organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Pheneth­­oxy­aniline hemihydrate

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bChemistry Department, Loughborough University, Loughborough LE11 3TU, England
*Correspondence e-mail: humaira_siddiqi@yahoo.com

(Received 3 May 2012; accepted 19 May 2012; online 26 May 2012)

The crystal structure of the title compound, C14H15NO·0.5H2O, features N—H⋯O and O—H⋯N hydrogen bonds between the amino group and water molecule of crystallization, which generate a chain along the c axis. The water mol­ecule lies on a twofold rotation axis. A C—H⋯π inter­action is observed between the phenyl and aniline rings. The angle between the mean planes of the phenyl rings is 72.51 (7)°.

Related literature

For a similar hydrogen-bonding pattern in a related structure see Haider et al. (2011[Haider, A., Akhter, Z., Jabeen, F., Janjua, N. K. & Bolte, M. (2011). J. Mol. Struct. 994, 242-247.]). The title compound is a precursor of diamine monomers, which are widely used for synthesis of polyimides (PIs), see: Ragosta et al. (2011[Ragosta, G., Musto, P., Abbate, M. & Scarinzi, G. (2011). J. Appl. Polym. Sci. 121, 2168-2186.]). For the solubility of PIs, see: Chang et al. (2010[Chang, C. H., Wang, K. L., Jiang, J. C., Liawa, D. J., Lee, K. R., Lai, J. Y. & Lai, K. H. (2010). Polymer, 51, 4493-4502.]). Reduced solubility is associated with inter­molecular hydrogen-bonding chains and stiffness, see: Hsiao & Leu (2004[Hsiao, S. H. & Leu, W. T. (2004). Eur. Polym. J. 40, 2471-2480.]); Liaw et al. (2005[Liaw, D. J., Chang, F. C., Leung, M., Chou, M. Y. & Muellen, K. (2005). Macromolecules, 38, 4024-4029.]). Incorporation of bulky pendant groups such as substituted phenyl groups into a rigid PI backbone can enhance the solubility of PIs, see: Liaw et al. (2005[Liaw, D. J., Chang, F. C., Leung, M., Chou, M. Y. & Muellen, K. (2005). Macromolecules, 38, 4024-4029.]); Li et al. (2007[Li, W., Li, S., Zhang, Q. & Zhang, S. (2007). Macromolecules, 40, 8205-8211.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO·0.5H2O

  • Mr = 222.28

  • Orthorhombic, P c c 2

  • a = 11.6046 (8) Å

  • b = 13.1937 (10) Å

  • c = 7.9114 (6) Å

  • V = 1211.30 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.37 × 0.26 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.971, Tmax = 0.991

  • 11920 measured reflections

  • 1633 independent reflections

  • 1443 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.09

  • 1633 reflections

  • 159 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1Wi 0.83 (2) 2.20 (2) 3.011 (4) 166 (4)
O1W—H1W⋯N1 0.87 (2) 1.92 (2) 2.791 (4) 171 (3)
C14—H14⋯Cgii 0.95 2.64 3.586 (3) 173
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y+2, z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 1998[Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a precursor of diamine monomers which are widely used for synthesis of polyimides (PIs) (Ragosta et al., 2011). Solubility of PIs is considered as one of the key property when they are used for their specific application (Chang et al., 2010). Reduced solubility is associated with intermolecular hydrogen bonding chain and stiffness (Hsiao and Leu, 2004, Liaw et al., 2005). Incorporation of bulky pendant groups such as substituted phenyl groups into rigid PI backbone can enhance the solubility of PIs (Liaw et al., 2005, Li et al., 2007). Synthesis of the title compound is aimed for introducing pendant substituted phenyl group into PI backbone and thereby improving their solubility.

Within the 1-amino-4-phenethoxybenzene molecule the two phenyl rings are tilted with respect to one another; the angle between the mean planes of the phenyl groups is 72.51 (7)° (Fig 1). The crystal structure is governed by hydrogen bonds between water molecule and the –NH2 group (Table 1, Fig. 2) generating hydrogen bonded chains running parallel to the c axis (Fig. 2). There is also a C—H···π interaction (Fig 3).

Related literature top

For a similar hydrogen-bonding pattern in a related structure see Haider et al. (2011). The title compound is a precursor of diamine monomers which are widely used for synthesis of polyimides (PIs), see: Ragosta et al. (2011). For the solubility of PIs, see: Chang et al. (2010). Reduced solubility is associated with intermolecular hydrogen-bonding chains and stiffness, see: Hsiao & Leu (2004); Liaw et al. (2005). Incorporation of bulky pendant groups such as substituted phenyl groups into a rigid PI backbone can enhance the solubility of PIs, see: Liaw et al. (2005); Li et al. (2007).

Experimental top

A mixture of 2-phenylethanol (5 g, 40.92 mmol), anhydrous potassium carbonate (5.68 g, 40.92 mmol) and dimethyl formamide (DMF, 60 mL) was stirred for 1 h in three-necked round bottom flask under the inert atmosphere of nitrogen. Afterward solution of 1-fluoro-4-nitrobenzene in DMF was added drop wise and the reaction mixture was refluxed for 24 h at 393 K. After complete consumption of reactants, light yellow colour product was precipitated by pouring the reaction mixture into distilled water (500 mL). The crude product, after filtration and washing thoroughly with distilled water, was recrystallised from possible minimum volume of absolute ethanol. Yield was 81%.

Refinement top

H atoms bonded to C atoms were inserted at calculated positions with C—H distances of 0.95 and 0.99 Å for aromatic and methylene C atoms, respectively. They were refined using a riding model with Uiso(H) = 1.2Ueq(C). H atoms bonded to O and N were located from difference maps and their coordinated refinded under geometric restraints, with Uiso(H) = 1.5Ueq(N or O).

Computing details top

Data collection: APEX2 (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The view of the asymmetric unit (O1W lies on a 2-fold axis). H-bond shown as a dashed line and thermal ellipsoids shown at 50% probability.
[Figure 2] Fig. 2. Packing diagram showing the H-bonded chains parallel to the c axis. H atoms omitted for clarity.
[Figure 3] Fig. 3. C—H ··· π interaction: C14···.Cg (C1-C6)is 3.586 (3) Å.
4-Phenethoxyaniline hemihydrate top
Crystal data top
C14H15NO·0.5H2OF(000) = 476
Mr = 222.28Dx = 1.219 Mg m3
Orthorhombic, Pcc2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 -2cCell parameters from 2822 reflections
a = 11.6046 (8) Åθ = 3.1–24.1°
b = 13.1937 (10) ŵ = 0.08 mm1
c = 7.9114 (6) ÅT = 150 K
V = 1211.30 (15) Å3Block, colourless
Z = 40.37 × 0.26 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
1633 independent reflections
Radiation source: fine-focus sealed tube1443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω rotation with narrow frames scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1515
Tmin = 0.971, Tmax = 0.991k = 1717
11920 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.2388P]
where P = (Fo2 + 2Fc2)/3
1633 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.20 e Å3
6 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H15NO·0.5H2OV = 1211.30 (15) Å3
Mr = 222.28Z = 4
Orthorhombic, Pcc2Mo Kα radiation
a = 11.6046 (8) ŵ = 0.08 mm1
b = 13.1937 (10) ÅT = 150 K
c = 7.9114 (6) Å0.37 × 0.26 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
1633 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
1443 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.991Rint = 0.035
11920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0416 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.20 e Å3
1633 reflectionsΔρmin = 0.31 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Freidel equivalents merged since the data do not permit determination of absolute configuration.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.69069 (13)0.95389 (11)0.9053 (2)0.0359 (4)
C10.77654 (19)0.88571 (15)0.8679 (3)0.0300 (4)
C20.7603 (2)0.78822 (16)0.9316 (3)0.0335 (5)
H20.69260.77270.99400.040*
C30.8422 (2)0.71407 (16)0.9041 (3)0.0371 (5)
H30.83010.64780.94770.044*
C40.94237 (19)0.73527 (16)0.8132 (3)0.0367 (5)
N11.0264 (2)0.65890 (16)0.7857 (5)0.0583 (8)
H1B1.091 (2)0.680 (3)0.766 (5)0.087*
H1A1.024 (3)0.623 (3)0.872 (4)0.087*
C50.95608 (19)0.83219 (15)0.7463 (4)0.0350 (5)
H51.02260.84730.68100.042*
C60.87417 (18)0.90678 (15)0.7735 (3)0.0321 (5)
H60.88500.97260.72730.039*
C70.70920 (19)1.05805 (15)0.8599 (3)0.0313 (5)
H7A0.70721.06610.73550.038*
H7B0.78511.08150.90160.038*
C80.61305 (18)1.11875 (16)0.9413 (3)0.0340 (5)
H8A0.53771.09350.90030.041*
H8B0.61561.10931.06540.041*
C90.62423 (18)1.23026 (15)0.9003 (3)0.0290 (4)
C100.5572 (2)1.27416 (17)0.7746 (3)0.0354 (5)
H100.50181.23420.71650.042*
C110.5704 (2)1.37604 (18)0.7328 (3)0.0421 (6)
H110.52511.40490.64510.051*
C120.6490 (2)1.43509 (18)0.8186 (4)0.0423 (6)
H120.65771.50470.79050.051*
C130.71508 (19)1.39267 (18)0.9455 (4)0.0408 (6)
H130.76871.43341.00550.049*
C140.70341 (19)1.29072 (18)0.9856 (3)0.0346 (5)
H140.74991.26201.07200.042*
O1W1.00000.50000.5561 (6)0.0725 (10)
H1W1.005 (5)0.5538 (8)0.620 (4)0.109*
X1A0.85860.81040.83940.040*0.00
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0365 (8)0.0254 (7)0.0457 (10)0.0005 (6)0.0102 (8)0.0010 (7)
C10.0334 (10)0.0252 (9)0.0313 (10)0.0025 (8)0.0001 (9)0.0028 (8)
C20.0362 (11)0.0304 (11)0.0338 (12)0.0068 (8)0.0013 (10)0.0018 (9)
C30.0451 (12)0.0250 (10)0.0411 (12)0.0050 (9)0.0031 (11)0.0062 (9)
C40.0345 (11)0.0266 (10)0.0490 (14)0.0016 (8)0.0050 (11)0.0002 (10)
N10.0451 (13)0.0311 (10)0.099 (2)0.0077 (9)0.0094 (15)0.0114 (13)
C50.0325 (10)0.0277 (10)0.0448 (13)0.0040 (8)0.0026 (10)0.0010 (10)
C60.0359 (11)0.0228 (9)0.0377 (11)0.0032 (8)0.0038 (10)0.0001 (9)
C70.0354 (10)0.0251 (9)0.0334 (11)0.0000 (8)0.0044 (9)0.0000 (8)
C80.0325 (10)0.0294 (10)0.0400 (13)0.0011 (8)0.0055 (10)0.0002 (9)
C90.0282 (9)0.0291 (9)0.0296 (10)0.0041 (8)0.0058 (8)0.0020 (9)
C100.0358 (11)0.0363 (11)0.0340 (12)0.0072 (9)0.0064 (10)0.0084 (9)
C110.0477 (14)0.0405 (12)0.0382 (13)0.0155 (11)0.0042 (11)0.0002 (11)
C120.0456 (13)0.0281 (10)0.0532 (16)0.0072 (9)0.0074 (12)0.0018 (11)
C130.0329 (11)0.0350 (11)0.0546 (16)0.0039 (9)0.0013 (11)0.0069 (11)
C140.0298 (10)0.0376 (11)0.0364 (12)0.0005 (9)0.0043 (9)0.0003 (10)
O1W0.083 (2)0.0438 (14)0.090 (3)0.004 (2)0.0000.000
Geometric parameters (Å, º) top
O1—C11.374 (3)C8—C91.512 (3)
O1—C71.437 (2)C8—H8A0.9900
C1—C61.385 (3)C8—H8B0.9900
C1—C21.394 (3)C9—C101.389 (3)
C2—C31.381 (3)C9—C141.391 (3)
C2—H20.9500C10—C111.393 (3)
C3—C41.396 (3)C10—H100.9500
C3—H30.9500C11—C121.378 (4)
C4—C51.393 (3)C11—H110.9500
C4—N11.419 (3)C12—C131.382 (4)
N1—H1B0.818 (18)C12—H120.9500
N1—H1A0.834 (18)C13—C141.389 (3)
C5—C61.385 (3)C13—H130.9500
C5—H50.9500C14—H140.9500
C6—H60.9500O1W—H1W0.873 (19)
C7—C81.517 (3)X1A—H14i2.6415
C7—H7A0.9900X1A—C14i3.586 (2)
C7—H7B0.9900
C1—O1—C7117.64 (17)H7A—C7—H7B108.6
O1—C1—C6125.28 (18)C9—C8—C7111.07 (17)
O1—C1—C2115.34 (19)C9—C8—H8A109.4
C6—C1—C2119.4 (2)C7—C8—H8A109.4
C3—C2—C1120.2 (2)C9—C8—H8B109.4
C3—C2—H2119.9C7—C8—H8B109.4
C1—C2—H2119.9H8A—C8—H8B108.0
C2—C3—C4120.8 (2)C10—C9—C14118.5 (2)
C2—C3—H3119.6C10—C9—C8120.7 (2)
C4—C3—H3119.6C14—C9—C8120.7 (2)
C5—C4—C3118.4 (2)C9—C10—C11120.8 (2)
C5—C4—N1121.0 (2)C9—C10—H10119.6
C3—C4—N1120.6 (2)C11—C10—H10119.6
C4—N1—H1B115 (3)C12—C11—C10120.1 (2)
C4—N1—H1A104 (3)C12—C11—H11120.0
H1B—N1—H1A112 (3)C10—C11—H11120.0
C6—C5—C4121.0 (2)C11—C12—C13119.7 (2)
C6—C5—H5119.5C11—C12—H12120.1
C4—C5—H5119.5C13—C12—H12120.1
C1—C6—C5120.2 (2)C12—C13—C14120.3 (2)
C1—C6—H6119.9C12—C13—H13119.9
C5—C6—H6119.9C14—C13—H13119.9
O1—C7—C8106.79 (17)C13—C14—C9120.6 (2)
O1—C7—H7A110.4C13—C14—H14119.7
C8—C7—H7A110.4C9—C14—H14119.7
O1—C7—H7B110.4H14i—X1A—C14i1.9
C8—C7—H7B110.4
Symmetry code: (i) x, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wii0.83 (2)2.20 (2)3.011 (4)166 (4)
O1W—H1W···N10.87 (2)1.92 (2)2.791 (4)171 (3)
C14—H14···Cgiii0.952.643.586 (3)173
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x, y+2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H15NO·0.5H2O
Mr222.28
Crystal system, space groupOrthorhombic, Pcc2
Temperature (K)150
a, b, c (Å)11.6046 (8), 13.1937 (10), 7.9114 (6)
V3)1211.30 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.26 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.971, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
11920, 1633, 1443
Rint0.035
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.09
No. of reflections1633
No. of parameters159
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.31

Computer programs: APEX2 (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.834 (18)2.196 (19)3.011 (4)166 (4)
O1W—H1W···N10.873 (19)1.92 (2)2.791 (4)171 (3)
C14—H14···Cgii0.952.643.586 (3)172.7
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+2, z+3/2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, for providing laboratory facilities to carry out this work.

References

First citationBruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, C. H., Wang, K. L., Jiang, J. C., Liawa, D. J., Lee, K. R., Lai, J. Y. & Lai, K. H. (2010). Polymer, 51, 4493–4502.  Web of Science CrossRef CAS Google Scholar
First citationHaider, A., Akhter, Z., Jabeen, F., Janjua, N. K. & Bolte, M. (2011). J. Mol. Struct. 994, 242–247.  Web of Science CSD CrossRef CAS Google Scholar
First citationHsiao, S. H. & Leu, W. T. (2004). Eur. Polym. J. 40, 2471–2480.  Web of Science CrossRef CAS Google Scholar
First citationLi, W., Li, S., Zhang, Q. & Zhang, S. (2007). Macromolecules, 40, 8205–8211.  Web of Science CrossRef CAS Google Scholar
First citationLiaw, D. J., Chang, F. C., Leung, M., Chou, M. Y. & Muellen, K. (2005). Macromolecules, 38, 4024–4029.  Web of Science CrossRef CAS Google Scholar
First citationRagosta, G., Musto, P., Abbate, M. & Scarinzi, G. (2011). J. Appl. Polym. Sci. 121, 2168–2186.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds