organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N′,N′-Tetra­methyl-N′′,N′′-di­propyl­guanidinium chloride–(2Z)-2,3-di­amino­but-2-enedi­nitrile (1/1)

aInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@htw-aalen.de

(Received 17 May 2012; accepted 21 May 2012; online 31 May 2012)

In the crystal structure of the title compound, C11H26N3+·Cl·C4H4N4, the (2Z)-2,3-diamino­but-2-ene-dinitrile (Z-DAMN) mol­ecules are connected with the chloride ions via N—H⋯Cl hydrogen bonds, forming ribbons running along the a axis. The guanidinium ions are located in between the ribbons formed by Z-DAMN mol­ecules and chloride ions.

Related literature

For the crystal structure of (2Z)-2,3-diamino­but-2-enedinitrile, see: Penfold & Lipscomb (1961[Penfold, B. R. & Lipscomb, W. (1961). Acta Cryst. 14, 589-597.]). For the synthesis of hexa­alkyl-substituted guanidinium chlorides, see: Kantlehner et al. (1984[Kantlehner, W., Haug, E., Mergen, W. W., Speh, P., Maier, T., Kapassakalidis, J. J., Bräuner, H. J. & Hagen, H. (1984). Liebigs Ann. Chem. pp. 108-126.]) and for the synthesis and crystal structures of hexa­alkyl-substituted guanidinium salts, see: Kantlehner et al. (2010[Kantlehner, W., Mezger, J., Kress, R., Hartmann, H., Moschny, T., Tiritiris, I., Iliev, B., Scherr, O., Ziegler, G., Souley, B., Frey, W., Ivanov, I. C., Bogdanov, M. G., Jäger, U., Dospil, G. & Viefhaus, T. (2010). Z. Naturforsch. Teil B, 65, 873-906.]). For studies on the water-absorption ability of guan­idin­ium salts, see: Kunkel (2008[Kunkel, H. (2008). Dissertation, Universität Ulm, Germany.]).

[Scheme 1]

Experimental

Crystal data
  • C11H26N3+·Cl·C4H4N4

  • Mr = 343.91

  • Monoclinic, P 21 /n

  • a = 8.5646 (3) Å

  • b = 24.6447 (9) Å

  • c = 9.5363 (4) Å

  • β = 101.341 (2)°

  • V = 1973.54 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.21 × 0.17 × 0.14 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • 8538 measured reflections

  • 4901 independent reflections

  • 3055 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.102

  • S = 1.01

  • 4901 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H41⋯Cl1i 0.89 (2) 2.36 (2) 3.242 (2) 171 (2)
N4—H42⋯Cl1ii 0.87 (2) 2.48 (2) 3.351 (2) 174 (2)
N5—H51⋯Cl1 0.90 (2) 2.37 (2) 3.241 (2) 163 (2)
N5—H52⋯Cl1ii 0.86 (2) 2.48 (2) 3.333 (2) 173 (2)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

(2Z)-2,3-Diaminobut-2-enedinitrile (Z-DAMN), is considered to be the tetramer of hydrogen cyanide and its crystal structure has been determined more than fifty years ago (Penfold & Lipscomb, 1961). On the other hand the synthesis of hexaalkyl substituted guanidinium chlorides is well described in literature (Kantlehner et al., 1984), but only scanty crystal structure data are available (Kantlehner et al., 2010). For preparation of guanidinium chlorides, in first step N,N,N',N'-tetraalkylureas are activated with phosgene to give chloroformamidinium chlorides, which in a next step react with secondary amines in the presence of triethylamine (Kantlehner et al., 1984). A great disadvantage of the guanidinium chlorides is their hygroscopicity. The crystals obtained are liquefying very fast in air atmosphere and it has often proved difficult to determine their crystal structures. Recent studies showed that water absorption ability of guanidinium salts depends on the anion as well as on the cation. Salts with nucleophilic anions and short alkyl chains were found to be more water-soluble and hygroscopic (Kunkel, 2008). By recystallization of N,N,N',N'-tetramethyl- N'',N''-dipropylguanidinium chloride from an acetonitrile solution containing equimolar amounts of Z-DAMN, 1:1 cocrystals have been obtained (Fig. 1). In contrast to the chloride salt, the title compound is no longer hygroscopic. The crystal structure analysis reveals that the Z-DAMN molecules are connected with the chloride ions via N–H···Cl hydrogen bonds, forming chains (Fig. 2) running along the a axis (Fig. 3). The Cl···H distances range between 2.36 (2) and 2.48 (2) Å, with N–H···Cl angles from 163 (2) to 174 (2)° (Tab. 1). The guanidinium ions are located inbetween the ribbons formed by Z-DAMN molecules and chloride ions (Fig. 3). They interact with the nitrogen atoms of both CN groups of Z-DAMN forming weak C–H···N hydrogen bonds [d(H···N) = 2.54 and 2.78 Å]. Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.342 (2) Å, C1–N2 = 1.338 (2) Å and C1–N3 = 1.342 (2) Å. The N–C1–N angles are: 119.7 (2)° (N1–C1–N2), 119.9 (1)° (N2–C1–N3) and 120.4 (1)° (N1–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalised on the CN3 plane. The geometrical parameters of the Z-DAMN molecule in the presented cocrystal, are very well comparable with the crystal structure data of the pure compound (Penfold & Lipscomb, 1961). The C–C double bond value is 1.359 (2) Å, the C–N single bonds are 1.386 (2) and 1.389 (2) Å, the C–C single bonds are 1.431 (2) and 1.441 (2) Å and both C–N triple bonds are 1.148 (2) Å.

Related literature top

For the crystal structure of (2Z)-2,3-diaminobut-2-enedinitrile, see: Penfold & Lipscomb (1961). For the synthesis of hexaalkyl-substituted guanidinium chlorides, see: Kantlehner et al. (1984) and for the synthesis and crystal structures of hexaalkyl-substituted guanidinium salts, see: Kantlehner et al. (2010). For studies on the water-absorption ability of guanidinium salts, see: Kunkel (2008).

Experimental top

The title compound was obtained by recrystallising N,N,N',N'-tetramethyl- N'',N''-dipropylguanidinium-chloride from an acetonitrile solution containing equimolar amounts of (2Z)-2,3-diaminobut-2-enedinitrile. On slow evaporation of the solvent, the title compound crystallised in form of colourless, air stable single crystals.

Refinement top

The N-bound H atoms were located in a difference Fourier map and were refined freely [N—H = 0.86 (2)–0.90 (2) Å]. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with U(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å and were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. N–H···Cl hydrogen bonding system, ab-view. The hydrogen bonds are indicated by dashed lines.
[Figure 3] Fig. 3. Packing diagram of the title compound, bc-view. The N–H···Cl hydrogen bonds are indicated by dashed lines.
N,N,N',N'-Tetramethyl- N'',N''-dipropylguanidinium chloride– (2Z)-2,3-diaminobut-2-enedinitrile (1/1) top
Crystal data top
C11H26N3+·Cl·C4H4N4F(000) = 744
Mr = 343.91Dx = 1.158 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4700 reflections
a = 8.5646 (3) Åθ = 0.4–28.3°
b = 24.6447 (9) ŵ = 0.20 mm1
c = 9.5363 (4) ÅT = 100 K
β = 101.341 (2)°Lath-shaped, colourless
V = 1973.54 (13) Å30.21 × 0.17 × 0.14 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3055 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.052
Graphite monochromatorθmax = 28.3°, θmin = 1.7°
ϕ scans, and ω scansh = 1111
8538 measured reflectionsk = 3230
4901 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.043P)2]
where P = (Fo2 + 2Fc2)/3
4901 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H26N3+·Cl·C4H4N4V = 1973.54 (13) Å3
Mr = 343.91Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5646 (3) ŵ = 0.20 mm1
b = 24.6447 (9) ÅT = 100 K
c = 9.5363 (4) Å0.21 × 0.17 × 0.14 mm
β = 101.341 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3055 reflections with I > 2σ(I)
8538 measured reflectionsRint = 0.052
4901 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.26 e Å3
4901 reflectionsΔρmin = 0.26 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.77349 (4)0.023155 (18)0.13502 (5)0.02555 (13)
C10.73690 (17)0.11012 (7)0.67572 (16)0.0157 (4)
N10.60198 (14)0.08427 (6)0.68672 (14)0.0179 (3)
N20.85119 (14)0.08348 (6)0.62646 (14)0.0180 (3)
N30.75830 (14)0.16234 (5)0.71465 (13)0.0145 (3)
C21.02067 (17)0.09594 (8)0.67499 (18)0.0241 (4)
H2A1.06010.11540.59940.036*
H2B1.08060.06210.69710.036*
H2C1.03460.11860.76100.036*
C30.8157 (2)0.04293 (8)0.51327 (19)0.0274 (4)
H3A0.84840.00700.55260.041*
H3B0.87380.05170.43730.041*
H3C0.70100.04280.47390.041*
C40.6013 (2)0.02679 (7)0.72316 (19)0.0270 (4)
H4A0.56490.00550.63610.041*
H4B0.52930.02080.78980.041*
H4C0.70930.01550.76810.041*
C50.44834 (17)0.11190 (7)0.66526 (18)0.0228 (4)
H5A0.41360.11490.75690.034*
H5B0.36950.09110.59790.034*
H5C0.45870.14830.62650.034*
C60.83711 (16)0.19998 (7)0.63049 (16)0.0158 (4)
H6A0.86090.18070.54610.019*
H6B0.93940.21220.68950.019*
C70.73418 (17)0.24919 (7)0.58080 (17)0.0180 (4)
H7A0.62400.23720.54120.022*
H7B0.73110.27310.66360.022*
C80.7983 (2)0.28072 (8)0.46745 (18)0.0260 (4)
H8A0.90670.29320.50710.039*
H8B0.72970.31210.43730.039*
H8C0.79990.25720.38490.039*
C90.70155 (17)0.18362 (7)0.84042 (16)0.0174 (4)
H9A0.65330.15370.88670.021*
H9B0.61820.21130.80890.021*
C100.83651 (17)0.20876 (8)0.94804 (17)0.0217 (4)
H10A0.88010.24020.90380.026*
H10B0.92300.18180.97480.026*
C110.7796 (2)0.22732 (8)1.08166 (18)0.0302 (5)
H11A0.69720.25521.05580.045*
H11B0.86940.24241.15020.045*
H11C0.73530.19631.12500.045*
C120.20196 (18)0.09908 (7)0.15547 (17)0.0185 (4)
C130.36014 (18)0.10073 (7)0.15344 (17)0.0186 (4)
N40.08854 (18)0.07578 (7)0.04879 (17)0.0255 (4)
H410.001 (2)0.0652 (9)0.075 (2)0.048 (6)*
H420.129 (2)0.0521 (9)0.002 (2)0.033 (6)*
N50.42670 (19)0.07966 (7)0.04344 (16)0.0216 (3)
H510.530 (2)0.0716 (8)0.0693 (19)0.034 (5)*
H520.369 (2)0.0554 (9)0.006 (2)0.031 (6)*
C140.4658 (2)0.12854 (7)0.26529 (19)0.0228 (4)
N60.55281 (18)0.15012 (7)0.35497 (17)0.0334 (4)
C150.14409 (19)0.12679 (7)0.26810 (19)0.0227 (4)
N70.09678 (18)0.14926 (7)0.35655 (17)0.0344 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0218 (2)0.0282 (3)0.0271 (3)0.00105 (18)0.00570 (16)0.0083 (2)
C10.0188 (8)0.0192 (10)0.0093 (8)0.0032 (7)0.0031 (6)0.0015 (7)
N10.0192 (7)0.0153 (8)0.0206 (8)0.0030 (6)0.0070 (5)0.0012 (6)
N20.0191 (7)0.0201 (9)0.0155 (7)0.0051 (6)0.0049 (5)0.0011 (6)
N30.0152 (6)0.0164 (8)0.0133 (7)0.0007 (6)0.0059 (5)0.0011 (6)
C20.0192 (8)0.0309 (12)0.0221 (10)0.0089 (7)0.0035 (7)0.0012 (8)
C30.0345 (9)0.0246 (11)0.0240 (10)0.0059 (8)0.0075 (8)0.0061 (8)
C40.0372 (10)0.0196 (11)0.0256 (10)0.0056 (8)0.0095 (8)0.0016 (8)
C50.0164 (8)0.0292 (12)0.0236 (10)0.0022 (7)0.0057 (7)0.0022 (8)
C60.0129 (7)0.0198 (10)0.0161 (9)0.0028 (7)0.0064 (6)0.0001 (7)
C70.0183 (8)0.0185 (10)0.0179 (9)0.0007 (7)0.0053 (6)0.0006 (7)
C80.0348 (9)0.0234 (11)0.0212 (10)0.0016 (8)0.0091 (7)0.0007 (8)
C90.0158 (8)0.0236 (10)0.0144 (9)0.0004 (7)0.0066 (6)0.0019 (7)
C100.0197 (8)0.0283 (11)0.0170 (9)0.0029 (7)0.0039 (6)0.0039 (8)
C110.0277 (9)0.0442 (13)0.0200 (10)0.0104 (8)0.0075 (7)0.0121 (9)
C120.0262 (9)0.0147 (10)0.0160 (9)0.0010 (7)0.0075 (7)0.0030 (7)
C130.0272 (9)0.0121 (9)0.0168 (9)0.0022 (7)0.0047 (7)0.0030 (7)
N40.0226 (8)0.0295 (11)0.0259 (9)0.0003 (7)0.0087 (7)0.0065 (8)
N50.0232 (8)0.0219 (10)0.0203 (8)0.0004 (7)0.0053 (6)0.0022 (7)
C140.0279 (9)0.0210 (10)0.0215 (10)0.0010 (8)0.0097 (8)0.0034 (8)
N60.0371 (9)0.0377 (11)0.0258 (9)0.0062 (8)0.0071 (7)0.0044 (8)
C150.0280 (9)0.0196 (11)0.0217 (10)0.0014 (8)0.0078 (7)0.0052 (8)
N70.0437 (9)0.0377 (11)0.0257 (9)0.0010 (8)0.0165 (7)0.0023 (8)
Geometric parameters (Å, º) top
C1—N21.3381 (19)C7—H7A0.9900
C1—N11.3415 (19)C7—H7B0.9900
C1—N31.342 (2)C8—H8A0.9800
N1—C41.459 (2)C8—H8B0.9800
N1—C51.4598 (19)C8—H8C0.9800
N2—C31.459 (2)C9—C101.519 (2)
N2—C21.4667 (19)C9—H9A0.9900
N3—C61.4742 (19)C9—H9B0.9900
N3—C91.4761 (19)C10—C111.522 (2)
C2—H2A0.9800C10—H10A0.9900
C2—H2B0.9800C10—H10B0.9900
C2—H2C0.9800C11—H11A0.9800
C3—H3A0.9800C11—H11B0.9800
C3—H3B0.9800C11—H11C0.9800
C3—H3C0.9800C12—C131.359 (2)
C4—H4A0.9800C12—N41.386 (2)
C4—H4B0.9800C12—C151.441 (2)
C4—H4C0.9800C13—N51.389 (2)
C5—H5A0.9800C13—C141.431 (2)
C5—H5B0.9800N4—H410.89 (2)
C5—H5C0.9800N4—H420.87 (2)
C6—C71.519 (2)N5—H510.90 (2)
C6—H6A0.9900N5—H520.86 (2)
C6—H6B0.9900C14—N61.148 (2)
C7—C81.519 (2)C15—N71.148 (2)
N2—C1—N1119.70 (15)C8—C7—H7A109.4
N2—C1—N3119.87 (14)C6—C7—H7A109.4
N1—C1—N3120.44 (13)C8—C7—H7B109.4
C1—N1—C4121.56 (13)C6—C7—H7B109.4
C1—N1—C5122.28 (14)H7A—C7—H7B108.0
C4—N1—C5116.15 (13)C7—C8—H8A109.5
C1—N2—C3122.37 (13)C7—C8—H8B109.5
C1—N2—C2122.24 (14)H8A—C8—H8B109.5
C3—N2—C2115.24 (13)C7—C8—H8C109.5
C1—N3—C6120.34 (13)H8A—C8—H8C109.5
C1—N3—C9121.10 (13)H8B—C8—H8C109.5
C6—N3—C9118.56 (13)N3—C9—C10111.44 (11)
N2—C2—H2A109.5N3—C9—H9A109.3
N2—C2—H2B109.5C10—C9—H9A109.3
H2A—C2—H2B109.5N3—C9—H9B109.3
N2—C2—H2C109.5C10—C9—H9B109.3
H2A—C2—H2C109.5H9A—C9—H9B108.0
H2B—C2—H2C109.5C9—C10—C11111.21 (12)
N2—C3—H3A109.5C9—C10—H10A109.4
N2—C3—H3B109.5C11—C10—H10A109.4
H3A—C3—H3B109.5C9—C10—H10B109.4
N2—C3—H3C109.5C11—C10—H10B109.4
H3A—C3—H3C109.5H10A—C10—H10B108.0
H3B—C3—H3C109.5C10—C11—H11A109.5
N1—C4—H4A109.5C10—C11—H11B109.5
N1—C4—H4B109.5H11A—C11—H11B109.5
H4A—C4—H4B109.5C10—C11—H11C109.5
N1—C4—H4C109.5H11A—C11—H11C109.5
H4A—C4—H4C109.5H11B—C11—H11C109.5
H4B—C4—H4C109.5C13—C12—N4123.97 (15)
N1—C5—H5A109.5C13—C12—C15119.10 (15)
N1—C5—H5B109.5N4—C12—C15116.72 (14)
H5A—C5—H5B109.5C12—C13—N5123.89 (15)
N1—C5—H5C109.5C12—C13—C14119.35 (15)
H5A—C5—H5C109.5N5—C13—C14116.64 (14)
H5B—C5—H5C109.5C12—N4—H41115.9 (14)
N3—C6—C7111.86 (11)C12—N4—H42112.8 (12)
N3—C6—H6A109.2H41—N4—H42114.6 (19)
C7—C6—H6A109.2C13—N5—H51114.0 (12)
N3—C6—H6B109.2C13—N5—H52113.2 (12)
C7—C6—H6B109.2H51—N5—H52115.6 (17)
H6A—C6—H6B107.9N6—C14—C13178.7 (2)
C8—C7—C6111.19 (13)N7—C15—C12179.1 (2)
N2—C1—N1—C433.9 (2)N1—C1—N3—C937.9 (2)
N3—C1—N1—C4145.70 (15)C1—N3—C6—C7124.34 (15)
N2—C1—N1—C5147.08 (15)C9—N3—C6—C754.64 (17)
N3—C1—N1—C533.4 (2)N3—C6—C7—C8166.97 (13)
N1—C1—N2—C336.4 (2)C1—N3—C9—C10122.97 (15)
N3—C1—N2—C3143.99 (16)C6—N3—C9—C1058.06 (18)
N1—C1—N2—C2148.24 (15)N3—C9—C10—C11176.32 (15)
N3—C1—N2—C231.3 (2)N4—C12—C13—N50.6 (3)
N2—C1—N3—C639.34 (19)C15—C12—C13—N5174.05 (16)
N1—C1—N3—C6141.10 (14)N4—C12—C13—C14176.48 (16)
N2—C1—N3—C9141.71 (14)C15—C12—C13—C141.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···Cl1i0.89 (2)2.36 (2)3.242 (2)171 (2)
N4—H42···Cl1ii0.87 (2)2.48 (2)3.351 (2)174 (2)
N5—H51···Cl10.90 (2)2.37 (2)3.241 (2)163 (2)
N5—H52···Cl1ii0.86 (2)2.48 (2)3.333 (2)173 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H26N3+·Cl·C4H4N4
Mr343.91
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.5646 (3), 24.6447 (9), 9.5363 (4)
β (°) 101.341 (2)
V3)1973.54 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.21 × 0.17 × 0.14
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8538, 4901, 3055
Rint0.052
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.102, 1.01
No. of reflections4901
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···Cl1i0.89 (2)2.36 (2)3.242 (2)171 (2)
N4—H42···Cl1ii0.87 (2)2.48 (2)3.351 (2)174 (2)
N5—H51···Cl10.90 (2)2.37 (2)3.241 (2)163 (2)
N5—H52···Cl1ii0.86 (2)2.48 (2)3.333 (2)173 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank Dr Falk Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the crystal data.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKantlehner, W., Haug, E., Mergen, W. W., Speh, P., Maier, T., Kapassakalidis, J. J., Bräuner, H. J. & Hagen, H. (1984). Liebigs Ann. Chem. pp. 108–126.  CrossRef Google Scholar
First citationKantlehner, W., Mezger, J., Kress, R., Hartmann, H., Moschny, T., Tiritiris, I., Iliev, B., Scherr, O., Ziegler, G., Souley, B., Frey, W., Ivanov, I. C., Bogdanov, M. G., Jäger, U., Dospil, G. & Viefhaus, T. (2010). Z. Naturforsch. Teil B, 65, 873–906.  CAS Google Scholar
First citationKunkel, H. (2008). Dissertation, Universität Ulm, Germany.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPenfold, B. R. & Lipscomb, W. (1961). Acta Cryst. 14, 589–597.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds