metal-organic compounds
2-Amino-5-chloropyridinium cis-diaquadioxalatochromate(III) sesquihydrate
aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: cherif.ichraf@yahoo.fr
In the 5H6ClN2)[Cr(C2O4)2(H2O)2]·1.5H2O, the CrIII atom adopts a distorted octahedral geometry being coordinated by two O atoms of two cis water molecules and four O atoms from two chelating oxalate dianions. The cis-diaquadioxalatochromate(III) anions, 2-amino-5-chloropyridinium cations and uncoordinated water molecules are linked into a three-dimensional supramolecular array by O—H⋯O and N—H⋯O hydrogen-bonding interactions. One of the two independent lattice water molecules is situated on a twofold rotation axis.
of the title compound, (CRelated literature
For structural characterization of salts containing the [Cr(C2O4)2(H2O)2]− anion with various cations see: Bélombé et al. (2009); Nenwa et al. (2010); Chérif et al. (2011). For the building of hybrid supramolecular networks, see: Zhang et al. (2000); Paraschiv et al. (2007). For discussion of hydrogen bonding, see: Blessing (1986); Brown (1976).
Experimental
Crystal data
|
|
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812023392/kp2416sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812023392/kp2416Isup2.hkl
Ethanol solutions of C5H5ClN2 (1 mmol) (10 mL) and H2C2O4.2H2O (2 mmol) (10 mL) were added to CrCl3.6H2O (1 mmol) dissolved in 10 mL of ethanol and stirred for 5 h. The resulting violet solution was left at room temperature and crystals suitable for X-ray diffraction were obtained after two weeks of slow evaporation.
All non hydrogen atoms were treated anisotropically. Water H atoms were initially located in a difference Fourier map and refined with restraints: d(O—H)=0.90 (2) Å and Uiso(H)=1.5Ueq(O). All other H atoms were constrained to an ideal geometry with d(C—H)=0.93 Å, d(N—H)=0.86 Å and Uiso(H)=1.2Ueq(C or N).
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The asymmetric unit of (C5H6ClN2)[Cr(C2O4)2(H2O)2].1.5H2O with the atom-numbering scheme. Thermal ellipsoids are drawn at the 50% probability level for non-H atoms. | |
Fig. 2. Projection of (C5H6ClN2)[Cr(C2O4)2(H2O)2].1.5H2O structure along the c axis. | |
Fig. 3. N—H···O hydrogen bonds (dashed lines) in (C5H6ClN2)[Cr(C2O4)2(H2O)2].1.5H2O showing the connection between positive and negative layers. |
(C5H6ClN2)[Cr(C2O4)2(H2O)2]·1.5H2O | F(000) = 3424 |
Mr = 420.66 | Dx = 1.779 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 25 reflections |
a = 11.376 (2) Å | θ = 10–15° |
b = 53.041 (3) Å | µ = 0.96 mm−1 |
c = 10.413 (2) Å | T = 298 K |
V = 6283.1 (17) Å3 | Prism, violet |
Z = 16 | 0.42 × 0.32 × 0.13 mm |
Enraf–Nonius CAD-4 diffractometer | 3180 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
Graphite monochromator | θmax = 27.0°, θmin = 2.7° |
ω/2θ scans | h = −14→1 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→67 |
Tmin = 0.792, Tmax = 0.882 | l = −13→13 |
3854 measured reflections | 2 standard reflections every 120 min |
3414 independent reflections | intensity decay: 5% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0316P)2 + 13.7688P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3414 reflections | Δρmax = 0.30 e Å−3 |
243 parameters | Δρmin = −0.31 e Å−3 |
8 restraints | Absolute structure: Flack (1983), 1608 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.000 (18) |
(C5H6ClN2)[Cr(C2O4)2(H2O)2]·1.5H2O | V = 6283.1 (17) Å3 |
Mr = 420.66 | Z = 16 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 11.376 (2) Å | µ = 0.96 mm−1 |
b = 53.041 (3) Å | T = 298 K |
c = 10.413 (2) Å | 0.42 × 0.32 × 0.13 mm |
Enraf–Nonius CAD-4 diffractometer | 3180 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.022 |
Tmin = 0.792, Tmax = 0.882 | 2 standard reflections every 120 min |
3854 measured reflections | intensity decay: 5% |
3414 independent reflections |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0316P)2 + 13.7688P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | Δρmax = 0.30 e Å−3 |
3414 reflections | Δρmin = −0.31 e Å−3 |
243 parameters | Absolute structure: Flack (1983), 1608 Friedel pairs |
8 restraints | Absolute structure parameter: 0.000 (18) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cr | 0.28854 (3) | 0.029597 (7) | 0.12687 (3) | 0.01808 (9) | |
O1 | 0.45606 (16) | 0.02882 (3) | 0.17139 (17) | 0.0219 (4) | |
O2 | 0.27072 (17) | 0.03331 (4) | 0.31611 (17) | 0.0238 (4) | |
O3 | 0.57607 (15) | 0.02584 (3) | 0.34029 (18) | 0.0245 (4) | |
O4 | 0.37907 (17) | 0.03041 (4) | 0.49507 (17) | 0.0295 (4) | |
O5 | 0.29574 (17) | 0.06593 (3) | 0.09653 (16) | 0.0286 (4) | |
O6 | 0.32410 (18) | 0.02782 (3) | −0.05749 (16) | 0.0228 (4) | |
O7 | 0.3518 (3) | 0.05318 (4) | −0.2259 (2) | 0.0467 (6) | |
O8 | 0.3288 (3) | 0.09378 (4) | −0.0606 (2) | 0.0471 (6) | |
O1W | 0.28282 (17) | −0.00790 (3) | 0.1438 (2) | 0.0289 (4) | |
H11W | 0.228 (2) | −0.0153 (6) | 0.103 (3) | 0.043* | |
H12W | 0.313 (3) | −0.0148 (6) | 0.210 (3) | 0.043* | |
O2W | 0.11515 (17) | 0.03017 (4) | 0.10241 (18) | 0.0297 (5) | |
H21W | 0.086 (3) | 0.0282 (7) | 0.023 (2) | 0.045* | |
H22W | 0.075 (3) | 0.0209 (6) | 0.158 (3) | 0.045* | |
O3W | 0.5956 (2) | 0.05669 (5) | −0.0077 (3) | 0.0541 (7) | |
H31W | 0.646 (3) | 0.0476 (8) | −0.052 (4) | 0.081* | |
H32W | 0.572 (4) | 0.0474 (8) | 0.058 (3) | 0.081* | |
O4W | 0.5000 | 0.0000 | −0.2206 (3) | 0.0366 (7) | |
H4W | 0.448 (3) | 0.0093 (7) | −0.177 (3) | 0.055* | |
C1 | 0.4779 (2) | 0.02831 (4) | 0.2921 (2) | 0.0186 (5) | |
C2 | 0.3677 (2) | 0.03087 (4) | 0.3782 (2) | 0.0204 (5) | |
C3 | 0.3332 (2) | 0.04963 (5) | −0.1130 (3) | 0.0264 (5) | |
C4 | 0.3183 (3) | 0.07223 (5) | −0.0199 (3) | 0.0290 (6) | |
C5 | 0.1933 (3) | 0.15991 (6) | 0.3233 (3) | 0.0418 (8) | |
H5 | 0.1933 | 0.1774 | 0.3230 | 0.050* | |
C6 | 0.2315 (3) | 0.14673 (6) | 0.2190 (3) | 0.0423 (7) | |
C7 | 0.2297 (3) | 0.12042 (6) | 0.2198 (3) | 0.0438 (8) | |
H7 | 0.2549 | 0.1114 | 0.1482 | 0.053* | |
C8 | 0.1909 (3) | 0.10801 (6) | 0.3254 (3) | 0.0422 (8) | |
H8 | 0.1899 | 0.0905 | 0.3262 | 0.051* | |
C9 | 0.1518 (3) | 0.12160 (6) | 0.4344 (3) | 0.0379 (7) | |
N1 | 0.1138 (3) | 0.11041 (6) | 0.5402 (3) | 0.0565 (9) | |
H1A | 0.0913 | 0.1193 | 0.6047 | 0.068* | |
H1B | 0.1115 | 0.0942 | 0.5445 | 0.068* | |
N2 | 0.1552 (3) | 0.14686 (5) | 0.4280 (2) | 0.0394 (6) | |
H2 | 0.1319 | 0.1553 | 0.4938 | 0.047* | |
Cl | 0.27889 (13) | 0.162724 (19) | 0.08436 (9) | 0.0737 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr | 0.02037 (17) | 0.02121 (17) | 0.01267 (16) | −0.00028 (16) | −0.00167 (15) | 0.00091 (14) |
O1 | 0.0205 (9) | 0.0299 (10) | 0.0153 (8) | −0.0020 (7) | −0.0002 (7) | −0.0005 (7) |
O2 | 0.0199 (9) | 0.0364 (10) | 0.0152 (8) | 0.0007 (7) | 0.0009 (7) | −0.0006 (7) |
O3 | 0.0202 (9) | 0.0318 (10) | 0.0217 (9) | 0.0023 (7) | −0.0022 (7) | −0.0021 (7) |
O4 | 0.0292 (10) | 0.0449 (12) | 0.0144 (9) | −0.0055 (8) | −0.0002 (8) | −0.0022 (7) |
O5 | 0.0426 (11) | 0.0237 (9) | 0.0195 (10) | 0.0004 (8) | 0.0002 (8) | −0.0017 (7) |
O6 | 0.0323 (10) | 0.0215 (9) | 0.0147 (9) | −0.0017 (7) | 0.0003 (8) | −0.0004 (6) |
O7 | 0.0840 (19) | 0.0369 (12) | 0.0193 (10) | −0.0082 (12) | 0.0086 (11) | 0.0046 (9) |
O8 | 0.0819 (18) | 0.0244 (11) | 0.0352 (12) | −0.0008 (11) | 0.0065 (12) | 0.0055 (9) |
O1W | 0.0335 (10) | 0.0240 (9) | 0.0290 (11) | −0.0057 (8) | −0.0117 (8) | 0.0064 (8) |
O2W | 0.0230 (10) | 0.0415 (12) | 0.0247 (12) | −0.0020 (8) | −0.0070 (8) | 0.0010 (8) |
O3W | 0.0566 (16) | 0.0432 (14) | 0.0626 (17) | 0.0086 (12) | 0.0283 (14) | 0.0134 (12) |
O4W | 0.0340 (16) | 0.0394 (18) | 0.0365 (16) | 0.0055 (13) | 0.000 | 0.000 |
C1 | 0.0209 (12) | 0.0191 (11) | 0.0160 (11) | −0.0019 (9) | 0.0000 (10) | −0.0007 (9) |
C2 | 0.0211 (11) | 0.0225 (11) | 0.0177 (11) | −0.0028 (9) | 0.0009 (10) | 0.0008 (10) |
C3 | 0.0349 (13) | 0.0254 (12) | 0.0189 (12) | −0.0019 (10) | −0.0013 (11) | 0.0022 (10) |
C4 | 0.0372 (14) | 0.0234 (13) | 0.0263 (13) | −0.0009 (11) | 0.0028 (11) | 0.0011 (11) |
C5 | 0.063 (2) | 0.0263 (15) | 0.0361 (16) | 0.0034 (14) | 0.0054 (16) | −0.0047 (12) |
C6 | 0.062 (2) | 0.0331 (16) | 0.0318 (15) | 0.0050 (15) | 0.0083 (16) | −0.0007 (13) |
C7 | 0.069 (2) | 0.0321 (15) | 0.0305 (15) | 0.0067 (15) | 0.0075 (16) | −0.0089 (13) |
C8 | 0.064 (2) | 0.0254 (14) | 0.0373 (16) | 0.0024 (15) | 0.0092 (16) | −0.0069 (12) |
C9 | 0.0452 (19) | 0.0375 (16) | 0.0311 (15) | −0.0007 (14) | 0.0043 (13) | −0.0044 (13) |
N1 | 0.092 (3) | 0.0399 (16) | 0.0380 (16) | −0.0064 (16) | 0.0192 (17) | −0.0017 (13) |
N2 | 0.0595 (18) | 0.0302 (13) | 0.0284 (12) | 0.0027 (12) | 0.0068 (12) | −0.0092 (11) |
Cl | 0.1375 (11) | 0.0385 (5) | 0.0451 (5) | 0.0074 (6) | 0.0346 (7) | 0.0065 (4) |
Cr—O1 | 1.9618 (19) | O3W—H32W | 0.883 (19) |
Cr—O2 | 1.9907 (19) | O4W—H4W | 0.897 (18) |
Cr—O5 | 1.9547 (19) | C1—C2 | 1.547 (3) |
Cr—O6 | 1.9642 (18) | C3—C4 | 1.551 (4) |
Cr—O1W | 1.9978 (18) | C5—N2 | 1.363 (4) |
Cr—O2W | 1.9891 (19) | C5—C6 | 1.363 (4) |
O1—C1 | 1.282 (3) | C5—H5 | 0.9300 |
O2—C2 | 1.286 (3) | C6—C7 | 1.396 (4) |
O3—C1 | 1.231 (3) | C6—Cl | 1.725 (3) |
O4—C2 | 1.224 (3) | C7—C8 | 1.355 (5) |
O5—C4 | 1.284 (3) | C7—H7 | 0.9300 |
O6—C3 | 1.297 (3) | C8—C9 | 1.417 (4) |
O7—C3 | 1.209 (3) | C8—H8 | 0.9300 |
O8—C4 | 1.225 (3) | C9—N1 | 1.324 (4) |
O1W—H11W | 0.850 (18) | C9—N2 | 1.342 (4) |
O1W—H12W | 0.850 (18) | N1—H1A | 0.8600 |
O2W—H21W | 0.896 (18) | N1—H1B | 0.8600 |
O2W—H22W | 0.885 (18) | N2—H2 | 0.8600 |
O3W—H31W | 0.880 (19) | ||
O5—Cr—O1 | 91.04 (8) | O4—C2—C1 | 119.3 (2) |
O5—Cr—O6 | 83.15 (7) | O2—C2—C1 | 114.4 (2) |
O1—Cr—O6 | 91.71 (8) | O7—C3—O6 | 125.9 (3) |
O5—Cr—O2W | 90.33 (9) | O7—C3—C4 | 120.4 (2) |
O1—Cr—O2W | 173.68 (8) | O6—C3—C4 | 113.7 (2) |
O6—Cr—O2W | 94.58 (8) | O8—C4—O5 | 126.1 (3) |
O5—Cr—O2 | 93.82 (8) | O8—C4—C3 | 119.7 (2) |
O1—Cr—O2 | 82.36 (7) | O5—C4—C3 | 114.3 (2) |
O6—Cr—O2 | 173.31 (9) | N2—C5—C6 | 118.6 (3) |
O2W—Cr—O2 | 91.39 (8) | N2—C5—H5 | 120.7 |
O5—Cr—O1W | 175.72 (9) | C6—C5—H5 | 120.7 |
O1—Cr—O1W | 89.42 (8) | C5—C6—C7 | 120.2 (3) |
O6—Cr—O1W | 92.58 (8) | C5—C6—Cl | 119.7 (3) |
O2W—Cr—O1W | 89.67 (9) | C7—C6—Cl | 120.1 (3) |
O2—Cr—O1W | 90.46 (8) | C8—C7—C6 | 119.7 (3) |
C1—O1—Cr | 114.86 (16) | C8—C7—H7 | 120.2 |
C2—O2—Cr | 113.60 (17) | C6—C7—H7 | 120.2 |
C4—O5—Cr | 114.69 (16) | C7—C8—C9 | 120.3 (3) |
C3—O6—Cr | 114.13 (16) | C7—C8—H8 | 119.8 |
Cr—O1W—H11W | 116 (2) | C9—C8—H8 | 119.8 |
Cr—O1W—H12W | 119 (3) | N1—C9—N2 | 119.9 (3) |
H11W—O1W—H12W | 120 (3) | N1—C9—C8 | 122.8 (3) |
Cr—O2W—H21W | 119 (2) | N2—C9—C8 | 117.3 (3) |
Cr—O2W—H22W | 115 (2) | C9—N1—H1A | 120.0 |
H21W—O2W—H22W | 110 (3) | C9—N1—H1B | 120.0 |
H31W—O3W—H32W | 107 (5) | H1A—N1—H1B | 120.0 |
O3—C1—O1 | 125.3 (2) | C9—N2—C5 | 123.8 (3) |
O3—C1—C2 | 120.5 (2) | C9—N2—H2 | 118.1 |
O1—C1—C2 | 114.2 (2) | C5—N2—H2 | 118.1 |
O4—C2—O2 | 126.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O4i | 0.85 (2) | 1.84 (3) | 2.686 (3) | 172 (3) |
O1W—H12W···O3ii | 0.85 (2) | 1.94 (3) | 2.769 (3) | 163 (3) |
O2W—H21W···O3iii | 0.90 (2) | 1.91 (2) | 2.775 (3) | 161 (3) |
O2W—H21W···O4iii | 0.90 (2) | 2.37 (3) | 2.909 (3) | 118 (2) |
O2W—H22W···O4Wiv | 0.89 (2) | 1.89 (3) | 2.770 (3) | 176 (3) |
O3W—H31W···O2v | 0.88 (2) | 2.12 (4) | 2.979 (3) | 167 (4) |
O3W—H32W···O1 | 0.88 (2) | 2.03 (4) | 2.861 (3) | 157 (4) |
O4W—H4W···O6 | 0.90 (2) | 2.12 (3) | 3.011 (3) | 173 (3) |
N1—H1A···O8vi | 0.86 | 2.15 | 2.911 (4) | 147 |
N1—H1B···O3Wiv | 0.86 | 2.07 | 2.900 (4) | 161 |
N2—H2···O8vi | 0.86 | 2.13 | 2.900 (4) | 150 |
N2—H2···O7vi | 0.86 | 2.25 | 2.897 (4) | 132 |
Symmetry codes: (i) −x+1/2, −y, z−1/2; (ii) −x+1, −y, z; (iii) x−1/2, y, z−1/2; (iv) x−1/2, y, z+1/2; (v) x+1/2, y, z−1/2; (vi) x−1/4, −y+1/4, z+3/4. |
Experimental details
Crystal data | |
Chemical formula | (C5H6ClN2)[Cr(C2O4)2(H2O)2]·1.5H2O |
Mr | 420.66 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 298 |
a, b, c (Å) | 11.376 (2), 53.041 (3), 10.413 (2) |
V (Å3) | 6283.1 (17) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 0.96 |
Crystal size (mm) | 0.42 × 0.32 × 0.13 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.792, 0.882 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3854, 3414, 3180 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.074, 1.07 |
No. of reflections | 3414 |
No. of parameters | 243 |
No. of restraints | 8 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
w = 1/[σ2(Fo2) + (0.0316P)2 + 13.7688P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.30, −0.31 |
Absolute structure | Flack (1983), 1608 Friedel pairs |
Absolute structure parameter | 0.000 (18) |
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), WinGX (Farrugia, 1999).
Cr—O1 | 1.9618 (19) | Cr—O6 | 1.9642 (18) |
Cr—O2 | 1.9907 (19) | Cr—O1W | 1.9978 (18) |
Cr—O5 | 1.9547 (19) | Cr—O2W | 1.9891 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O4i | 0.85 (2) | 1.84 (3) | 2.686 (3) | 172 (3) |
O1W—H12W···O3ii | 0.85 (2) | 1.94 (3) | 2.769 (3) | 163 (3) |
O2W—H21W···O3iii | 0.90 (2) | 1.91 (2) | 2.775 (3) | 161 (3) |
O2W—H21W···O4iii | 0.90 (2) | 2.37 (3) | 2.909 (3) | 118 (2) |
O2W—H22W···O4Wiv | 0.89 (2) | 1.89 (3) | 2.770 (3) | 176 (3) |
O3W—H31W···O2v | 0.88 (2) | 2.12 (4) | 2.979 (3) | 167 (4) |
O3W—H32W···O1 | 0.88 (2) | 2.03 (4) | 2.861 (3) | 157 (4) |
O4W—H4W···O6 | 0.90 (2) | 2.12 (3) | 3.011 (3) | 173 (3) |
N1—H1A···O8vi | 0.86 | 2.15 | 2.911 (4) | 147 |
N1—H1B···O3Wiv | 0.86 | 2.07 | 2.900 (4) | 161 |
N2—H2···O8vi | 0.86 | 2.13 | 2.900 (4) | 150 |
N2—H2···O7vi | 0.86 | 2.25 | 2.897 (4) | 132 |
Symmetry codes: (i) −x+1/2, −y, z−1/2; (ii) −x+1, −y, z; (iii) x−1/2, y, z−1/2; (iv) x−1/2, y, z+1/2; (v) x+1/2, y, z−1/2; (vi) x−1/4, −y+1/4, z+3/4. |
References
Bélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. 224, 239–240. Google Scholar
Blessing, R. H. (1986). Acta Cryst. B42, 613–621. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany. Google Scholar
Brown, I. D. (1976). Acta Cryst. A32, 24–31. CrossRef IUCr Journals Web of Science Google Scholar
Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, m1648–m1649. Web of Science CSD CrossRef IUCr Journals Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80. CrossRef Web of Science IUCr Journals Google Scholar
Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410. Web of Science CSD CrossRef IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Paraschiv, C., Ferlay, S., Hosseini, M. W., Kyritsakas, N., Planeix, J. M. & Andruh, M. (2007). Rev. Roum. Chim. 52, 101–104. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, L., Cheng, P., Tang, L. F., Weng, L. H., Jiang, Z. H., Liao, D. Z., Yan, S. P. & Wang, G. L. (2000). Chem. Commun. pp. 717–718. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is well known that the use of hydrogen-bonding and π-π stacking interactions is a successful way to obtain a large variety of hybrid (organic/inorganic) compounds with extended supramolecular networks through self-assembly (Zhang et al., 2000; Paraschiv et al., 2007). Following this strategy, we recently published the structure of an organic-inorganic hybrid salt: 4-aminopyridinium trans-diaquadioxalatochromate(III) monohydrate (Chérif et al., 2011). In this contribution, we report the crystal structure of an homologous salt with 2-amino-5-chloropyridinium as the organic cation.
The title compound appears to be the first member of salts of general formula (organic cation)[Cr(C2O4)2(H2O)2].xH2O where x = 0 or x = 1 in which the complex anion [Cr(C2O4)2(H2O)2]- adopts the cis geometry. The asymmetric unit is formed by a [Cr(C2O4)2(H2O)2]- anion, a (C5H6ClN2)+ cation and 1.5 water molecules [The O4W atom is located on a special position (1/2, 0, z)] (Fig. 1). In the complex anion, each chromium atom is six-coordinated in a distorted octahedral geometry with two O water molecules in cis position and four oxalato-O atoms from two chelating oxalate groups (Table 1). The four Cr—O(ox) distances range from 1.955 (2) to 1.991 (2) Å; three of them in the range 1.955 (2)–1.965 (2) Å are comparable to those reported in similar compounds (Bélombé et al., 2009; Nenwa et al., 2010; Chérif et al., 2011) but the last one, Cr—O2, is slightly longer. The Cr—O(water) distances are shorter than those observed for the quinolinium and 4-dimethylaminopyridinium compounds (Bélombé et al., 2009; Nenwa et al., 2010).
The structure can be described as segregated positive (C5H6ClN2)+ and negative [[Cr(C2O4)2(H2O)2]- + H2O] layers parallel to (010) (Fig. 2) and interconnected via N—H···O and O—H···O hydrogen bonds (Blessing, 1986; Brown, 1976). In fact, an extensive network of hydrogen bonds contributes to the stabilization of the structure. O—H···O hydrogen bonds involving all water molecules and some of the oxalato-O atoms provide the cohesion of the positive layers. The two N atoms of (C5H6ClN2)+ are hydrogen bonded to the peripheral O atoms of the oxalate groups (O8 and O7) and to the solvent water molecules (O3W) connecting the positive and negative layers (Fig. 3, Table 2).