combined organic layer was washed with brine (3 × 15 mL) and dried over anhydrous Na2SO4, solvent was removed under reduced pressure. The crude mass was purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate-hexane (1:9) to afford the pure compound as a colourless solid in 76% yield.

Refinement top

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
rac-6-Ethoxy-3,3a,4,9b-tetrahydro-1,3-diphenyl-1H- chromeno[4,3-c]isoxazole-3a-carbonitrile top
Crystal data top
C25H22N2O3F(000) = 840
Mr = 398.45Dx = 1.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5109 reflections
a = 15.2994 (9) Åθ = 1.4–28.3°
b = 7.5421 (5) ŵ = 0.09 mm1
c = 18.7248 (12) ÅT = 298 K
β = 107.596 (4)°Block, colourless
V = 2059.6 (2) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2805 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 28.3°, θmin = 1.4°
ω and ϕ scansh = 2020
18432 measured reflectionsk = 1010
5109 independent reflectionsl = 2024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.2385P]
where P = (Fo2 + 2Fc2)/3
5109 reflections(Δ/σ)max = 0.008
271 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C25H22N2O3V = 2059.6 (2) Å3
Mr = 398.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2994 (9) ŵ = 0.09 mm1
b = 7.5421 (5) ÅT = 298 K
c = 18.7248 (12) Å0.20 × 0.15 × 0.10 mm
β = 107.596 (4)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2805 reflections with I > 2σ(I)
18432 measured reflectionsRint = 0.029
5109 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
5109 reflectionsΔρmin = 0.18 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74167 (9)0.45965 (16)0.72376 (7)0.0602 (4)
O20.88519 (9)0.03937 (17)0.68806 (7)0.0612 (4)
O30.59365 (9)0.65386 (17)0.67710 (8)0.0672 (4)
N10.81401 (10)0.0634 (2)0.63282 (8)0.0543 (4)
C70.74962 (12)0.0946 (2)0.67721 (10)0.0476 (4)
H70.72570.01890.68870.057*
C80.81684 (12)0.1717 (2)0.74828 (10)0.0514 (5)
C10.67024 (13)0.3889 (2)0.66889 (10)0.0502 (4)
C60.67181 (12)0.2174 (2)0.64144 (9)0.0483 (4)
C120.94613 (12)0.0419 (3)0.82161 (11)0.0556 (5)
C110.90766 (13)0.0711 (3)0.75323 (11)0.0561 (5)
H110.95420.15730.75000.067*
C200.77892 (12)0.0486 (3)0.56829 (11)0.0548 (5)
C90.82649 (14)0.3691 (2)0.73450 (11)0.0600 (5)
H9A0.87270.42020.77700.072*
H9B0.84660.38450.69050.072*
C20.59079 (13)0.4927 (2)0.64301 (10)0.0542 (5)
C50.59528 (13)0.1560 (3)0.58543 (10)0.0568 (5)
H50.59570.04260.56600.068*
C171.02141 (13)0.0150 (3)0.87856 (12)0.0701 (6)
H171.04930.12210.87380.084*
C100.78370 (14)0.1491 (3)0.81384 (11)0.0583 (5)
C30.51685 (14)0.4285 (3)0.58771 (11)0.0620 (5)
H30.46460.49810.56950.074*
C180.50900 (15)0.7498 (3)0.66297 (12)0.0695 (6)
H18A0.46040.67020.66580.083*
H18B0.49220.80140.61320.083*
C210.75973 (14)0.0310 (3)0.49899 (12)0.0689 (6)
H210.77020.15170.49560.083*
C40.51968 (14)0.2608 (3)0.55889 (11)0.0645 (5)
H40.46950.21890.52090.077*
N20.75559 (15)0.1391 (3)0.86341 (11)0.0825 (6)
C130.90569 (15)0.2018 (3)0.83037 (13)0.0706 (6)
H130.85470.24220.79280.085*
C240.72930 (16)0.3275 (3)0.50900 (16)0.0823 (7)
H240.71910.44850.51200.099*
C250.76250 (14)0.2284 (3)0.57391 (13)0.0674 (6)
H250.77360.28160.62060.081*
C140.94057 (18)0.3005 (3)0.89414 (14)0.0833 (7)
H140.91300.40730.89970.100*
C230.71127 (16)0.2466 (4)0.43976 (15)0.0866 (8)
H230.68970.31390.39640.104*
C220.72498 (16)0.0680 (4)0.43459 (13)0.0818 (7)
H220.71090.01370.38790.098*
C190.52145 (18)0.8905 (3)0.71959 (13)0.0847 (7)
H19A0.46540.95620.71070.127*
H19B0.56960.96880.71640.127*
H19C0.53740.83830.76860.127*
C151.01620 (18)0.2420 (4)0.94988 (14)0.0872 (7)
H151.04030.31020.99270.105*
C161.05552 (16)0.0852 (4)0.94225 (14)0.0865 (7)
H161.10600.04490.98040.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0672 (8)0.0368 (7)0.0725 (8)0.0015 (7)0.0151 (7)0.0087 (6)
O20.0582 (7)0.0561 (8)0.0708 (8)0.0089 (7)0.0220 (6)0.0094 (7)
O30.0757 (9)0.0444 (8)0.0851 (9)0.0107 (7)0.0299 (7)0.0058 (7)
N10.0549 (9)0.0488 (9)0.0627 (9)0.0006 (8)0.0231 (7)0.0060 (8)
C70.0520 (10)0.0342 (9)0.0616 (10)0.0033 (8)0.0244 (8)0.0045 (8)
C80.0555 (10)0.0395 (10)0.0610 (10)0.0004 (9)0.0204 (8)0.0017 (8)
C10.0605 (11)0.0397 (10)0.0534 (10)0.0001 (9)0.0218 (9)0.0007 (8)
C60.0554 (10)0.0399 (10)0.0545 (10)0.0027 (9)0.0240 (8)0.0013 (8)
C120.0487 (10)0.0470 (11)0.0731 (12)0.0038 (9)0.0214 (9)0.0080 (10)
C110.0546 (11)0.0458 (11)0.0710 (12)0.0044 (9)0.0238 (9)0.0098 (10)
C200.0519 (10)0.0526 (12)0.0648 (11)0.0029 (9)0.0251 (9)0.0079 (10)
C90.0638 (12)0.0409 (11)0.0730 (12)0.0069 (10)0.0176 (10)0.0079 (9)
C20.0712 (12)0.0392 (10)0.0593 (10)0.0030 (10)0.0305 (10)0.0009 (9)
C50.0623 (12)0.0500 (11)0.0601 (11)0.0002 (10)0.0215 (9)0.0089 (9)
C170.0510 (11)0.0743 (15)0.0850 (15)0.0001 (11)0.0207 (11)0.0111 (13)
C100.0663 (12)0.0445 (11)0.0633 (12)0.0067 (10)0.0185 (10)0.0027 (10)
C30.0659 (12)0.0612 (13)0.0592 (11)0.0117 (11)0.0195 (10)0.0024 (10)
C180.0842 (15)0.0556 (13)0.0758 (13)0.0181 (12)0.0346 (11)0.0065 (11)
C210.0695 (13)0.0741 (15)0.0702 (13)0.0071 (12)0.0318 (11)0.0062 (12)
C40.0642 (12)0.0679 (14)0.0581 (11)0.0047 (11)0.0135 (9)0.0080 (10)
N20.1075 (15)0.0767 (14)0.0739 (12)0.0162 (12)0.0432 (11)0.0031 (10)
C130.0691 (13)0.0496 (13)0.0844 (15)0.0020 (11)0.0100 (11)0.0020 (11)
C240.0709 (14)0.0604 (14)0.1057 (19)0.0073 (12)0.0118 (13)0.0213 (14)
C250.0668 (13)0.0516 (12)0.0803 (13)0.0061 (11)0.0170 (10)0.0087 (11)
C140.0882 (17)0.0614 (14)0.0978 (17)0.0092 (13)0.0241 (14)0.0120 (13)
C230.0663 (14)0.105 (2)0.0869 (18)0.0002 (15)0.0207 (12)0.0399 (17)
C220.0761 (15)0.105 (2)0.0679 (14)0.0043 (15)0.0270 (11)0.0103 (14)
C190.1040 (18)0.0717 (15)0.0895 (16)0.0167 (14)0.0460 (14)0.0053 (13)
C150.0762 (16)0.093 (2)0.0865 (17)0.0249 (16)0.0158 (13)0.0133 (15)
C160.0588 (13)0.110 (2)0.0824 (16)0.0111 (15)0.0096 (12)0.0049 (16)
Geometric parameters (Å, º) top
O1—C11.362 (2)C17—C161.375 (3)
O1—C91.426 (2)C17—H170.9300
O2—C111.431 (2)C10—N21.137 (2)
O2—N11.4748 (19)C3—C41.381 (3)
O3—C21.368 (2)C3—H30.9300
O3—C181.437 (2)C18—C191.471 (3)
N1—C201.438 (2)C18—H18A0.9700
N1—C71.487 (2)C18—H18B0.9700
C7—C61.497 (2)C21—C221.381 (3)
C7—C81.529 (2)C21—H210.9300
C7—H70.9800C4—H40.9300
C8—C101.473 (3)C13—C141.371 (3)
C8—C91.526 (3)C13—H130.9300
C8—C111.561 (3)C24—C231.383 (4)
C1—C61.395 (2)C24—C251.386 (3)
C1—C21.403 (3)C24—H240.9300
C6—C51.394 (2)C25—H250.9300
C12—C171.380 (3)C14—C151.376 (3)
C12—C131.388 (3)C14—H140.9300
C12—C111.502 (3)C23—C221.371 (4)
C11—H110.9800C23—H230.9300
C20—C211.378 (3)C22—H220.9300
C20—C251.389 (3)C19—H19A0.9600
C9—H9A0.9700C19—H19B0.9600
C9—H9B0.9700C19—H19C0.9600
C2—C31.370 (3)C15—C161.354 (4)
C5—C41.365 (3)C15—H150.9300
C5—H50.9300C16—H160.9300
C1—O1—C9114.04 (14)C16—C17—H17119.7
C11—O2—N1103.20 (12)C12—C17—H17119.7
C2—O3—C18117.52 (16)N2—C10—C8176.6 (2)
C20—N1—O2106.84 (13)C2—C3—C4120.16 (19)
C20—N1—C7114.86 (14)C2—C3—H3119.9
O2—N1—C799.47 (12)C4—C3—H3119.9
N1—C7—C6114.78 (14)O3—C18—C19108.52 (18)
N1—C7—C899.30 (13)O3—C18—H18A110.0
C6—C7—C8112.86 (14)C19—C18—H18A110.0
N1—C7—H7109.8O3—C18—H18B110.0
C6—C7—H7109.8C19—C18—H18B110.0
C8—C7—H7109.8H18A—C18—H18B108.4
C10—C8—C9109.21 (15)C20—C21—C22120.2 (2)
C10—C8—C7111.77 (15)C20—C21—H21119.9
C9—C8—C7107.33 (15)C22—C21—H21119.9
C10—C8—C11114.76 (15)C5—C4—C3120.78 (19)
C9—C8—C11110.76 (15)C5—C4—H4119.6
C7—C8—C11102.66 (14)C3—C4—H4119.6
O1—C1—C6122.82 (16)C14—C13—C12120.3 (2)
O1—C1—C2117.10 (16)C14—C13—H13119.8
C6—C1—C2119.98 (17)C12—C13—H13119.8
C5—C6—C1118.78 (17)C23—C24—C25120.0 (2)
C5—C6—C7120.29 (16)C23—C24—H24120.0
C1—C6—C7120.58 (16)C25—C24—H24120.0
C17—C12—C13118.5 (2)C24—C25—C20119.1 (2)
C17—C12—C11120.17 (19)C24—C25—H25120.4
C13—C12—C11121.32 (18)C20—C25—H25120.4
O2—C11—C12109.16 (15)C13—C14—C15120.2 (2)
O2—C11—C8104.61 (14)C13—C14—H14119.9
C12—C11—C8116.01 (15)C15—C14—H14119.9
O2—C11—H11108.9C22—C23—C24120.5 (2)
C12—C11—H11108.9C22—C23—H23119.7
C8—C11—H11108.9C24—C23—H23119.7
C21—C20—C25120.29 (19)C23—C22—C21119.7 (2)
C21—C20—N1117.04 (18)C23—C22—H22120.1
C25—C20—N1122.65 (18)C21—C22—H22120.1
O1—C9—C8111.13 (15)C18—C19—H19A109.5
O1—C9—H9A109.4C18—C19—H19B109.5
C8—C9—H9A109.4H19A—C19—H19B109.5
O1—C9—H9B109.4C18—C19—H19C109.5
C8—C9—H9B109.4H19A—C19—H19C109.5
H9A—C9—H9B108.0H19B—C19—H19C109.5
O3—C2—C3124.70 (18)C16—C15—C14119.9 (2)
O3—C2—C1115.63 (17)C16—C15—H15120.0
C3—C2—C1119.67 (17)C14—C15—H15120.0
C4—C5—C6120.53 (18)C15—C16—C17120.5 (2)
C4—C5—H5119.7C15—C16—H16119.7
C6—C5—H5119.7C17—C16—H16119.7
C16—C17—C12120.6 (2)
C11—O2—N1—C20172.76 (14)O2—N1—C20—C2540.8 (2)
C11—O2—N1—C753.05 (15)C7—N1—C20—C2568.5 (2)
C20—N1—C7—C673.56 (19)C1—O1—C9—C854.2 (2)
O2—N1—C7—C6172.81 (13)C10—C8—C9—O157.5 (2)
C20—N1—C7—C8165.83 (15)C7—C8—C9—O163.88 (19)
O2—N1—C7—C852.20 (14)C11—C8—C9—O1175.21 (14)
N1—C7—C8—C10156.53 (15)C18—O3—C2—C310.7 (3)
C6—C7—C8—C1081.46 (18)C18—O3—C2—C1168.42 (16)
N1—C7—C8—C983.74 (16)O1—C1—C2—O31.0 (2)
C6—C7—C8—C938.3 (2)C6—C1—C2—O3175.48 (15)
N1—C7—C8—C1133.04 (16)O1—C1—C2—C3179.81 (16)
C6—C7—C8—C11155.05 (14)C6—C1—C2—C33.7 (3)
C9—O1—C1—C618.2 (2)C1—C6—C5—C41.1 (3)
C9—O1—C1—C2165.40 (15)C7—C6—C5—C4172.18 (17)
O1—C1—C6—C5179.70 (16)C13—C12—C17—C160.3 (3)
C2—C1—C6—C53.4 (3)C11—C12—C17—C16178.19 (19)
O1—C1—C6—C76.5 (3)O3—C2—C3—C4177.50 (18)
C2—C1—C6—C7169.83 (15)C1—C2—C3—C41.6 (3)
N1—C7—C6—C580.0 (2)C2—O3—C18—C19164.34 (17)
C8—C7—C6—C5167.23 (16)C25—C20—C21—C220.7 (3)
N1—C7—C6—C1106.92 (18)N1—C20—C21—C22179.33 (18)
C8—C7—C6—C15.9 (2)C6—C5—C4—C31.0 (3)
N1—O2—C11—C12155.50 (14)C2—C3—C4—C50.8 (3)
N1—O2—C11—C830.73 (17)C17—C12—C13—C140.4 (3)
C17—C12—C11—O2137.73 (18)C11—C12—C13—C14178.3 (2)
C13—C12—C11—O244.4 (2)C23—C24—C25—C201.2 (3)
C17—C12—C11—C8104.5 (2)C21—C20—C25—C242.0 (3)
C13—C12—C11—C873.4 (2)N1—C20—C25—C24179.50 (18)
C10—C8—C11—O2123.37 (17)C12—C13—C14—C150.2 (4)
C9—C8—C11—O2112.41 (17)C25—C24—C23—C220.7 (4)
C7—C8—C11—O21.90 (18)C24—C23—C22—C212.0 (4)
C10—C8—C11—C123.1 (2)C20—C21—C22—C231.3 (3)
C9—C8—C11—C12127.29 (17)C13—C14—C15—C161.0 (4)
C7—C8—C11—C12118.40 (17)C14—C15—C16—C171.1 (4)
O2—N1—C20—C21140.65 (17)C12—C17—C16—C150.5 (3)
C7—N1—C20—C21110.10 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N10.972.642.960 (2)100
C25—H25···O1i0.932.893.748 (3)154
C23—H23···N2ii0.932.793.443 (3)128
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC25H22N2O3
Mr398.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.2994 (9), 7.5421 (5), 18.7248 (12)
β (°) 107.596 (4)
V3)2059.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18432, 5109, 2805
Rint0.029
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.164, 1.04
No. of reflections5109
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N10.972.642.960 (2)99.7
C25—H25···O1i0.932.893.748 (3)154.2
C23—H23···N2ii0.932.793.443 (3)128.0
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai 600 025, India, for the data collection.

References

First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKanchanadevi, J., Anbalagan, G., Srinivasan, J., Bakthadoss, M. & Manivannan, V. (2011). Acta Cryst. E67, o1989.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRozman, B., Praprotnik, S., Logar, D., Tomsic, M., Hojnik, M., Kos-Golja, M., Accetto, R. & Dolenc, P. (2002). Ann. Rheum. Dis. 61, 567–569.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwaminathan, K., Sethusankar, K., Srinivasan, J. & Bakthadoss, M. (2012). Acta Cryst. E68, o283–o284.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinn, M., Arendsen, D., Dodge, P., Dren, A., Dunnigan, D., Hallas, R., Hwang, K., Kyncl, J., Lee, Y. H., Plotnikoff, N., Young Zaugg, H., Dalzell, H. & Razdan, R. K. (1976). J. Med. Chem. 19, 461–471.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds