organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Di­ethyl­amino-2-[(E)-(2,4-dimeth­­oxy­phen­yl)imino­meth­yl]phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bYesilyurt Demir Celik Vocational School, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
*Correspondence e-mail: yavuzk@omu.edu.tr

(Received 5 April 2012; accepted 26 April 2012; online 2 May 2012)

The title Schiff base, C19H24N2O3, exists in the crystal structure in the phenol–imine tautomeric form with an intra­molecular O—H⋯N hydrogen bond. The planes of the aromatic rings form a dihedral angle of 36.8 (8)°. The crystal packing is characterized by C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.478 (4)Å].

Related literature

Schiff bases of salicyl­aldehyde may exhibit thermochromism or photochromism, depending on the planarity or non-planarity, respectively, of the mol­ecule, see: Amimoto & Kawato (2005[Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. C, 6, 207-226.]); Schmidt & Cohen (1964[Schmidt, G. M. J. & Cohen, M. D. (1964). J. Chem. Soc. pp. 1996-2000.]). For similar structures, see: Ha (2011[Ha, K. (2011). Acta Cryst. E67, o518.]); Asiri et al. (2010[Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1826.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24N2O3

  • Mr = 328.40

  • Monoclinic, P 21 /c

  • a = 7.2028 (3) Å

  • b = 9.4423 (5) Å

  • c = 26.050 (2) Å

  • β = 91.742 (7)°

  • V = 1770.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.10 mm

Data collection
  • Oxford Diffraction SuperNova (single source at offset) Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.933, Tmax = 1.000

  • 8031 measured reflections

  • 4165 independent reflections

  • 1959 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.164

  • S = 1.06

  • 4165 reflections

  • 226 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 (2) 1.79 (2) 2.575 (3) 153 (4)
C16—H16B⋯O1i 0.97 2.53 3.491 (4) 172
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

We have studied a Schiff base derived from 4-(diethylamino)-2-hydroxybenzaldehyde. It is known that Schiff bases of salicylaldehyde may exhibit thermochromism or photochromism, depending on planarity or non-planarity of the molecule, respectively (Schmidt & Cohen, 1964; Amimoto & Kawato, 2005).

The C10-C9-N1-C5 torsion angle is -169.8 (2)°, that contributes to the general non-planarity of the molecule. The C15-O1 [1.352 (3)Å] bond length is similar to the corresponding distance in 4-Bromo-2- {[(pyridin-3-ylmethyl)imino]-methyl}phenol, [1.352 (4)Å; Ha, 2011] and in the monoclinic modification of 2-[(1,3-benzothiazol-2-yl)iminomethyl]phenol [1.345 (3)Å; Asiri et al., 2010).

Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in Schiff bases: O-H···N in phenol-imine and N-H···O in keto-amine tautomers. Our X-ray investigation shows that the title compound exists in the phenol-imine form. The title compound forms intermolecular C-H···O and a strong intramolecular O-H···N hydrogen bonds, namely C16-H16B···O1 [symmetry code: (i) x-1,y,z] and O1-H1A···N1. The intramolecular hydrogen bonds generates a six membered ring, producing S(6) ring motif (Bernstein, et al., 1995). Weak π-π stacking interactions are observed which may influence crystal stability – the distance between centroids Cg1(C2-C7 ring) to Cg1ii [symmetry code: (ii) 1-x,-y,1-z] is 3.478 (4)Å.

Related literature top

Schiff bases of salicylaldehyde may exhibit thermochromism or photochromism, depending on the planarity or non-planarity, respectively, of the molecule, see: Amimoto & Kawato (2005); Schmidt & Cohen (1964). For similar structures, see: Ha (2011); Asiri et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The 2-{(E)-[(2,4-dimethoxyphenyl)imino]methyl}-5- (pentan-3-yl)phenol was prepared by refluxing a mixture of 4-(diethylamino)-2-hydroxybenzaldehyde (0.011 g 0.057 mmol) in 20 ml of ethanol and 2,4-dimethoxyaniline (0.009 g 0.057 mmol) in 20 ml of ethanol. The mixture was stirred for 1 h under reflux. The crystals of the 2-{(E)-[(2,4-dimethoxyphenyl)imino]methyl}-5-(pentan-3-yl)phenol suitable for X-ray analysis were obtained from ethyl alcohol by slow evaporation (yield %72; m.p. 371–373 °K).

Refinement top

The structure was solved by direct methods and refined by full-matrix least-square techniques. All H atoms were located geometrically and refined using a riding model, except for atom H1 bonded to atom O1, which was freely refined. The C—H distances were fixed at 0.93-0.97 Å. The hydrogen atoms of methyl groups were placed in a staggered conformation.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with 50% probability displacement ellipsoids.
5-Diethylamino-2-[(E)-(2,4-dimethoxyphenyl)iminomethyl]phenol top
Crystal data top
C19H24N2O3F(000) = 704
Mr = 328.40Dx = 1.232 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.2028 (3) ÅCell parameters from 1690 reflections
b = 9.4423 (5) Åθ = 3.2–29.0°
c = 26.050 (2) ŵ = 0.08 mm1
β = 91.742 (7)°T = 293 K
V = 1770.9 (2) Å3Block, orange
Z = 40.22 × 0.15 × 0.10 mm
Data collection top
Oxford Diffraction SuperNova (single source at offset) Eos
diffractometer
4165 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1959 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 16.0454 pixels mm-1θmax = 29.1°, θmin = 3.2°
ω scansh = 79
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 911
Tmin = 0.933, Tmax = 1.000l = 3533
8031 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.4437P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4165 reflectionsΔρmax = 0.16 e Å3
226 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (6)
Crystal data top
C19H24N2O3V = 1770.9 (2) Å3
Mr = 328.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2028 (3) ŵ = 0.08 mm1
b = 9.4423 (5) ÅT = 293 K
c = 26.050 (2) Å0.22 × 0.15 × 0.10 mm
β = 91.742 (7)°
Data collection top
Oxford Diffraction SuperNova (single source at offset) Eos
diffractometer
4165 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
1959 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 1.000Rint = 0.036
8031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0641 restraint
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.16 e Å3
4165 reflectionsΔρmin = 0.15 e Å3
226 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3547 (3)0.5391 (2)0.37257 (9)0.0640 (6)
N10.3519 (3)0.2811 (2)0.40463 (9)0.0529 (6)
O30.7902 (3)0.1820 (2)0.46150 (9)0.0732 (7)
C130.1045 (4)0.6216 (3)0.31791 (10)0.0455 (6)
C140.0834 (3)0.6313 (3)0.33320 (10)0.0490 (7)
H140.14880.71360.32600.059*
O20.6402 (3)0.3076 (2)0.47090 (8)0.0650 (6)
C120.1986 (4)0.4935 (3)0.32942 (11)0.0521 (7)
H120.32290.48300.31950.062*
C100.0799 (4)0.3947 (3)0.37000 (10)0.0458 (6)
