metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(4-chloro­anilinium) hexa­chlorido­stannate(IV) dichloride

aSchool of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
*Correspondence e-mail: rongtao198806@163.com

(Received 23 April 2012; accepted 13 May 2012; online 19 May 2012)

The asymmetric unit of the title compound, (C6H7ClN)4[SnCl6]Cl2, comprises two 4-chloro­anilinium cations, half of an [SnCl6]2− anion and a Cl anion. The SnIV atom, located on a special position on a twofold rotation axis, exhibits an octa­hedral environment. In the crystal, mol­ecules are linked by N—H⋯Cl hydrogen bonds between the 4-chloro­anilinium cations, [SnCl6]2− anions and Cl anions.

Related literature

For general background to ferroelectric metal-organic frameworks, see: Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]); Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]). For phase transitions in ferroelectric materials, see: Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Fu, D.-W. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H7ClN)4[SnCl6]Cl2

  • Mr = 916.59

  • Monoclinic, C 2/c

  • a = 27.855 (6) Å

  • b = 7.2061 (14) Å

  • c = 21.895 (4) Å

  • β = 125.03 (3)°

  • V = 3598.8 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.715, Tmax = 0.730

  • 17870 measured reflections

  • 4122 independent reflections

  • 3581 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.067

  • S = 1.10

  • 4122 reflections

  • 188 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Cl3—Sn1 2.4205 (11)
Cl4—Sn1 2.4076 (7)
Cl5—Sn1 2.4356 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl5i 0.89 2.64 3.522 (2) 172
N1—H1A⋯Cl3i 0.89 2.98 3.424 (2) 112
N1—H1B⋯Cl6ii 0.89 2.25 3.123 (3) 165
N1—H1C⋯Cl6iii 0.89 2.26 3.120 (3) 162
N2—H2A⋯Cl3iv 0.89 2.75 3.455 (2) 137
N2—H2A⋯Cl4v 0.89 2.79 3.567 (2) 147
N2—H2A⋯Cl4iv 0.89 2.92 3.344 (3) 111
N2—H2B⋯Cl6vi 0.89 2.20 3.085 (3) 175
N2—H2C⋯Cl5vii 0.89 2.61 3.424 (3) 153
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) -x, -y+1, -z; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The study of ferroelectric materials has received much attention; some of them have predominantly dielectric–ferroelectric performance (Ye et al., 2006; Fu et al., 2007; Zhao et al. 2008; Zhang et al., 2008; Ye et al., 2009). As a part of our work to obtain potential ferroelectric phase-transition material, we report herein on the crystal structure of title compound. Unluckily, the title compound has no dielectric anomalies in the temperature range 93–453 K, suggesting that it might be only a paraelectric.

The asymmetric unit of the title compound is shown in Fig. 1 and Sn-Cl bonds are listed in Table 1. The crystal packing (Fig. 2) is stabilised by intermolecular N—H···Cl hydrogen bonds between the [C6H7ClN]+cations and SnCl62–anions and Cl- anions (Table 2).

Related literature top

For general background to ferroelectric metal-organic frameworks, see: Ye et al. (2009); Fu et al. (2007). For phase transitions in ferroelectric materials, see: Zhang et al. (2008); Zhao et al. (2008); Ye et al. (2006).

Experimental top

For the preparation of the title compound, the water solution of the hydrochloric acid (10 mmol) was added to the ethanol solution of the 4-chlorobenzenamine(10 mmol), then the water solution of the SnCl4(5 mmol) was added into a reaction mixture. The resulting precipitate was filtered. Colourless crystals suitable for X-ray analysis were formed after several weeks by slow evaporation of the solvent at room temperature.

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) for the methyl group. The other H bonded to N atoms were calculated geometrically and were allowed to ride on the N atoms with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.[The suffix A denotes the symmetry code: 2-x y 1/2 - z.]
[Figure 2] Fig. 2. Crystal packing of the title compound. Dashed lines indicate hydrogen bonds.
Tetrakis(4-chloroanilinium) hexachloridostannate(IV) dichloride top
Crystal data top
(C6H7ClN)4[SnCl6]Cl2F(000) = 1816
Mr = 916.59Dx = 1.692 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4122 reflections
a = 27.855 (6) Åθ = 3.4–27.5°
b = 7.2061 (14) ŵ = 1.63 mm1
c = 21.895 (4) ÅT = 293 K
β = 125.03 (3)°Prism, colourless
V = 3598.8 (18) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
4122 independent reflections
Radiation source: fine-focus sealed tube3581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
CCD_Profile_fitting scansh = 3635
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.715, Tmax = 0.730l = 2828
17870 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0236P)2 + 4.0429P]
where P = (Fo2 + 2Fc2)/3
4122 reflections(Δ/σ)max = 0.002
188 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
(C6H7ClN)4[SnCl6]Cl2V = 3598.8 (18) Å3
Mr = 916.59Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.855 (6) ŵ = 1.63 mm1
b = 7.2061 (14) ÅT = 293 K
c = 21.895 (4) Å0.20 × 0.20 × 0.20 mm
β = 125.03 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4122 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3581 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.730Rint = 0.031
17870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.10Δρmax = 0.44 e Å3
4122 reflectionsΔρmin = 0.46 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12061 (12)0.1500 (4)0.12876 (15)0.0503 (6)
C20.13487 (13)0.0639 (4)0.08532 (16)0.0540 (7)
H20.10660.00010.04250.065*
C30.19188 (13)0.0738 (4)0.10633 (16)0.0535 (7)
H30.20250.01550.07790.064*
C40.23257 (12)0.1696 (4)0.16906 (17)0.0507 (7)
C50.21803 (13)0.2551 (5)0.21162 (17)0.0632 (8)
H50.24630.31940.25440.076*
C60.16093 (14)0.2459 (5)0.19102 (17)0.0661 (9)
H60.15030.30470.21950.079*
C70.39010 (11)0.0792 (3)0.05568 (13)0.0401 (5)
C80.38139 (12)0.0100 (3)0.00526 (14)0.0470 (6)
H80.41210.02530.01030.056*
C90.32612 (14)0.0767 (4)0.05904 (15)0.0556 (7)
H90.31920.13660.10100.067*
C100.28179 (12)0.0544 (4)0.05054 (16)0.0554 (7)
C110.29063 (13)0.0384 (5)0.00988 (18)0.0634 (8)
H110.25970.05540.01440.076*
C120.34538 (13)0.1062 (4)0.06368 (16)0.0559 (7)
H120.35190.16940.10490.067*
Cl10.21316 (4)0.14614 (15)0.11590 (6)0.0983 (3)
Cl20.30443 (4)0.17986 (14)0.19641 (6)0.0843 (3)
Cl30.94108 (3)0.11974 (9)0.11503 (3)0.04947 (16)
Cl41.06231 (3)0.11341 (9)0.25190 (4)0.04712 (15)
Cl51.06027 (3)0.36499 (8)0.24919 (4)0.04846 (15)
Cl60.02508 (4)0.72478 (14)0.05762 (5)0.0808 (3)
N10.05994 (11)0.1377 (4)0.10653 (15)0.0707 (8)
H1A0.05770.18530.14230.106*
H1B0.04880.01930.09930.106*
H1C0.03650.20100.06450.106*
N20.44908 (10)0.1413 (3)0.11539 (12)0.0525 (5)
H2A0.44660.24200.13700.079*
H2B0.46920.16820.09640.079*
H2C0.46740.05150.14920.079*
Sn11.00000.12149 (3)0.25000.03220 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0478 (15)0.0652 (17)0.0503 (15)0.0127 (13)0.0353 (13)0.0134 (13)
C20.0628 (18)0.0596 (17)0.0540 (16)0.0140 (14)0.0419 (15)0.0158 (13)
C30.0664 (18)0.0497 (15)0.0680 (18)0.0019 (13)0.0524 (17)0.0038 (13)
C40.0492 (15)0.0470 (15)0.0678 (18)0.0016 (12)0.0405 (15)0.0108 (13)
C50.0535 (17)0.075 (2)0.0566 (17)0.0164 (15)0.0292 (15)0.0175 (15)
C60.0631 (19)0.086 (2)0.0632 (19)0.0188 (17)0.0446 (17)0.0322 (17)
C70.0448 (13)0.0332 (12)0.0393 (12)0.0021 (10)0.0223 (11)0.0041 (9)
C80.0551 (16)0.0395 (13)0.0508 (15)0.0061 (11)0.0329 (13)0.0027 (11)
C90.072 (2)0.0416 (14)0.0429 (14)0.0030 (13)0.0270 (15)0.0031 (11)
C100.0507 (16)0.0471 (15)0.0483 (15)0.0062 (12)0.0167 (13)0.0083 (12)
C110.0526 (17)0.074 (2)0.071 (2)0.0020 (15)0.0404 (17)0.0082 (17)
C120.0602 (18)0.0636 (18)0.0546 (16)0.0014 (14)0.0392 (15)0.0034 (14)
Cl10.0635 (5)0.0962 (7)0.0859 (7)0.0256 (5)0.0140 (5)0.0026 (5)
Cl20.0541 (5)0.0922 (6)0.1164 (8)0.0013 (4)0.0548 (5)0.0153 (6)
Cl30.0565 (4)0.0537 (4)0.0338 (3)0.0105 (3)0.0233 (3)0.0055 (3)
Cl40.0442 (3)0.0433 (3)0.0505 (3)0.0109 (3)0.0252 (3)0.0019 (3)
Cl50.0575 (4)0.0401 (3)0.0623 (4)0.0089 (3)0.0428 (3)0.0001 (3)
Cl60.0672 (5)0.1076 (7)0.0878 (6)0.0289 (5)0.0563 (5)0.0438 (5)
N10.0547 (15)0.110 (2)0.0647 (16)0.0254 (14)0.0443 (14)0.0329 (15)
N20.0499 (13)0.0521 (13)0.0477 (12)0.0004 (10)0.0234 (11)0.0010 (10)
Sn10.04091 (13)0.02673 (11)0.03437 (12)0.0000.02476 (10)0.000
Geometric parameters (Å, º) top
C1—C61.356 (4)C9—H90.9300
C1—C21.372 (4)C10—C111.373 (4)
C1—N11.468 (3)C10—Cl11.732 (3)
C2—C31.378 (4)C11—C121.374 (4)
C2—H20.9300C11—H110.9300
C3—C41.364 (4)C12—H120.9300
C3—H30.9300Cl3—Sn12.4205 (11)
C4—C51.359 (4)Cl4—Sn12.4076 (7)
C4—Cl21.731 (3)Cl5—Sn12.4356 (7)
C5—C61.383 (4)N1—H1A0.8900
C5—H50.9300N1—H1B0.8900
C6—H60.9300N1—H1C0.8900
C7—C121.368 (4)N2—H2A0.8900
C7—C81.371 (3)N2—H2B0.8900
C7—N21.464 (3)N2—H2C0.8900
C8—C91.381 (4)Sn1—Cl4i2.4076 (7)
C8—H80.9300Sn1—Cl3i2.4205 (11)
C9—C101.360 (4)Sn1—Cl5i2.4356 (7)
C6—C1—C2121.7 (3)C12—C11—H11120.1
C6—C1—N1119.7 (2)C7—C12—C11118.9 (3)
C2—C1—N1118.6 (2)C7—C12—H12120.5
C1—C2—C3118.8 (3)C11—C12—H12120.5
C1—C2—H2120.6C1—N1—H1A109.5
C3—C2—H2120.6C1—N1—H1B109.5
C4—C3—C2119.6 (3)H1A—N1—H1B109.5
C4—C3—H3120.2C1—N1—H1C109.5
C2—C3—H3120.2H1A—N1—H1C109.5
C5—C4—C3121.2 (3)H1B—N1—H1C109.5
C5—C4—Cl2119.0 (2)C7—N2—H2A109.5
C3—C4—Cl2119.9 (2)C7—N2—H2B109.5
C4—C5—C6119.6 (3)H2A—N2—H2B109.5
C4—C5—H5120.2C7—N2—H2C109.5
C6—C5—H5120.2H2A—N2—H2C109.5
C1—C6—C5119.1 (3)H2B—N2—H2C109.5
C1—C6—H6120.5Cl4i—Sn1—Cl490.65 (4)
C5—C6—H6120.5Cl4i—Sn1—Cl389.91 (3)
C12—C7—C8121.7 (2)Cl4—Sn1—Cl389.67 (3)
C12—C7—N2118.7 (2)Cl4i—Sn1—Cl3i89.67 (3)
C8—C7—N2119.6 (2)Cl4—Sn1—Cl3i89.91 (3)
C7—C8—C9118.7 (3)Cl3—Sn1—Cl3i179.40 (3)
C7—C8—H8120.6Cl4i—Sn1—Cl5178.18 (2)
C9—C8—H8120.6Cl4—Sn1—Cl590.77 (3)
C10—C9—C8119.9 (3)Cl3—Sn1—Cl588.97 (3)
C10—C9—H9120.1Cl3i—Sn1—Cl591.46 (3)
C8—C9—H9120.1Cl4i—Sn1—Cl5i90.77 (3)
C9—C10—C11121.0 (3)Cl4—Sn1—Cl5i178.18 (2)
C9—C10—Cl1120.0 (2)Cl3—Sn1—Cl5i91.46 (3)
C11—C10—Cl1119.0 (3)Cl3i—Sn1—Cl5i88.97 (3)
C10—C11—C12119.7 (3)Cl5—Sn1—Cl5i87.82 (4)
C10—C11—H11120.1
C6—C1—C2—C30.8 (5)C12—C7—C8—C91.1 (4)
N1—C1—C2—C3179.5 (3)N2—C7—C8—C9176.5 (2)
C1—C2—C3—C40.5 (4)C7—C8—C9—C100.5 (4)
C2—C3—C4—C50.3 (5)C8—C9—C10—C111.9 (4)
C2—C3—C4—Cl2179.1 (2)C8—C9—C10—Cl1177.3 (2)
C3—C4—C5—C60.3 (5)C9—C10—C11—C121.6 (5)
Cl2—C4—C5—C6179.1 (3)Cl1—C10—C11—C12177.6 (2)
C2—C1—C6—C50.8 (5)C8—C7—C12—C111.4 (4)
N1—C1—C6—C5179.5 (3)N2—C7—C12—C11176.2 (3)
C4—C5—C6—C10.5 (5)C10—C11—C12—C70.0 (5)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl5ii0.892.643.522 (2)172
N1—H1A···Cl3ii0.892.983.424 (2)112
N1—H1B···Cl6iii0.892.253.123 (3)165
N1—H1C···Cl6iv0.892.263.120 (3)162
N2—H2A···Cl3v0.892.753.455 (2)137
N2—H2A···Cl4vi0.892.793.567 (2)147
N2—H2A···Cl4v0.892.923.344 (3)111
N2—H2B···Cl6vii0.892.203.085 (3)175
N2—H2C···Cl5viii0.892.613.424 (3)153
Symmetry codes: (ii) x1, y, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x1/2, y+1/2, z; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z; (viii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula(C6H7ClN)4[SnCl6]Cl2
Mr916.59
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)27.855 (6), 7.2061 (14), 21.895 (4)
β (°) 125.03 (3)
V3)3598.8 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.715, 0.730
No. of measured, independent and
observed [I > 2σ(I)] reflections
17870, 4122, 3581
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.067, 1.10
No. of reflections4122
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.46

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Selected bond lengths (Å) top
Cl3—Sn12.4205 (11)Cl5—Sn12.4356 (7)
Cl4—Sn12.4076 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl5i0.892.643.522 (2)171.9
N1—H1A···Cl3i0.892.983.424 (2)112.4
N1—H1B···Cl6ii0.892.253.123 (3)164.9
N1—H1C···Cl6iii0.892.263.120 (3)162.3
N2—H2A···Cl3iv0.892.753.455 (2)136.6
N2—H2A···Cl4v0.892.793.567 (2)147.4
N2—H2A···Cl4iv0.892.923.344 (3)111.4
N2—H2B···Cl6vi0.892.203.085 (3)175.3
N2—H2C···Cl5vii0.892.613.424 (3)153.1
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x1/2, y+1/2, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+1/2, y1/2, z; (vii) x1/2, y1/2, z.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University, Nanjing, People's Republic of China.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Fu, D.-W. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds