organic compounds
N,N,N′,N′-Tetramethyl-N′′,N′′-dipropylguanidinium chloride–(2Z)-2,3-diaminobut-2-enedinitrile (1/1)
aInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@htw-aalen.de
In the 11H26N3+·Cl−·C4H4N4, the (2Z)-2,3-diaminobut-2-ene-dinitrile (Z-DAMN) molecules are connected with the chloride ions via N—H⋯Cl hydrogen bonds, forming ribbons running along the a axis. The guanidinium ions are located in between the ribbons formed by Z-DAMN molecules and chloride ions.
of the title compound, CRelated literature
For the Z)-2,3-diaminobut-2-enedinitrile, see: Penfold & Lipscomb (1961). For the synthesis of hexaalkyl-substituted guanidinium chlorides, see: Kantlehner et al. (1984) and for the synthesis and crystal structures of hexaalkyl-substituted guanidinium salts, see: Kantlehner et al. (2010). For studies on the water-absorption ability of guanidinium salts, see: Kunkel (2008).
of (2Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Hooft, 2004); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812023264/kp2418sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812023264/kp2418Isup2.hkl
The title compound was obtained by recrystallising N,N,N',N'-tetramethyl- N'',N''-dipropylguanidinium-chloride from an acetonitrile solution containing equimolar amounts of (2Z)-2,3-diaminobut-2-enedinitrile. On slow evaporation of the solvent, the title compound crystallised in form of colourless, air stable single crystals.
The N-bound H atoms were located in a difference Fourier map and were refined freely [N—H = 0.86 (2)–0.90 (2) Å]. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with U(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å and were included in the
in the riding model approximation, with U(H) set to 1.2 Ueq(C).Data collection: COLLECT (Hooft, 2004); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C11H26N3+·Cl−·C4H4N4 | F(000) = 744 |
Mr = 343.91 | Dx = 1.158 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4700 reflections |
a = 8.5646 (3) Å | θ = 0.4–28.3° |
b = 24.6447 (9) Å | µ = 0.20 mm−1 |
c = 9.5363 (4) Å | T = 100 K |
β = 101.341 (2)° | Lath-shaped, colourless |
V = 1973.54 (13) Å3 | 0.21 × 0.17 × 0.14 mm |
Z = 4 |
Bruker–Nonius KappaCCD diffractometer | 3055 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.052 |
Graphite monochromator | θmax = 28.3°, θmin = 1.7° |
ϕ scans, and ω scans | h = −11→11 |
8538 measured reflections | k = −32→30 |
4901 independent reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.043P)2] where P = (Fo2 + 2Fc2)/3 |
4901 reflections | (Δ/σ)max < 0.001 |
230 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C11H26N3+·Cl−·C4H4N4 | V = 1973.54 (13) Å3 |
Mr = 343.91 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.5646 (3) Å | µ = 0.20 mm−1 |
b = 24.6447 (9) Å | T = 100 K |
c = 9.5363 (4) Å | 0.21 × 0.17 × 0.14 mm |
β = 101.341 (2)° |
Bruker–Nonius KappaCCD diffractometer | 3055 reflections with I > 2σ(I) |
8538 measured reflections | Rint = 0.052 |
4901 independent reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.26 e Å−3 |
4901 reflections | Δρmin = −0.26 e Å−3 |
230 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.77349 (4) | 0.023155 (18) | 0.13502 (5) | 0.02555 (13) | |
C1 | 0.73690 (17) | 0.11012 (7) | 0.67572 (16) | 0.0157 (4) | |
N1 | 0.60198 (14) | 0.08427 (6) | 0.68672 (14) | 0.0179 (3) | |
N2 | 0.85119 (14) | 0.08348 (6) | 0.62646 (14) | 0.0180 (3) | |
N3 | 0.75830 (14) | 0.16234 (5) | 0.71465 (13) | 0.0145 (3) | |
C2 | 1.02067 (17) | 0.09594 (8) | 0.67499 (18) | 0.0241 (4) | |
H2A | 1.0601 | 0.1154 | 0.5994 | 0.036* | |
H2B | 1.0806 | 0.0621 | 0.6971 | 0.036* | |
H2C | 1.0346 | 0.1186 | 0.7610 | 0.036* | |
C3 | 0.8157 (2) | 0.04293 (8) | 0.51327 (19) | 0.0274 (4) | |
H3A | 0.8484 | 0.0070 | 0.5526 | 0.041* | |
H3B | 0.8738 | 0.0517 | 0.4373 | 0.041* | |
H3C | 0.7010 | 0.0428 | 0.4739 | 0.041* | |
C4 | 0.6013 (2) | 0.02679 (7) | 0.72316 (19) | 0.0270 (4) | |
H4A | 0.5649 | 0.0055 | 0.6361 | 0.041* | |
H4B | 0.5293 | 0.0208 | 0.7898 | 0.041* | |
H4C | 0.7093 | 0.0155 | 0.7681 | 0.041* | |
C5 | 0.44834 (17) | 0.11190 (7) | 0.66526 (18) | 0.0228 (4) | |
H5A | 0.4136 | 0.1149 | 0.7569 | 0.034* | |
H5B | 0.3695 | 0.0911 | 0.5979 | 0.034* | |
H5C | 0.4587 | 0.1483 | 0.6265 | 0.034* | |
C6 | 0.83711 (16) | 0.19998 (7) | 0.63049 (16) | 0.0158 (4) | |
H6A | 0.8609 | 0.1807 | 0.5461 | 0.019* | |
H6B | 0.9394 | 0.2122 | 0.6895 | 0.019* | |
C7 | 0.73418 (17) | 0.24919 (7) | 0.58080 (17) | 0.0180 (4) | |
H7A | 0.6240 | 0.2372 | 0.5412 | 0.022* | |
H7B | 0.7311 | 0.2731 | 0.6636 | 0.022* | |
C8 | 0.7983 (2) | 0.28072 (8) | 0.46745 (18) | 0.0260 (4) | |
H8A | 0.9067 | 0.2932 | 0.5071 | 0.039* | |
H8B | 0.7297 | 0.3121 | 0.4373 | 0.039* | |
H8C | 0.7999 | 0.2572 | 0.3849 | 0.039* | |
C9 | 0.70155 (17) | 0.18362 (7) | 0.84042 (16) | 0.0174 (4) | |
H9A | 0.6533 | 0.1537 | 0.8867 | 0.021* | |
H9B | 0.6182 | 0.2113 | 0.8089 | 0.021* | |
C10 | 0.83651 (17) | 0.20876 (8) | 0.94804 (17) | 0.0217 (4) | |
H10A | 0.8801 | 0.2402 | 0.9038 | 0.026* | |
H10B | 0.9230 | 0.1818 | 0.9748 | 0.026* | |
C11 | 0.7796 (2) | 0.22732 (8) | 1.08166 (18) | 0.0302 (5) | |
H11A | 0.6972 | 0.2552 | 1.0558 | 0.045* | |
H11B | 0.8694 | 0.2424 | 1.1502 | 0.045* | |
H11C | 0.7353 | 0.1963 | 1.1250 | 0.045* | |
C12 | 0.20196 (18) | 0.09908 (7) | 0.15547 (17) | 0.0185 (4) | |
C13 | 0.36014 (18) | 0.10073 (7) | 0.15344 (17) | 0.0186 (4) | |
N4 | 0.08854 (18) | 0.07578 (7) | 0.04879 (17) | 0.0255 (4) | |
H41 | −0.001 (2) | 0.0652 (9) | 0.075 (2) | 0.048 (6)* | |
H42 | 0.129 (2) | 0.0521 (9) | −0.002 (2) | 0.033 (6)* | |
N5 | 0.42670 (19) | 0.07966 (7) | 0.04344 (16) | 0.0216 (3) | |
H51 | 0.530 (2) | 0.0716 (8) | 0.0693 (19) | 0.034 (5)* | |
H52 | 0.369 (2) | 0.0554 (9) | −0.006 (2) | 0.031 (6)* | |
C14 | 0.4658 (2) | 0.12854 (7) | 0.26529 (19) | 0.0228 (4) | |
N6 | 0.55281 (18) | 0.15012 (7) | 0.35497 (17) | 0.0334 (4) | |
C15 | 0.14409 (19) | 0.12679 (7) | 0.26810 (19) | 0.0227 (4) | |
N7 | 0.09678 (18) | 0.14926 (7) | 0.35655 (17) | 0.0344 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0218 (2) | 0.0282 (3) | 0.0271 (3) | 0.00105 (18) | 0.00570 (16) | −0.0083 (2) |
C1 | 0.0188 (8) | 0.0192 (10) | 0.0093 (8) | 0.0032 (7) | 0.0031 (6) | 0.0015 (7) |
N1 | 0.0192 (7) | 0.0153 (8) | 0.0206 (8) | −0.0030 (6) | 0.0070 (5) | 0.0012 (6) |
N2 | 0.0191 (7) | 0.0201 (9) | 0.0155 (7) | 0.0051 (6) | 0.0049 (5) | −0.0011 (6) |
N3 | 0.0152 (6) | 0.0164 (8) | 0.0133 (7) | −0.0007 (6) | 0.0059 (5) | −0.0011 (6) |
C2 | 0.0192 (8) | 0.0309 (12) | 0.0221 (10) | 0.0089 (7) | 0.0035 (7) | 0.0012 (8) |
C3 | 0.0345 (9) | 0.0246 (11) | 0.0240 (10) | 0.0059 (8) | 0.0075 (8) | −0.0061 (8) |
C4 | 0.0372 (10) | 0.0196 (11) | 0.0256 (10) | −0.0056 (8) | 0.0095 (8) | 0.0016 (8) |
C5 | 0.0164 (8) | 0.0292 (12) | 0.0236 (10) | −0.0022 (7) | 0.0057 (7) | −0.0022 (8) |
C6 | 0.0129 (7) | 0.0198 (10) | 0.0161 (9) | −0.0028 (7) | 0.0064 (6) | 0.0001 (7) |
C7 | 0.0183 (8) | 0.0185 (10) | 0.0179 (9) | −0.0007 (7) | 0.0053 (6) | −0.0006 (7) |
C8 | 0.0348 (9) | 0.0234 (11) | 0.0212 (10) | −0.0016 (8) | 0.0091 (7) | −0.0007 (8) |
C9 | 0.0158 (8) | 0.0236 (10) | 0.0144 (9) | −0.0004 (7) | 0.0066 (6) | −0.0019 (7) |
C10 | 0.0197 (8) | 0.0283 (11) | 0.0170 (9) | −0.0029 (7) | 0.0039 (6) | −0.0039 (8) |
C11 | 0.0277 (9) | 0.0442 (13) | 0.0200 (10) | −0.0104 (8) | 0.0075 (7) | −0.0121 (9) |
C12 | 0.0262 (9) | 0.0147 (10) | 0.0160 (9) | 0.0010 (7) | 0.0075 (7) | 0.0030 (7) |
C13 | 0.0272 (9) | 0.0121 (9) | 0.0168 (9) | 0.0022 (7) | 0.0047 (7) | 0.0030 (7) |
N4 | 0.0226 (8) | 0.0295 (11) | 0.0259 (9) | −0.0003 (7) | 0.0087 (7) | −0.0065 (8) |
N5 | 0.0232 (8) | 0.0219 (10) | 0.0203 (8) | −0.0004 (7) | 0.0053 (6) | −0.0022 (7) |
C14 | 0.0279 (9) | 0.0210 (10) | 0.0215 (10) | 0.0010 (8) | 0.0097 (8) | 0.0034 (8) |
N6 | 0.0371 (9) | 0.0377 (11) | 0.0258 (9) | −0.0062 (8) | 0.0071 (7) | −0.0044 (8) |
C15 | 0.0280 (9) | 0.0196 (11) | 0.0217 (10) | −0.0014 (8) | 0.0078 (7) | 0.0052 (8) |
N7 | 0.0437 (9) | 0.0377 (11) | 0.0257 (9) | 0.0010 (8) | 0.0165 (7) | −0.0023 (8) |
C1—N2 | 1.3381 (19) | C7—H7A | 0.9900 |
C1—N1 | 1.3415 (19) | C7—H7B | 0.9900 |
C1—N3 | 1.342 (2) | C8—H8A | 0.9800 |
N1—C4 | 1.459 (2) | C8—H8B | 0.9800 |
N1—C5 | 1.4598 (19) | C8—H8C | 0.9800 |
N2—C3 | 1.459 (2) | C9—C10 | 1.519 (2) |
N2—C2 | 1.4667 (19) | C9—H9A | 0.9900 |
N3—C6 | 1.4742 (19) | C9—H9B | 0.9900 |
N3—C9 | 1.4761 (19) | C10—C11 | 1.522 (2) |
C2—H2A | 0.9800 | C10—H10A | 0.9900 |
C2—H2B | 0.9800 | C10—H10B | 0.9900 |
C2—H2C | 0.9800 | C11—H11A | 0.9800 |
C3—H3A | 0.9800 | C11—H11B | 0.9800 |
C3—H3B | 0.9800 | C11—H11C | 0.9800 |
C3—H3C | 0.9800 | C12—C13 | 1.359 (2) |
C4—H4A | 0.9800 | C12—N4 | 1.386 (2) |
C4—H4B | 0.9800 | C12—C15 | 1.441 (2) |
C4—H4C | 0.9800 | C13—N5 | 1.389 (2) |
C5—H5A | 0.9800 | C13—C14 | 1.431 (2) |
C5—H5B | 0.9800 | N4—H41 | 0.89 (2) |
C5—H5C | 0.9800 | N4—H42 | 0.87 (2) |
C6—C7 | 1.519 (2) | N5—H51 | 0.90 (2) |
C6—H6A | 0.9900 | N5—H52 | 0.86 (2) |
C6—H6B | 0.9900 | C14—N6 | 1.148 (2) |
C7—C8 | 1.519 (2) | C15—N7 | 1.148 (2) |
N2—C1—N1 | 119.70 (15) | C8—C7—H7A | 109.4 |
N2—C1—N3 | 119.87 (14) | C6—C7—H7A | 109.4 |
N1—C1—N3 | 120.44 (13) | C8—C7—H7B | 109.4 |
C1—N1—C4 | 121.56 (13) | C6—C7—H7B | 109.4 |
C1—N1—C5 | 122.28 (14) | H7A—C7—H7B | 108.0 |
C4—N1—C5 | 116.15 (13) | C7—C8—H8A | 109.5 |
C1—N2—C3 | 122.37 (13) | C7—C8—H8B | 109.5 |
C1—N2—C2 | 122.24 (14) | H8A—C8—H8B | 109.5 |
C3—N2—C2 | 115.24 (13) | C7—C8—H8C | 109.5 |
C1—N3—C6 | 120.34 (13) | H8A—C8—H8C | 109.5 |
C1—N3—C9 | 121.10 (13) | H8B—C8—H8C | 109.5 |
C6—N3—C9 | 118.56 (13) | N3—C9—C10 | 111.44 (11) |
N2—C2—H2A | 109.5 | N3—C9—H9A | 109.3 |
N2—C2—H2B | 109.5 | C10—C9—H9A | 109.3 |
H2A—C2—H2B | 109.5 | N3—C9—H9B | 109.3 |
N2—C2—H2C | 109.5 | C10—C9—H9B | 109.3 |
H2A—C2—H2C | 109.5 | H9A—C9—H9B | 108.0 |
H2B—C2—H2C | 109.5 | C9—C10—C11 | 111.21 (12) |
N2—C3—H3A | 109.5 | C9—C10—H10A | 109.4 |
N2—C3—H3B | 109.5 | C11—C10—H10A | 109.4 |
H3A—C3—H3B | 109.5 | C9—C10—H10B | 109.4 |
N2—C3—H3C | 109.5 | C11—C10—H10B | 109.4 |
H3A—C3—H3C | 109.5 | H10A—C10—H10B | 108.0 |
H3B—C3—H3C | 109.5 | C10—C11—H11A | 109.5 |
N1—C4—H4A | 109.5 | C10—C11—H11B | 109.5 |
N1—C4—H4B | 109.5 | H11A—C11—H11B | 109.5 |
H4A—C4—H4B | 109.5 | C10—C11—H11C | 109.5 |
N1—C4—H4C | 109.5 | H11A—C11—H11C | 109.5 |
H4A—C4—H4C | 109.5 | H11B—C11—H11C | 109.5 |
H4B—C4—H4C | 109.5 | C13—C12—N4 | 123.97 (15) |
N1—C5—H5A | 109.5 | C13—C12—C15 | 119.10 (15) |
N1—C5—H5B | 109.5 | N4—C12—C15 | 116.72 (14) |
H5A—C5—H5B | 109.5 | C12—C13—N5 | 123.89 (15) |
N1—C5—H5C | 109.5 | C12—C13—C14 | 119.35 (15) |
H5A—C5—H5C | 109.5 | N5—C13—C14 | 116.64 (14) |
H5B—C5—H5C | 109.5 | C12—N4—H41 | 115.9 (14) |
N3—C6—C7 | 111.86 (11) | C12—N4—H42 | 112.8 (12) |
N3—C6—H6A | 109.2 | H41—N4—H42 | 114.6 (19) |
C7—C6—H6A | 109.2 | C13—N5—H51 | 114.0 (12) |
N3—C6—H6B | 109.2 | C13—N5—H52 | 113.2 (12) |
C7—C6—H6B | 109.2 | H51—N5—H52 | 115.6 (17) |
H6A—C6—H6B | 107.9 | N6—C14—C13 | 178.7 (2) |
C8—C7—C6 | 111.19 (13) | N7—C15—C12 | 179.1 (2) |
N2—C1—N1—C4 | 33.9 (2) | N1—C1—N3—C9 | 37.9 (2) |
N3—C1—N1—C4 | −145.70 (15) | C1—N3—C6—C7 | 124.34 (15) |
N2—C1—N1—C5 | −147.08 (15) | C9—N3—C6—C7 | −54.64 (17) |
N3—C1—N1—C5 | 33.4 (2) | N3—C6—C7—C8 | −166.97 (13) |
N1—C1—N2—C3 | 36.4 (2) | C1—N3—C9—C10 | 122.97 (15) |
N3—C1—N2—C3 | −143.99 (16) | C6—N3—C9—C10 | −58.06 (18) |
N1—C1—N2—C2 | −148.24 (15) | N3—C9—C10—C11 | −176.32 (15) |
N3—C1—N2—C2 | 31.3 (2) | N4—C12—C13—N5 | 0.6 (3) |
N2—C1—N3—C6 | 39.34 (19) | C15—C12—C13—N5 | −174.05 (16) |
N1—C1—N3—C6 | −141.10 (14) | N4—C12—C13—C14 | 176.48 (16) |
N2—C1—N3—C9 | −141.71 (14) | C15—C12—C13—C14 | 1.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H41···Cl1i | 0.89 (2) | 2.36 (2) | 3.242 (2) | 171 (2) |
N4—H42···Cl1ii | 0.87 (2) | 2.48 (2) | 3.351 (2) | 174 (2) |
N5—H51···Cl1 | 0.90 (2) | 2.37 (2) | 3.241 (2) | 163 (2) |
N5—H52···Cl1ii | 0.86 (2) | 2.48 (2) | 3.333 (2) | 173 (2) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C11H26N3+·Cl−·C4H4N4 |
Mr | 343.91 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 8.5646 (3), 24.6447 (9), 9.5363 (4) |
β (°) | 101.341 (2) |
V (Å3) | 1973.54 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.20 |
Crystal size (mm) | 0.21 × 0.17 × 0.14 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8538, 4901, 3055 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.102, 1.01 |
No. of reflections | 4901 |
No. of parameters | 230 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.26, −0.26 |
Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H41···Cl1i | 0.89 (2) | 2.36 (2) | 3.242 (2) | 171 (2) |
N4—H42···Cl1ii | 0.87 (2) | 2.48 (2) | 3.351 (2) | 174 (2) |
N5—H51···Cl1 | 0.90 (2) | 2.37 (2) | 3.241 (2) | 163 (2) |
N5—H52···Cl1ii | 0.86 (2) | 2.48 (2) | 3.333 (2) | 173 (2) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z. |
Acknowledgements
The authors thank Dr Falk Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the crystal data.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany. Google Scholar
Hooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands. Google Scholar
Kantlehner, W., Haug, E., Mergen, W. W., Speh, P., Maier, T., Kapassakalidis, J. J., Bräuner, H. J. & Hagen, H. (1984). Liebigs Ann. Chem. pp. 108–126. CrossRef Google Scholar
Kantlehner, W., Mezger, J., Kress, R., Hartmann, H., Moschny, T., Tiritiris, I., Iliev, B., Scherr, O., Ziegler, G., Souley, B., Frey, W., Ivanov, I. C., Bogdanov, M. G., Jäger, U., Dospil, G. & Viefhaus, T. (2010). Z. Naturforsch. Teil B, 65, 873–906. CAS Google Scholar
Kunkel, H. (2008). Dissertation, Universität Ulm, Germany. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Penfold, B. R. & Lipscomb, W. (1961). Acta Cryst. 14, 589–597. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
(2Z)-2,3-Diaminobut-2-enedinitrile (Z-DAMN), is considered to be the tetramer of hydrogen cyanide and its crystal structure has been determined more than fifty years ago (Penfold & Lipscomb, 1961). On the other hand the synthesis of hexaalkyl substituted guanidinium chlorides is well described in literature (Kantlehner et al., 1984), but only scanty crystal structure data are available (Kantlehner et al., 2010). For preparation of guanidinium chlorides, in first step N,N,N',N'-tetraalkylureas are activated with phosgene to give chloroformamidinium chlorides, which in a next step react with secondary amines in the presence of triethylamine (Kantlehner et al., 1984). A great disadvantage of the guanidinium chlorides is their hygroscopicity. The crystals obtained are liquefying very fast in air atmosphere and it has often proved difficult to determine their crystal structures. Recent studies showed that water absorption ability of guanidinium salts depends on the anion as well as on the cation. Salts with nucleophilic anions and short alkyl chains were found to be more water-soluble and hygroscopic (Kunkel, 2008). By recystallization of N,N,N',N'-tetramethyl- N'',N''-dipropylguanidinium chloride from an acetonitrile solution containing equimolar amounts of Z-DAMN, 1:1 cocrystals have been obtained (Fig. 1). In contrast to the chloride salt, the title compound is no longer hygroscopic. The crystal structure analysis reveals that the Z-DAMN molecules are connected with the chloride ions via N–H···Cl hydrogen bonds, forming chains (Fig. 2) running along the a axis (Fig. 3). The Cl···H distances range between 2.36 (2) and 2.48 (2) Å, with N–H···Cl angles from 163 (2) to 174 (2)° (Tab. 1). The guanidinium ions are located inbetween the ribbons formed by Z-DAMN molecules and chloride ions (Fig. 3). They interact with the nitrogen atoms of both CN groups of Z-DAMN forming weak C–H···N hydrogen bonds [d(H···N) = 2.54 and 2.78 Å]. Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.342 (2) Å, C1–N2 = 1.338 (2) Å and C1–N3 = 1.342 (2) Å. The N–C1–N angles are: 119.7 (2)° (N1–C1–N2), 119.9 (1)° (N2–C1–N3) and 120.4 (1)° (N1–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalised on the CN3 plane. The geometrical parameters of the Z-DAMN molecule in the presented cocrystal, are very well comparable with the crystal structure data of the pure compound (Penfold & Lipscomb, 1961). The C–C double bond value is 1.359 (2) Å, the C–N single bonds are 1.386 (2) and 1.389 (2) Å, the C–C single bonds are 1.431 (2) and 1.441 (2) Å and both C–N triple bonds are 1.148 (2) Å.