N20.1934 (3)0.7311 (2)0.29284 (9)0.0555 (6)
C150.1737 (4)0.5215 (3)0.35868 (10)0.0469 (7)
C110.1092 (4)0.3860 (3)0.35480 (10)0.0502 (7)
H110.17510.30430.36230.060*
C90.1748 (4)0.2768 (3)0.39315 (10)0.0505 (7)
H90.10830.19500.40020.061*
C70.7176 (4)0.0578 (3)0.46522 (11)0.0552 (8)
H70.82230.06890.48660.066*
C50.4521 (4)0.1580 (3)0.41991 (10)0.0491 (7)
C160.3951 (4)0.7321 (3)0.28369 (12)0.0628 (8)
H16A0.44040.82830.28710.075*
H16B0.45270.67490.30970.075*
C20.6713 (4)0.0755 (3)0.44630 (11)0.0550 (7)
C40.4107 (4)0.0244 (3)0.40130 (11)0.0559 (8)
H40.30810.01300.37910.067*
C60.6091 (4)0.1742 (3)0.45242 (10)0.0505 (7)
C30.5170 (4)0.0937 (3)0.41452 (11)0.0566 (8)
H30.48460.18300.40220.068*
C180.0953 (4)0.8577 (3)0.27682 (12)0.0652 (9)
H18A0.15940.89750.24690.078*
H18B0.02880.83140.26690.078*
C80.7964 (4)0.3284 (3)0.50488 (13)0.0752 (10)
H8A0.90860.31260.48670.113*
H8B0.79050.26310.53300.113*
H8C0.79540.42360.51780.113*
C170.4527 (5)0.6764 (4)0.23138 (14)0.1018 (13)
H17A0.39870.73410.20540.153*
H17B0.58560.67900.22740.153*
H17C0.41030.58050.22800.153*
C190.0808 (5)0.9695 (3)0.31823 (14)0.0801 (11)
H19A0.01461.05000.30560.120*
H19B0.01540.93160.34780.120*
H19C0.20310.99810.32760.120*
C10.7411 (5)0.3221 (3)0.44663 (14)0.0798 (11)
H1A0.72060.32570.41010.120*
H1B0.62960.34960.46330.120*
H1C0.83990.38570.45650.120*
H10.388 (5)0.462 (3)0.3860 (14)0.114 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0442 (12)0.0605 (14)0.0867 (17)0.0032 (10)0.0064 (11)0.0111 (12)
N10.0546 (14)0.0542 (15)0.0494 (14)0.0062 (11)0.0060 (12)0.0042 (11)
O30.0689 (14)0.0558 (13)0.0934 (17)0.0147 (11)0.0204 (13)0.0056 (11)
C130.0443 (15)0.0474 (16)0.0449 (16)0.0009 (12)0.0014 (13)0.0003 (12)
C140.0436 (15)0.0456 (16)0.0580 (17)0.0044 (12)0.0028 (13)0.0070 (13)
O20.0654 (13)0.0550 (13)0.0735 (15)0.0015 (10)0.0157 (12)0.0042 (10)
C120.0437 (15)0.0492 (17)0.0631 (19)0.0033 (13)0.0024 (14)0.0031 (14)
C100.0467 (15)0.0437 (15)0.0470 (16)0.0012 (12)0.0017 (13)0.0017 (12)
N20.0472 (13)0.0534 (15)0.0654 (16)0.0001 (11)0.0068 (12)0.0108 (12)
C150.0406 (15)0.0517 (17)0.0486 (16)0.0010 (13)0.0019 (12)0.0009 (13)
C110.0457 (15)0.0483 (16)0.0568 (18)0.0046 (13)0.0029 (14)0.0003 (13)
C90.0490 (16)0.0515 (17)0.0509 (17)0.0007 (13)0.0031 (14)0.0018 (13)
C70.0530 (17)0.0609 (19)0.0510 (18)0.0062 (15)0.0087 (14)0.0018 (14)
C50.0474 (16)0.0502 (17)0.0493 (17)0.0055 (13)0.0031 (13)0.0036 (13)
C160.0574 (19)0.0621 (19)0.068 (2)0.0029 (15)0.0073 (16)0.0068 (16)
C20.0499 (17)0.0593 (19)0.0557 (18)0.0098 (14)0.0001 (14)0.0012 (14)
C40.0554 (18)0.0647 (19)0.0470 (17)0.0034 (15)0.0088 (14)0.0001 (14)
C60.0524 (16)0.0502 (17)0.0487 (17)0.0023 (14)0.0002 (14)0.0012 (13)
C30.0610 (18)0.0526 (17)0.0556 (18)0.0064 (15)0.0049 (15)0.0051 (14)
C180.065 (2)0.0584 (19)0.072 (2)0.0051 (16)0.0003 (17)0.0217 (16)
C80.073 (2)0.072 (2)0.080 (2)0.0082 (18)0.021 (2)0.0065 (18)
C170.102 (3)0.118 (3)0.084 (3)0.020 (3)0.024 (2)0.003 (2)
C190.077 (2)0.060 (2)0.102 (3)0.0080 (18)0.012 (2)0.0009 (19)
C10.078 (2)0.060 (2)0.101 (3)0.0154 (18)0.006 (2)0.0072 (19)
Geometric parameters (Å, º) top
O1—C151.352 (3)C5—C41.381 (4)
O1—H10.843 (18)C5—C61.401 (3)
N1—C91.302 (3)C16—C171.507 (4)
N1—C51.418 (3)C16—H16A0.9700
O3—C21.371 (3)C16—H16B0.9700
O3—C11.420 (3)C2—C31.376 (4)
C13—N21.372 (3)C4—C31.390 (3)
C13—C141.403 (3)C4—H40.9300
C13—C121.423 (3)C3—H30.9300
C14—C151.383 (3)C18—C191.511 (4)
C14—H140.9300C18—H18A0.9700
O2—C61.365 (3)C18—H18B0.9700
O2—C81.424 (3)C8—H8A0.9600
C12—C111.362 (3)C8—H8B0.9600
C12—H120.9300C8—H8C0.9600
C10—C111.410 (3)C17—H17A0.9600
C10—C151.410 (3)C17—H17B0.9600
C10—C91.430 (3)C17—H17C0.9600
N2—C181.456 (3)C19—H19A0.9600
N2—C161.465 (3)C19—H19B0.9600
C11—H110.9300C19—H19C0.9600
C9—H90.9300C1—H1A0.9600
C7—C61.384 (3)C1—H1B0.9600
C7—C21.389 (4)C1—H1C0.9600
C7—H70.9300
C15—O1—H1105 (3)O3—C2—C7114.9 (2)
C9—N1—C5121.7 (2)C3—C2—C7120.5 (3)
C2—O3—C1117.1 (2)C5—C4—C3122.3 (3)
N2—C13—C14121.2 (2)C5—C4—H4118.8
N2—C13—C12121.5 (2)C3—C4—H4118.8
C14—C13—C12117.3 (2)O2—C6—C7124.2 (2)
C15—C14—C13121.5 (2)O2—C6—C5115.8 (2)
C15—C14—H14119.2C7—C6—C5119.9 (2)
C13—C14—H14119.2C2—C3—C4118.6 (3)
C6—O2—C8117.7 (2)C2—C3—H3120.7
C11—C12—C13121.0 (2)C4—C3—H3120.7
C11—C12—H12119.5N2—C18—C19113.1 (3)
C13—C12—H12119.5N2—C18—H18A109.0
C11—C10—C15117.1 (2)C19—C18—H18A109.0
C11—C10—C9121.2 (2)N2—C18—H18B109.0
C15—C10—C9121.6 (2)C19—C18—H18B109.0
C13—N2—C18122.2 (2)H18A—C18—H18B107.8
C13—N2—C16121.9 (2)O2—C8—H8A109.5
C18—N2—C16115.8 (2)O2—C8—H8B109.5
O1—C15—C14118.2 (2)H8A—C8—H8B109.5
O1—C15—C10120.8 (2)O2—C8—H8C109.5
C14—C15—C10121.0 (2)H8A—C8—H8C109.5
C12—C11—C10122.1 (3)H8B—C8—H8C109.5
C12—C11—H11119.0C16—C17—H17A109.5
C10—C11—H11119.0C16—C17—H17B109.5
N1—C9—C10121.6 (3)H17A—C17—H17B109.5
N1—C9—H9119.2C16—C17—H17C109.5
C10—C9—H9119.2H17A—C17—H17C109.5
C6—C7—C2120.4 (3)H17B—C17—H17C109.5
C6—C7—H7119.8C18—C19—H19A109.5
C2—C7—H7119.8C18—C19—H19B109.5
C4—C5—C6118.3 (2)H19A—C19—H19B109.5
C4—C5—N1123.2 (2)C18—C19—H19C109.5
C6—C5—N1118.3 (2)H19A—C19—H19C109.5
N2—C16—C17112.9 (3)H19B—C19—H19C109.5
N2—C16—H16A109.0O3—C1—H1A109.5
C17—C16—H16A109.0O3—C1—H1B109.5
N2—C16—H16B109.0H1A—C1—H1B109.5
C17—C16—H16B109.0O3—C1—H1C109.5
H16A—C16—H16B107.8H1A—C1—H1C109.5
O3—C2—C3124.6 (3)H1B—C1—H1C109.5
N2—C13—C14—C15179.7 (3)C13—N2—C16—C1795.4 (3)
C12—C13—C14—C150.4 (4)C18—N2—C16—C1788.7 (3)
N2—C13—C12—C11179.3 (3)C1—O3—C2—C35.4 (5)
C14—C13—C12—C110.8 (4)C1—O3—C2—C7175.1 (3)
C14—C13—N2—C185.4 (4)C6—C7—C2—O3179.7 (3)
C12—C13—N2—C18174.5 (3)C6—C7—C2—C30.1 (5)
C14—C13—N2—C16170.3 (3)C6—C5—C4—C31.3 (4)
C12—C13—N2—C169.8 (4)N1—C5—C4—C3176.3 (3)
C13—C14—C15—O1179.5 (2)C8—O2—C6—C71.1 (4)
C13—C14—C15—C100.4 (4)C8—O2—C6—C5178.9 (3)
C11—C10—C15—O1179.1 (3)C2—C7—C6—O2177.3 (3)
C9—C10—C15—O14.5 (4)C2—C7—C6—C50.4 (5)
C11—C10—C15—C140.8 (4)C4—C5—C6—O2178.1 (3)
C9—C10—C15—C14175.6 (3)N1—C5—C6—O26.6 (4)
C13—C12—C11—C101.2 (4)C4—C5—C6—C70.2 (4)
C15—C10—C11—C121.2 (4)N1—C5—C6—C7175.5 (3)
C9—C10—C11—C12175.2 (3)O3—C2—C3—C4178.6 (3)
C5—N1—C9—C10169.8 (2)C7—C2—C3—C40.9 (5)
C11—C10—C9—N1176.0 (3)C5—C4—C3—C21.6 (5)
C15—C10—C9—N10.2 (4)C13—N2—C18—C1986.8 (3)
C9—N1—C5—C433.2 (4)C16—N2—C18—C1989.1 (3)
C9—N1—C5—C6151.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (2)1.79 (2)2.575 (3)153 (4)
C16—H16B···O1i0.972.533.491 (4)172
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H24N2O3
Mr328.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.2028 (3), 9.4423 (5), 26.050 (2)
β (°) 91.742 (7)
V3)1770.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.15 × 0.10
Data collection
DiffractometerOxford Diffraction SuperNova (single source at offset) Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.933, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8031, 4165, 1959
Rint0.036
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.164, 1.06
No. of reflections4165
No. of parameters226
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.843 (18)1.79 (2)2.575 (3)153 (4)
C16—H16B···O1i0.972.533.491 (4)172.0
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Giresun University, Turkey, for the use of the diffractometer.

References

First citationAmimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. C, 6, 207–226.  Web of Science CrossRef CAS Google Scholar
First citationAsiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHa, K. (2011). Acta Cryst. E67, o518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSchmidt, G. M. J. & Cohen, M. D. (1964). J. Chem. Soc. pp. 1996–2000.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds