metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-Formyl-4-methyl-6-({2-[2-(4-nitro­benzyl­amino)­ethyl­amino]­ethyl­imino}­meth­yl)phenolato]nickel(II) perchlorate

aKey Laboratory for Green Chemical Processes of the Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China, and bCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
*Correspondence e-mail: hzhouh@126.com

(Received 28 April 2012; accepted 9 May 2012; online 12 May 2012)

In the unsymmetrical title complex, [Ni(C20H23N4O4)]ClO4, the coordination geometry for the NiII atom can be described as square planar. The aromatic rings in the two ligands are almost vertical, with a dihedral angle of 85.3°. In the crystal, cations and anions are linked by weak C(N)—H⋯O hydrogen bonding.

Related literature

For Schiff base complexes containing polynitro­gen ligands, see: Gao et al. (2002[Gao, J., Martell, A. E. & Reibenspies, J. (2002). Inorg. Chim. Acta, 329, 122-128.]); Souza et al. (2009[Souza, B., Bortoluzzi, A. J., Bortolotto, T., Fischer, F. L., Terenzi, H., Ferreira, D. E. C., Rocha, W. R. & Neves, A. (2009). Dalton Trans. pp. 2027-2035.]); Tsubomura et al. (2000[Tsubomura, T., Ezawa, M., Sato, T. & Sakai, K. (2000). Inorg. Chim. Acta, 310, 265-267.]) and for nickel–Schiff base complexes, see: Wu et al. (2011[Wu, H. L., Jia, F., Kou, F., Liu, B., Yuan, J. K. & Bai, Y. (2011). Transition Met. Chem. 36, 847-853.]); Cheng et al. (2011[Cheng, Q. R., Chen, J. Z., Zhou, H. & Pan, Z. Q. (2011). J. Coord. Chem. 64, 1139-1152 .]); Wang et al. (2008[Wang, H. Y., Yuan, W. B., Zhang, Q., Chen, S. W. & Wu, S. S. (2008). Transition Met. Chem. 33, 593-596.]). For the synthesis, see: Zhou et al. (2009[Zhou, H., Peng, Z. H., Yan, X. F., Pan, Z. Q., Song, Y. & Huang, Q. M. (2009). Chin. J. Struct. Chem. 28, 171-176.]). For the preparation of 2,6-diformyl-4-methyl­phenol, see: Long & Hendrickson (1983[Long, R. C. & Hendrickson, D. N. (1983). J. Am. Chem. Soc. 105, 1513-1521.]); Mandal et al. (1989[Mandal, S. K., Thompson, L. K., Newlands, M. J. & Gabe, E. J. (1989). Inorg. Chem. 28, 3707-3713.]) and for the preparation of N1-(2-amino­eth­yl)-N2-(4-nitro­benz­yl)ethane-1,2-diamine, see: Hu et al. (2011[Hu, H., Chen, Y. F., Zhou, H. & Pan, Z. Q. (2011). Transition Met. Chem. 36, 395-402.]); Jian et al. (2004[Jian, F. F., Xiao, H. L., Xu, L. Z. & Pang, L. (2004). Chem. Res. Chin. Univ. 20, 725-728.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C20H23N4O4)]ClO4

  • Mr = 541.58

  • Triclinic, [P \overline 1]

  • a = 9.5240 (14) Å

  • b = 9.6423 (14) Å

  • c = 14.024 (2) Å

  • α = 97.897 (2)°

  • β = 109.415 (3)°

  • γ = 107.453 (2)°

  • V = 1117.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.739, Tmax = 0.786

  • 6276 measured reflections

  • 4314 independent reflections

  • 3004 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.138

  • S = 1.10

  • 4314 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

N2—Ni1 1.841 (3)
N3—Ni1 1.893 (3)
N4—Ni1 1.936 (4)
Ni1—O1 1.829 (3)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For a long time Schiff base complexes containing polynitrogen ligands have been given considerable attention (Gao et al. 2002; Tsubomura et al. 2000; Souza et al. 2009). In this paper, we report on the synthesis and crystal structure determination of the title complex obtained by the reaction of 2,6-diformyl-4-methylphenol (L1) and the polynitrogen ligand N1-(2-aminoethyl)-N2-(4-nitrobenzyl)ethane-1,2-diamine (L2) in the presence of Ni(ClO4)2.6H2O.

In the title complex, [NiC20H23N4O4].ClO4, the NiII atom is four-coordinated by three amino N atoms from the ligand L2 and one O atom from the ligand L1, the basal bond distances around the NiII atom are in the range of 1.829–1.936 Å (Fig. 1, Table 1), and the Ni–O distance shorter than that of Ni–N. The four atoms are coplanar with mean plane deviation of 0.027 (4) Å.

Related literature top

For Schiff base complexes containing polynitrogen ligands, see: Gao et al. (2002); Souza et al. (2009); Tsubomura et al. (2000) and for nickel–Schiff base complexes, see: Wu et al. (2011); Cheng et al. (2011); Wang et al. (2008). For the synthesis, see: Zhou et al. (2009). For the prparation of 2,6-diformyl-4-methylphenol, see: Long & Hendrickson (1983); Mandal et al. (1989) and for the preparation of N1-(2-aminoethyl)-N2-(4-nitrobenzyl)ethane-1,2-diamine, see: Hu et al. (2011); Jian et al. (2004).

Experimental top

All the solvents and chemicals were of analytical grade and used without further purification. 2,6-Diformyl-4-methylphenol was prepared according to the literature method (Mandal et al. 1989; Long et al. 1983). N1-(2-aminoethyl)- N2-(4-nitrobenzyl)ethane-1,2-diamine was prepared according to the literature method (Jian et al. 2004; Hu et al. 2011). L2 (0.119 g, 0.5 mmol) dissolved in 10 mL water was added dropwise to a solution of L1 (0.082 g, 0.5 mmol) and Ni(ClO4)2.6H2O (0.183g, 0.5 mmol) in anhydrous ethanol (25 mL), the mixture was stirred at ambient temperature for 8 h and filtered. The orange block crystals suitable for the X-ray measurement were obtained by evaporation of the filtrate at room temperature for three weeks.

Refinement top

All H atoms for C-H distances were placed in calculated positions and included in the refinement in the riding-model approximation, with U(H) set to -1.2Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title complex with displacement ellipsoids at the 30% probability level. H atoms are excluded for clarity.
[2-Formyl-4-methyl-6-({2-[2-(4- nitrobenzylamino)ethylamino]ethylimino}methyl)phenolato]nickel(II) perchlorate top
Crystal data top
[Ni(C20H23N4O4)]ClO4Z = 2
Mr = 541.58F(000) = 560
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5240 (14) ÅCell parameters from 3108 reflections
b = 9.6423 (14) Åθ = 2.3–28.0°
c = 14.024 (2) ŵ = 1.04 mm1
α = 97.897 (2)°T = 291 K
β = 109.415 (3)°Block, orange
γ = 107.453 (2)°0.28 × 0.24 × 0.22 mm
V = 1117.7 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4314 independent reflections
Radiation source: sealed tube3004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.739, Tmax = 0.786k = 911
6276 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.0812P]
where P = (Fo2 + 2Fc2)/3
4314 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ni(C20H23N4O4)]ClO4γ = 107.453 (2)°
Mr = 541.58V = 1117.7 (3) Å3
Triclinic, P1Z = 2
a = 9.5240 (14) ÅMo Kα radiation
b = 9.6423 (14) ŵ = 1.04 mm1
c = 14.024 (2) ÅT = 291 K
α = 97.897 (2)°0.28 × 0.24 × 0.22 mm
β = 109.415 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4314 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3004 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.786Rint = 0.028
6276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.10Δρmax = 0.49 e Å3
4314 reflectionsΔρmin = 0.44 e Å3
308 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2128 (6)0.2151 (5)0.6715 (3)0.0490 (11)
H10.31120.26160.72810.059*
C20.1781 (4)0.2941 (4)0.5895 (3)0.0349 (8)
C30.0262 (4)0.2311 (4)0.5055 (3)0.0361 (8)
H30.04890.14210.50390.043*
C40.0125 (4)0.3010 (4)0.4249 (3)0.0371 (8)
C50.1016 (5)0.4324 (5)0.4308 (3)0.0474 (10)
H50.07620.47980.37760.057*
C60.2522 (5)0.4988 (4)0.5112 (3)0.0370 (8)
C70.2919 (4)0.4294 (4)0.5956 (3)0.0328 (8)
C80.3605 (5)0.6361 (5)0.5105 (3)0.0444 (9)
H80.33180.67090.45100.053*
C90.5962 (5)0.8644 (5)0.5798 (3)0.0418 (9)
H9A0.56530.94450.60550.050*
H9B0.58280.86060.50770.050*
C100.7678 (5)0.8907 (5)0.6473 (3)0.0456 (10)
H10A0.80730.82620.61280.055*
H10B0.83650.99490.66160.055*
C110.9105 (5)0.8406 (5)0.8155 (3)0.0472 (10)
H11A0.99460.93940.84980.057*
H11B0.94770.77920.77640.057*
C120.8651 (5)0.7671 (4)0.8951 (3)0.0400 (9)
H12A0.95050.73810.93620.048*
H12B0.84710.83680.94220.048*
C130.6434 (4)0.5655 (4)0.9063 (3)0.0353 (8)
H13A0.55980.46800.86660.042*
H13B0.72460.54950.96240.042*
C140.5743 (4)0.6609 (4)0.9526 (3)0.0312 (7)
C150.6606 (5)0.7570 (4)1.0532 (3)0.0390 (9)
H150.76320.76121.09120.047*
C160.5967 (5)0.8476 (5)1.0984 (3)0.0509 (11)
H160.65670.91501.16440.061*
C170.4424 (4)0.8333 (4)1.0419 (3)0.0341 (8)
C180.3494 (5)0.7342 (5)0.9422 (3)0.0424 (9)
H180.24460.72610.90620.051*
C190.4163 (5)0.6489 (5)0.8986 (3)0.0496 (11)
H190.35600.58250.83230.060*
C200.1760 (5)0.2319 (5)0.3341 (3)0.0455 (10)
H20A0.22570.30530.32740.068*
H20B0.24220.14610.34720.068*
H20C0.16340.20080.27040.068*
Cl10.88876 (12)0.32607 (11)0.79500 (8)0.0463 (3)
N20.4978 (4)0.7171 (3)0.5876 (3)0.0393 (7)
N30.7633 (3)0.8528 (3)0.7458 (2)0.0307 (6)
H3A0.74380.92590.78170.037*
N40.7161 (4)0.6317 (4)0.8366 (3)0.0463 (8)
H40.75130.56150.81310.056*
N50.3722 (4)0.9276 (3)1.0862 (3)0.0393 (7)
Ni10.58985 (5)0.66844 (6)0.70964 (4)0.03821 (17)
O10.4300 (3)0.4860 (3)0.6787 (2)0.0460 (7)
O20.1258 (3)0.0957 (3)0.6725 (2)0.0457 (7)
O30.4487 (4)1.0016 (4)1.1791 (2)0.0542 (8)
O40.2448 (3)0.9331 (3)1.0331 (2)0.0458 (7)
O110.9790 (4)0.4623 (4)0.8000 (3)0.0642 (10)
O120.8093 (4)0.2515 (3)0.6896 (2)0.0553 (8)
O130.9309 (4)0.2177 (3)0.8403 (2)0.0494 (7)
O140.7706 (4)0.3386 (3)0.8214 (3)0.0527 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (3)0.034 (2)0.0290 (19)0.0028 (19)0.0020 (18)0.0108 (16)
C20.0257 (16)0.0219 (16)0.0395 (19)0.0004 (13)0.0019 (14)0.0016 (14)
C30.0340 (19)0.0333 (18)0.0306 (18)0.0112 (16)0.0044 (15)0.0006 (15)
C40.0330 (18)0.041 (2)0.0288 (17)0.0206 (16)0.0001 (14)0.0013 (15)
C50.039 (2)0.048 (2)0.035 (2)0.0113 (18)0.0043 (17)0.0095 (17)
C60.0396 (19)0.0278 (17)0.042 (2)0.0162 (15)0.0107 (16)0.0097 (15)
C70.0268 (16)0.0225 (16)0.0392 (19)0.0095 (14)0.0007 (14)0.0084 (14)
C80.046 (2)0.038 (2)0.043 (2)0.0146 (18)0.0089 (18)0.0186 (17)
C90.045 (2)0.040 (2)0.036 (2)0.0135 (17)0.0109 (17)0.0121 (16)
C100.051 (2)0.037 (2)0.042 (2)0.0060 (18)0.0174 (19)0.0155 (18)
C110.041 (2)0.043 (2)0.047 (2)0.0061 (18)0.0127 (18)0.0121 (18)
C120.0399 (19)0.0326 (18)0.0293 (18)0.0033 (16)0.0019 (15)0.0061 (14)
C130.0355 (19)0.0280 (17)0.042 (2)0.0137 (15)0.0111 (16)0.0147 (15)
C140.0332 (18)0.0202 (15)0.0344 (18)0.0082 (14)0.0076 (14)0.0083 (13)
C150.046 (2)0.0255 (18)0.0349 (19)0.0162 (16)0.0035 (17)0.0025 (14)
C160.049 (2)0.048 (2)0.037 (2)0.014 (2)0.0058 (18)0.0099 (18)
C170.0376 (19)0.0390 (19)0.0334 (19)0.0109 (16)0.0239 (16)0.0147 (15)
C180.037 (2)0.049 (2)0.037 (2)0.0136 (18)0.0078 (16)0.0194 (17)
C190.039 (2)0.042 (2)0.038 (2)0.0032 (18)0.0005 (17)0.0135 (17)
C200.040 (2)0.046 (2)0.035 (2)0.0166 (19)0.0017 (17)0.0023 (17)
Cl10.0463 (6)0.0431 (6)0.0465 (6)0.0159 (4)0.0142 (4)0.0146 (4)
N20.0400 (17)0.0305 (16)0.0445 (18)0.0154 (14)0.0107 (14)0.0117 (13)
N30.0364 (16)0.0258 (14)0.0349 (16)0.0115 (12)0.0196 (13)0.0092 (12)
N40.0458 (19)0.0414 (18)0.0373 (18)0.0090 (16)0.0078 (15)0.0043 (14)
N50.0464 (18)0.0294 (15)0.0393 (18)0.0135 (14)0.0147 (15)0.0071 (13)
Ni10.0278 (3)0.0389 (3)0.0393 (3)0.0069 (2)0.0085 (2)0.0086 (2)
O10.0350 (14)0.0392 (15)0.0425 (16)0.0036 (12)0.0002 (12)0.0087 (12)
O20.0385 (15)0.0402 (15)0.0300 (13)0.0050 (12)0.0028 (11)0.0086 (11)
O30.0502 (17)0.0526 (18)0.0440 (17)0.0139 (14)0.0136 (14)0.0118 (14)
O40.0422 (15)0.0493 (17)0.0461 (16)0.0191 (13)0.0152 (13)0.0142 (13)
O110.056 (2)0.055 (2)0.0561 (19)0.0056 (16)0.0158 (16)0.0115 (15)
O120.0471 (16)0.0429 (16)0.0541 (18)0.0146 (13)0.0071 (14)0.0198 (14)
O130.0488 (16)0.0480 (17)0.0433 (15)0.0168 (13)0.0077 (13)0.0165 (13)
O140.0452 (16)0.0505 (17)0.063 (2)0.0222 (14)0.0182 (15)0.0161 (15)
Geometric parameters (Å, º) top
C1—O21.205 (5)C13—C141.478 (5)
C1—C21.466 (5)C13—N41.483 (5)
C1—H10.9300C13—H13A0.9700
C2—C71.394 (5)C13—H13B0.9700
C2—C31.411 (5)C14—C151.392 (5)
C3—C41.397 (5)C14—C191.402 (5)
C3—H30.9300C15—C161.400 (6)
C4—C51.370 (6)C15—H150.9300
C4—C201.522 (5)C16—C171.372 (6)
C5—C61.384 (5)C16—H160.9300
C5—H50.9300C17—C181.398 (5)
C6—C81.417 (6)C17—N51.465 (5)
C6—C71.437 (5)C18—C191.376 (6)
C7—O11.327 (4)C18—H180.9300
C8—N21.305 (5)C19—H190.9300
C8—H80.9300C20—H20A0.9600
C9—N21.489 (5)C20—H20B0.9600
C9—C101.513 (6)C20—H20C0.9600
C9—H9A0.9700Cl1—O111.314 (3)
C9—H9B0.9700Cl1—O141.328 (3)
C10—N31.487 (5)Cl1—O121.383 (3)
C10—H10A0.9700Cl1—O131.386 (3)
C10—H10B0.9700N2—Ni11.841 (3)
C11—N31.468 (5)N3—Ni11.893 (3)
C11—C121.513 (6)N3—H3A0.9100
C11—H11A0.9700N4—Ni11.936 (4)
C11—H11B0.9700N4—H40.9100
C12—N41.487 (5)N5—O41.216 (4)
C12—H12A0.9700N5—O31.241 (4)
C12—H12B0.9700Ni1—O11.829 (3)
O2—C1—C2126.2 (4)C15—C14—C13120.8 (3)
O2—C1—H1116.9C19—C14—C13120.4 (3)
C2—C1—H1116.9C14—C15—C16121.5 (4)
C7—C2—C3121.0 (3)C14—C15—H15119.2
C7—C2—C1120.5 (3)C16—C15—H15119.2
C3—C2—C1118.4 (3)C17—C16—C15117.5 (4)
C4—C3—C2120.7 (3)C17—C16—H16121.2
C4—C3—H3119.6C15—C16—H16121.2
C2—C3—H3119.6C16—C17—C18122.8 (4)
C5—C4—C3117.6 (3)C16—C17—N5119.0 (3)
C5—C4—C20121.9 (3)C18—C17—N5118.1 (3)
C3—C4—C20120.5 (4)C19—C18—C17118.5 (4)
C4—C5—C6124.0 (4)C19—C18—H18120.7
C4—C5—H5118.0C17—C18—H18120.8
C6—C5—H5118.0C18—C19—C14120.9 (4)
C5—C6—C8119.4 (4)C18—C19—H19119.6
C5—C6—C7118.8 (3)C14—C19—H19119.6
C8—C6—C7121.7 (3)C4—C20—H20A109.5
O1—C7—C2118.2 (3)C4—C20—H20B109.5
O1—C7—C6124.0 (3)H20A—C20—H20B109.5
C2—C7—C6117.8 (3)C4—C20—H20C109.5
N2—C8—C6124.6 (4)H20A—C20—H20C109.5
N2—C8—H8117.7H20B—C20—H20C109.5
C6—C8—H8117.7O11—Cl1—O14107.3 (2)
N2—C9—C10105.6 (3)O11—Cl1—O12106.0 (2)
N2—C9—H9A110.6O14—Cl1—O12102.5 (2)
C10—C9—H9A110.6O11—Cl1—O13129.9 (2)
N2—C9—H9B110.6O14—Cl1—O13105.0 (2)
C10—C9—H9B110.6O12—Cl1—O13103.12 (18)
H9A—C9—H9B108.8C8—N2—C9119.4 (3)
N3—C10—C9105.2 (3)C8—N2—Ni1126.6 (3)
N3—C10—H10A110.7C9—N2—Ni1114.0 (2)
C9—C10—H10A110.7C11—N3—C10115.1 (3)
N3—C10—H10B110.7C11—N3—Ni1109.1 (2)
C9—C10—H10B110.7C10—N3—Ni1108.2 (2)
H10A—C10—H10B108.8C11—N3—H3A108.1
N3—C11—C12105.3 (3)C10—N3—H3A108.1
N3—C11—H11A110.7Ni1—N3—H3A108.1
C12—C11—H11A110.7C13—N4—C12112.6 (3)
N3—C11—H11B110.7C13—N4—Ni1121.8 (3)
C12—C11—H11B110.7C12—N4—Ni1109.0 (3)
H11A—C11—H11B108.8C13—N4—H4103.8
N4—C12—C11107.6 (3)C12—N4—H4103.8
N4—C12—H12A110.2Ni1—N4—H4103.8
C11—C12—H12A110.2O4—N5—O3122.0 (3)
N4—C12—H12B110.2O4—N5—C17120.8 (3)
C11—C12—H12B110.2O3—N5—C17117.2 (3)
H12A—C12—H12B108.5O1—Ni1—N296.40 (13)
C14—C13—N4113.3 (3)O1—Ni1—N3176.88 (13)
C14—C13—H13A108.9N2—Ni1—N386.25 (13)
N4—C13—H13A108.9O1—Ni1—N490.39 (14)
C14—C13—H13B108.9N2—Ni1—N4171.64 (15)
N4—C13—H13B108.9N3—Ni1—N486.84 (14)
H13A—C13—H13B107.7C7—O1—Ni1126.2 (2)
C15—C14—C19118.7 (4)
O2—C1—C2—C7177.4 (5)C13—C14—C19—C18178.2 (4)
O2—C1—C2—C33.6 (7)C6—C8—N2—C9176.1 (4)
C7—C2—C3—C41.6 (6)C6—C8—N2—Ni14.6 (7)
C1—C2—C3—C4179.4 (4)C10—C9—N2—C8153.0 (4)
C2—C3—C4—C50.4 (6)C10—C9—N2—Ni126.4 (4)
C2—C3—C4—C20179.6 (4)C12—C11—N3—C10167.1 (3)
C3—C4—C5—C60.5 (6)C12—C11—N3—Ni145.2 (4)
C20—C4—C5—C6179.4 (4)C9—C10—N3—C11168.3 (3)
C4—C5—C6—C8179.1 (4)C9—C10—N3—Ni146.0 (3)
C4—C5—C6—C71.8 (7)C14—C13—N4—C1269.5 (4)
C3—C2—C7—O1177.3 (3)C14—C13—N4—Ni162.8 (4)
C1—C2—C7—O11.7 (6)C11—C12—N4—C13169.7 (3)
C3—C2—C7—C62.8 (6)C11—C12—N4—Ni131.3 (4)
C1—C2—C7—C6178.2 (4)C16—C17—N5—O4169.9 (4)
C5—C6—C7—O1177.2 (4)C18—C17—N5—O48.8 (5)
C8—C6—C7—O10.1 (6)C16—C17—N5—O39.5 (5)
C5—C6—C7—C22.9 (6)C18—C17—N5—O3171.8 (3)
C8—C6—C7—C2179.8 (4)C8—N2—Ni1—O10.3 (4)
C5—C6—C8—N2171.9 (4)C9—N2—Ni1—O1179.0 (3)
C7—C6—C8—N25.4 (7)C8—N2—Ni1—N3178.7 (4)
N2—C9—C10—N345.3 (4)C9—N2—Ni1—N30.6 (3)
N3—C11—C12—N449.4 (4)C11—N3—Ni1—N2152.1 (3)
N4—C13—C14—C1597.3 (4)C10—N3—Ni1—N226.2 (3)
N4—C13—C14—C1986.9 (4)C11—N3—Ni1—N423.2 (3)
C19—C14—C15—C163.8 (6)C10—N3—Ni1—N4149.1 (3)
C13—C14—C15—C16179.7 (4)C13—N4—Ni1—O142.5 (3)
C14—C15—C16—C173.0 (6)C12—N4—Ni1—O1176.3 (3)
C15—C16—C17—C180.6 (6)C13—N4—Ni1—N3138.9 (3)
C15—C16—C17—N5179.3 (4)C12—N4—Ni1—N35.1 (3)
C16—C17—C18—C190.8 (6)C2—C7—O1—Ni1174.5 (3)
N5—C17—C18—C19177.8 (4)C6—C7—O1—Ni15.7 (6)
C17—C18—C19—C140.0 (6)N2—Ni1—O1—C75.3 (4)
C15—C14—C19—C182.3 (6)N4—Ni1—O1—C7179.6 (3)

Experimental details

Crystal data
Chemical formula[Ni(C20H23N4O4)]ClO4
Mr541.58
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.5240 (14), 9.6423 (14), 14.024 (2)
α, β, γ (°)97.897 (2), 109.415 (3), 107.453 (2)
V3)1117.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.739, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
6276, 4314, 3004
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.138, 1.10
No. of reflections4314
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.44

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
N2—Ni11.841 (3)N4—Ni11.936 (4)
N3—Ni11.893 (3)Ni1—O11.829 (3)
 

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (21171135).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, Q. R., Chen, J. Z., Zhou, H. & Pan, Z. Q. (2011). J. Coord. Chem. 64, 1139–1152 .  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, J., Martell, A. E. & Reibenspies, J. (2002). Inorg. Chim. Acta, 329, 122–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, H., Chen, Y. F., Zhou, H. & Pan, Z. Q. (2011). Transition Met. Chem. 36, 395–402.  Web of Science CSD CrossRef CAS Google Scholar
First citationJian, F. F., Xiao, H. L., Xu, L. Z. & Pang, L. (2004). Chem. Res. Chin. Univ. 20, 725–728.  CAS Google Scholar
First citationLong, R. C. & Hendrickson, D. N. (1983). J. Am. Chem. Soc. 105, 1513–1521.  CrossRef CAS Web of Science Google Scholar
First citationMandal, S. K., Thompson, L. K., Newlands, M. J. & Gabe, E. J. (1989). Inorg. Chem. 28, 3707–3713.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, B., Bortoluzzi, A. J., Bortolotto, T., Fischer, F. L., Terenzi, H., Ferreira, D. E. C., Rocha, W. R. & Neves, A. (2009). Dalton Trans. pp. 2027–2035.  Google Scholar
First citationTsubomura, T., Ezawa, M., Sato, T. & Sakai, K. (2000). Inorg. Chim. Acta, 310, 265–267.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H. Y., Yuan, W. B., Zhang, Q., Chen, S. W. & Wu, S. S. (2008). Transition Met. Chem. 33, 593–596.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, H. L., Jia, F., Kou, F., Liu, B., Yuan, J. K. & Bai, Y. (2011). Transition Met. Chem. 36, 847–853.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, H., Peng, Z. H., Yan, X. F., Pan, Z. Q., Song, Y. & Huang, Q. M. (2009). Chin. J. Struct. Chem. 28, 171–176.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds