organic compounds
2-Amino-3-carboxypyridinium perchlorate
aLaboratoire de Chimie Appliquée et Technologie des Matériaux (LCATM), Université d'Oum El Bouaghi 04000, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr
The 6H7N2O2+·ClO4−. The cations and anions form separate layers alternating along the c axis, which are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds into a two-dimensional network parallel to (100). Further C—H⋯O contacts connect these layers, forming a three-dimensional network, in which R44(20) rings and C22(11) infinite chains can be identified.
includes two crystallographically independent equivalents of the title salt, CRelated literature
For structural studies of hybrid compounds of 2-aminonicotinic acid, see: Akriche & Rzaigui (2007); Berrah et al. (2011a,b). For related perchlorate compounds, see: Toumi Akriche et al. (2010); Bendjeddou et al. (2003). For hydrogen-bond motifs, see: Etter et al. (1990); Grell et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812018922/ld2056sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812018922/ld2056Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812018922/ld2056Isup3.cml
Colourless crystals of compound (I) were grown by slow evaporation of an aquoes solution of 2-amino-pyridine-3-carboxylic acid and perchloric acid in an 1:1 stoichiometric ratio.
All H atoms were located in a difference Fourier maps but introduced at calculated positions and treated as riding on their parent atoms (C,N or O) with C—H = 0.93 Å,N—H = 0.88 Å and O—H = 0.82 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H) = 1.5 Ueq(O).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. asymmetric unit of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. A view parallel to (010) showing cationic and anionic layers alternation along the c axis. Hydrogen bonds are shown as dashed lines. | |
Fig. 3. A view of the two-dimensional network showing how dimers are stacked within cationic layers. Hydrogen bonds are shown as dashed lines. |
C6H7N2O2+·ClO4− | F(000) = 976 |
Mr = 238.59 | Dx = 1.74 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 3823 reflections |
a = 17.3573 (12) Å | θ = 2.5–27.4° |
b = 5.0800 (4) Å | µ = 0.43 mm−1 |
c = 21.6293 (17) Å | T = 150 K |
β = 107.239 (2)° | Stick, colourless |
V = 1821.5 (2) Å3 | 0.48 × 0.17 × 0.08 mm |
Z = 8 |
Bruker APEXII diffractometer | 3305 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −22→12 |
Tmin = 0.847, Tmax = 0.966 | k = −6→6 |
13822 measured reflections | l = −27→28 |
4142 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0377P)2 + 1.7007P] where P = (Fo2 + 2Fc2)/3 |
4142 reflections | (Δ/σ)max < 0.001 |
273 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
C6H7N2O2+·ClO4− | V = 1821.5 (2) Å3 |
Mr = 238.59 | Z = 8 |
Monoclinic, P2/c | Mo Kα radiation |
a = 17.3573 (12) Å | µ = 0.43 mm−1 |
b = 5.0800 (4) Å | T = 150 K |
c = 21.6293 (17) Å | 0.48 × 0.17 × 0.08 mm |
β = 107.239 (2)° |
Bruker APEXII diffractometer | 4142 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 3305 reflections with I > 2σ(I) |
Tmin = 0.847, Tmax = 0.966 | Rint = 0.044 |
13822 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.34 e Å−3 |
4142 reflections | Δρmin = −0.40 e Å−3 |
273 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl2 | 0.12456 (3) | −0.07231 (11) | −0.11690 (3) | 0.01685 (14) | |
Cl1 | 0.37576 (3) | 0.54151 (11) | 0.35382 (3) | 0.01875 (14) | |
O22 | 0.19785 (10) | −0.2141 (4) | −0.11310 (8) | 0.0251 (4) | |
O1B | 0.07544 (11) | 0.1702 (4) | 0.02704 (8) | 0.0275 (4) | |
H1B | 0.0786 | 0.0731 | −0.0024 | 0.041* | |
O42 | 0.09107 (12) | −0.1755 (4) | −0.06809 (9) | 0.0330 (5) | |
O21 | 0.42254 (13) | 0.6540 (4) | 0.31530 (9) | 0.0369 (5) | |
O31 | 0.35147 (11) | 0.2777 (3) | 0.33137 (9) | 0.0300 (4) | |
O41 | 0.30450 (11) | 0.6993 (4) | 0.34659 (8) | 0.0264 (4) | |
O2B | 0.18407 (11) | −0.0563 (4) | 0.08267 (8) | 0.0282 (4) | |
O32 | 0.14319 (11) | 0.2034 (3) | −0.10376 (9) | 0.0269 (4) | |
O2A | 0.31277 (11) | 0.5865 (4) | 0.15454 (8) | 0.0287 (4) | |
O11 | 0.42313 (11) | 0.5324 (4) | 0.42050 (8) | 0.0269 (4) | |
O1A | 0.42090 (11) | 0.3499 (4) | 0.20638 (8) | 0.0323 (5) | |
H1A | 0.4172 | 0.4352 | 0.2376 | 0.049* | |
O12 | 0.06824 (11) | −0.1019 (4) | −0.17999 (8) | 0.0274 (4) | |
N2A | 0.31083 (12) | 0.1811 (4) | −0.01596 (9) | 0.0189 (4) | |
H2A | 0.2759 | 0.2114 | −0.0528 | 0.023* | |
N2B | 0.18027 (12) | 0.3604 (4) | 0.24939 (9) | 0.0198 (4) | |
H2B | 0.2137 | 0.3306 | 0.2869 | 0.024* | |
C3B | 0.18684 (14) | 0.2122 (4) | 0.19911 (11) | 0.0165 (5) | |
N1B | 0.24371 (13) | 0.0283 (4) | 0.21094 (9) | 0.0225 (5) | |
H11B | 0.2751 | 0.0061 | 0.2496 | 0.027* | |
H12B | 0.2492 | −0.0685 | 0.1799 | 0.027* | |
C2B | 0.13013 (14) | 0.2659 (4) | 0.13757 (11) | 0.0156 (5) | |
C2A | 0.36459 (14) | 0.2707 (5) | 0.09571 (11) | 0.0166 (5) | |
N1A | 0.24775 (12) | 0.5022 (4) | 0.02580 (9) | 0.0204 (4) | |
H11A | 0.2145 | 0.5237 | −0.0122 | 0.025* | |
H12A | 0.2432 | 0.5962 | 0.0576 | 0.025* | |
C3A | 0.30586 (14) | 0.3245 (4) | 0.03538 (11) | 0.0160 (5) | |
C5A | 0.42317 (15) | −0.0621 (5) | 0.04338 (12) | 0.0239 (5) | |
H5A | 0.4618 | −0.1915 | 0.0457 | 0.029* | |
C6A | 0.42192 (15) | 0.0799 (5) | 0.09851 (12) | 0.0213 (5) | |
H6A | 0.4605 | 0.0447 | 0.1378 | 0.026* | |
C4A | 0.36681 (15) | −0.0065 (5) | −0.01335 (12) | 0.0223 (5) | |
H4A | 0.3666 | −0.0978 | −0.0507 | 0.027* | |
C6B | 0.07394 (14) | 0.4623 (5) | 0.13287 (11) | 0.0200 (5) | |
H6B | 0.0373 | 0.4991 | 0.0927 | 0.024* | |
C1A | 0.36249 (15) | 0.4192 (5) | 0.15434 (11) | 0.0199 (5) | |
C1B | 0.13334 (15) | 0.1106 (5) | 0.08066 (11) | 0.0183 (5) | |
C4B | 0.12476 (15) | 0.5518 (5) | 0.24461 (12) | 0.0229 (5) | |
H4B | 0.1238 | 0.6456 | 0.2813 | 0.027* | |
C5B | 0.07058 (15) | 0.6081 (5) | 0.18698 (12) | 0.0222 (5) | |
H5B | 0.0322 | 0.7396 | 0.1833 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl2 | 0.0180 (3) | 0.0159 (3) | 0.0166 (3) | 0.0000 (2) | 0.0052 (2) | −0.0011 (2) |
Cl1 | 0.0213 (3) | 0.0159 (3) | 0.0199 (3) | −0.0054 (2) | 0.0074 (2) | −0.0038 (2) |
O22 | 0.0216 (9) | 0.0260 (10) | 0.0251 (9) | 0.0067 (7) | 0.0028 (7) | −0.0018 (7) |
O1B | 0.0229 (10) | 0.0384 (11) | 0.0194 (9) | 0.0070 (8) | 0.0036 (7) | −0.0085 (8) |
O42 | 0.0463 (12) | 0.0321 (11) | 0.0289 (10) | −0.0153 (9) | 0.0242 (9) | −0.0079 (8) |
O21 | 0.0472 (13) | 0.0380 (12) | 0.0356 (11) | −0.0184 (10) | 0.0275 (10) | −0.0084 (9) |
O31 | 0.0327 (11) | 0.0164 (9) | 0.0365 (11) | −0.0060 (8) | 0.0034 (9) | −0.0079 (8) |
O41 | 0.0268 (10) | 0.0233 (9) | 0.0271 (9) | 0.0037 (8) | 0.0050 (8) | −0.0032 (8) |
O2B | 0.0348 (11) | 0.0259 (10) | 0.0228 (9) | 0.0121 (8) | 0.0067 (8) | −0.0040 (8) |
O32 | 0.0322 (11) | 0.0143 (9) | 0.0295 (10) | 0.0002 (7) | 0.0019 (8) | −0.0008 (7) |
O2A | 0.0334 (11) | 0.0286 (10) | 0.0225 (9) | 0.0122 (8) | 0.0058 (8) | −0.0031 (8) |
O11 | 0.0237 (10) | 0.0305 (10) | 0.0227 (9) | −0.0036 (8) | 0.0013 (7) | −0.0032 (8) |
O1A | 0.0249 (10) | 0.0511 (13) | 0.0176 (9) | 0.0117 (9) | 0.0010 (8) | −0.0044 (9) |
O12 | 0.0232 (9) | 0.0331 (11) | 0.0214 (9) | 0.0054 (8) | −0.0005 (7) | −0.0064 (8) |
N2A | 0.0215 (11) | 0.0188 (10) | 0.0156 (9) | 0.0020 (8) | 0.0044 (8) | 0.0008 (8) |
N2B | 0.0230 (11) | 0.0192 (10) | 0.0165 (9) | −0.0029 (8) | 0.0047 (8) | −0.0026 (8) |
C3B | 0.0185 (12) | 0.0137 (11) | 0.0182 (11) | −0.0045 (9) | 0.0071 (9) | −0.0022 (9) |
N1B | 0.0279 (12) | 0.0187 (10) | 0.0182 (10) | 0.0048 (9) | 0.0024 (8) | −0.0005 (8) |
C2B | 0.0167 (12) | 0.0127 (10) | 0.0186 (11) | −0.0040 (9) | 0.0071 (9) | −0.0013 (9) |
C2A | 0.0149 (12) | 0.0162 (11) | 0.0190 (11) | −0.0007 (9) | 0.0055 (9) | 0.0020 (9) |
N1A | 0.0227 (11) | 0.0177 (10) | 0.0178 (9) | 0.0073 (8) | 0.0012 (8) | −0.0002 (8) |
C3A | 0.0177 (12) | 0.0125 (10) | 0.0186 (11) | −0.0025 (9) | 0.0067 (9) | 0.0012 (9) |
C5A | 0.0213 (13) | 0.0204 (12) | 0.0326 (13) | 0.0071 (10) | 0.0120 (11) | 0.0006 (11) |
C6A | 0.0187 (12) | 0.0225 (12) | 0.0222 (12) | 0.0015 (10) | 0.0050 (10) | 0.0044 (10) |
C4A | 0.0267 (13) | 0.0174 (12) | 0.0260 (12) | 0.0003 (10) | 0.0127 (10) | −0.0035 (10) |
C6B | 0.0179 (12) | 0.0187 (12) | 0.0230 (11) | −0.0025 (10) | 0.0053 (9) | −0.0005 (10) |
C1A | 0.0219 (13) | 0.0201 (12) | 0.0176 (11) | −0.0015 (10) | 0.0056 (10) | 0.0014 (9) |
C1B | 0.0201 (12) | 0.0169 (12) | 0.0183 (11) | −0.0018 (10) | 0.0062 (9) | −0.0009 (9) |
C4B | 0.0279 (14) | 0.0193 (12) | 0.0251 (12) | −0.0043 (11) | 0.0135 (10) | −0.0075 (10) |
C5B | 0.0213 (13) | 0.0174 (12) | 0.0302 (13) | 0.0012 (10) | 0.0112 (11) | −0.0047 (10) |
Cl2—O12 | 1.4316 (17) | C3B—C2B | 1.428 (3) |
Cl2—O22 | 1.4427 (18) | N1B—H11B | 0.86 |
Cl2—O42 | 1.4463 (18) | N1B—H12B | 0.86 |
Cl2—O32 | 1.4466 (18) | C2B—C6B | 1.378 (3) |
Cl1—O11 | 1.4336 (17) | C2B—C1B | 1.477 (3) |
Cl1—O21 | 1.4427 (19) | C2A—C6A | 1.378 (3) |
Cl1—O41 | 1.4430 (18) | C2A—C3A | 1.424 (3) |
Cl1—O31 | 1.4451 (18) | C2A—C1A | 1.485 (3) |
O1B—C1B | 1.325 (3) | N1A—C3A | 1.324 (3) |
O1B—H1B | 0.82 | N1A—H11A | 0.86 |
O2B—C1B | 1.214 (3) | N1A—H12A | 0.86 |
O2A—C1A | 1.212 (3) | C5A—C4A | 1.353 (3) |
O1A—C1A | 1.320 (3) | C5A—C6A | 1.399 (3) |
O1A—H1A | 0.82 | C5A—H5A | 0.93 |
N2A—C4A | 1.350 (3) | C6A—H6A | 0.93 |
N2A—C3A | 1.352 (3) | C4A—H4A | 0.93 |
N2A—H2A | 0.86 | C6B—C5B | 1.401 (3) |
N2B—C4B | 1.351 (3) | C6B—H6B | 0.93 |
N2B—C3B | 1.355 (3) | C4B—C5B | 1.351 (3) |
N2B—H2B | 0.86 | C4B—H4B | 0.93 |
C3B—N1B | 1.328 (3) | C5B—H5B | 0.93 |
O12—Cl2—O22 | 110.08 (10) | C3A—C2A—C1A | 119.5 (2) |
O12—Cl2—O42 | 110.43 (12) | C3A—N1A—H11A | 120 |
O22—Cl2—O42 | 108.41 (12) | C3A—N1A—H12A | 120 |
O12—Cl2—O32 | 109.81 (11) | H11A—N1A—H12A | 120 |
O22—Cl2—O32 | 109.27 (11) | N1A—C3A—N2A | 118.0 (2) |
O42—Cl2—O32 | 108.81 (11) | N1A—C3A—C2A | 125.4 (2) |
O11—Cl1—O21 | 109.92 (11) | N2A—C3A—C2A | 116.5 (2) |
O11—Cl1—O41 | 110.16 (11) | C4A—C5A—C6A | 118.4 (2) |
O21—Cl1—O41 | 109.17 (12) | C4A—C5A—H5A | 120.8 |
O11—Cl1—O31 | 109.34 (11) | C6A—C5A—H5A | 120.8 |
O21—Cl1—O31 | 109.36 (12) | C2A—C6A—C5A | 121.2 (2) |
O41—Cl1—O31 | 108.87 (11) | C2A—C6A—H6A | 119.4 |
C1B—O1B—H1B | 109.5 | C5A—C6A—H6A | 119.4 |
C1A—O1A—H1A | 109.5 | N2A—C4A—C5A | 120.2 (2) |
C4A—N2A—C3A | 124.5 (2) | N2A—C4A—H4A | 119.9 |
C4A—N2A—H2A | 117.8 | C5A—C4A—H4A | 119.9 |
C3A—N2A—H2A | 117.8 | C2B—C6B—C5B | 121.7 (2) |
C4B—N2B—C3B | 124.5 (2) | C2B—C6B—H6B | 119.2 |
C4B—N2B—H2B | 117.8 | C5B—C6B—H6B | 119.2 |
C3B—N2B—H2B | 117.8 | O2A—C1A—O1A | 123.5 (2) |
N1B—C3B—N2B | 118.1 (2) | O2A—C1A—C2A | 123.8 (2) |
N1B—C3B—C2B | 125.6 (2) | O1A—C1A—C2A | 112.7 (2) |
N2B—C3B—C2B | 116.3 (2) | O2B—C1B—O1B | 123.0 (2) |
C3B—N1B—H11B | 120 | O2B—C1B—C2B | 123.3 (2) |
C3B—N1B—H12B | 120 | O1B—C1B—C2B | 113.6 (2) |
H11B—N1B—H12B | 120 | C5B—C4B—N2B | 120.6 (2) |
C6B—C2B—C3B | 119.0 (2) | C5B—C4B—H4B | 119.7 |
C6B—C2B—C1B | 121.7 (2) | N2B—C4B—H4B | 119.7 |
C3B—C2B—C1B | 119.3 (2) | C4B—C5B—C6B | 118.0 (2) |
C6A—C2A—C3A | 119.1 (2) | C4B—C5B—H5B | 121 |
C6A—C2A—C1A | 121.3 (2) | C6B—C5B—H5B | 121 |
C4B—N2B—C3B—N1B | −179.2 (2) | C3A—N2A—C4A—C5A | −0.1 (4) |
C4B—N2B—C3B—C2B | −0.3 (3) | C6A—C5A—C4A—N2A | −0.3 (4) |
N1B—C3B—C2B—C6B | 179.4 (2) | C3B—C2B—C6B—C5B | −0.7 (4) |
N2B—C3B—C2B—C6B | 0.7 (3) | C1B—C2B—C6B—C5B | 179.5 (2) |
N1B—C3B—C2B—C1B | −0.8 (4) | C6A—C2A—C1A—O2A | −179.1 (2) |
N2B—C3B—C2B—C1B | −179.6 (2) | C3A—C2A—C1A—O2A | 0.4 (4) |
C4A—N2A—C3A—N1A | −180.0 (2) | C6A—C2A—C1A—O1A | 1.1 (3) |
C4A—N2A—C3A—C2A | 0.2 (3) | C3A—C2A—C1A—O1A | −179.4 (2) |
C6A—C2A—C3A—N1A | −179.8 (2) | C6B—C2B—C1B—O2B | 176.9 (2) |
C1A—C2A—C3A—N1A | 0.7 (4) | C3B—C2B—C1B—O2B | −2.8 (4) |
C6A—C2A—C3A—N2A | 0.0 (3) | C6B—C2B—C1B—O1B | −3.2 (3) |
C1A—C2A—C3A—N2A | −179.6 (2) | C3B—C2B—C1B—O1B | 177.1 (2) |
C3A—C2A—C6A—C5A | −0.3 (4) | C3B—N2B—C4B—C5B | 0.0 (4) |
C1A—C2A—C6A—C5A | 179.2 (2) | N2B—C4B—C5B—C6B | 0.0 (4) |
C4A—C5A—C6A—C2A | 0.5 (4) | C2B—C6B—C5B—C4B | 0.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O21 | 0.82 | 1.99 | 2.810 (3) | 173 |
O1B—H1B···O42 | 0.82 | 1.96 | 2.779 (3) | 176 |
N2A—H2A···O32 | 0.86 | 2.24 | 2.968 (3) | 142 |
N2A—H2A···O41i | 0.86 | 2.41 | 3.004 (3) | 126 |
N2B—H2B···O31 | 0.86 | 2.31 | 3.005 (3) | 138 |
N2B—H2B···O41 | 0.86 | 2.54 | 3.057 (3) | 120 |
N2B—H2B···O22ii | 0.86 | 2.34 | 2.992 (3) | 133 |
N1A—H11A···O22iii | 0.86 | 2.50 | 3.211 (3) | 141 |
N1A—H11A···O32 | 0.86 | 2.58 | 3.231 (3) | 133 |
N1B—H11B···O31 | 0.86 | 2.32 | 3.000 (3) | 136 |
N1B—H11B···O41iv | 0.86 | 2.54 | 3.268 (3) | 143 |
N1A—H12A···O2A | 0.86 | 2.09 | 2.711 (3) | 129 |
N1A—H12A···O2Biii | 0.86 | 2.19 | 2.928 (3) | 144 |
N1B—H12B···O2Aiv | 0.86 | 2.22 | 2.971 (3) | 145 |
N1B—H12B···O2B | 0.86 | 2.07 | 2.693 (3) | 128 |
C4A—H4A···O11v | 0.93 | 2.57 | 3.312 (3) | 137 |
C4B—H4B···O32vi | 0.93 | 2.53 | 3.433 (3) | 165 |
C5A—H5A···O11vii | 0.93 | 2.37 | 3.277 (3) | 164 |
C5B—H5B···O12viii | 0.93 | 2.52 | 3.450 (3) | 177 |
C6A—H6A···O1A | 0.93 | 2.38 | 2.711 (3) | 100 |
C6B—H6B···O1B | 0.93 | 2.41 | 2.735 (3) | 100 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, −y, z+1/2; (iii) x, y+1, z; (iv) x, y−1, z; (v) x, −y, z−1/2; (vi) x, −y+1, z+1/2; (vii) −x+1, y−1, −z+1/2; (viii) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C6H7N2O2+·ClO4− |
Mr | 238.59 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 150 |
a, b, c (Å) | 17.3573 (12), 5.0800 (4), 21.6293 (17) |
β (°) | 107.239 (2) |
V (Å3) | 1821.5 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.43 |
Crystal size (mm) | 0.48 × 0.17 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.847, 0.966 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13822, 4142, 3305 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.110, 1.11 |
No. of reflections | 4142 |
No. of parameters | 273 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.40 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O21 | 0.82 | 1.99 | 2.810 (3) | 173 |
O1B—H1B···O42 | 0.82 | 1.96 | 2.779 (3) | 176 |
N2A—H2A···O32 | 0.86 | 2.24 | 2.968 (3) | 142 |
N2B—H2B···O31 | 0.86 | 2.31 | 3.005 (3) | 138 |
N2B—H2B···O22i | 0.86 | 2.34 | 2.992 (3) | 133 |
N1A—H11A···O22ii | 0.86 | 2.50 | 3.211 (3) | 141 |
N1A—H11A···O32 | 0.86 | 2.58 | 3.231 (3) | 133 |
N1B—H11B···O31 | 0.86 | 2.32 | 3.000 (3) | 136 |
N1B—H11B···O41iii | 0.86 | 2.54 | 3.268 (3) | 143 |
N1A—H12A···O2Bii | 0.86 | 2.19 | 2.928 (3) | 144 |
N1B—H12B···O2Aiii | 0.86 | 2.22 | 2.971 (3) | 145 |
C4A—H4A···O11iv | 0.93 | 2.57 | 3.312 (3) | 137 |
C4B—H4B···O32v | 0.93 | 2.53 | 3.433 (3) | 165 |
C5A—H5A···O11vi | 0.93 | 2.37 | 3.277 (3) | 164 |
C5B—H5B···O12vii | 0.93 | 2.52 | 3.450 (3) | 177 |
Symmetry codes: (i) x, −y, z+1/2; (ii) x, y+1, z; (iii) x, y−1, z; (iv) x, −y, z−1/2; (v) x, −y+1, z+1/2; (vi) −x+1, y−1, −z+1/2; (vii) −x, −y+1, −z. |
Acknowledgements
We are grateful to the LCATM laboratory, Université d'Oum El Bouaghi, Algeria, for financial support.
References
Akriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bendjeddou, L., Cherouana, A., Berrah, F. & Benali-Cherif, N. (2003). Acta Cryst. E59, o574–o576. Web of Science CSD CrossRef IUCr Journals Google Scholar
Berrah, F., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o2057–o2058. Web of Science CSD CrossRef IUCr Journals Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o953–o954. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst. E66, o300. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a continuation of the systematic studies on synthesis and structural characterization of the products of derivatives of nicotinic acid with inorganic acids, and as an attempt to establish a relationship between the nature of the anion and the resulting hydrogen-bonding pattern, we report here the crystal structure of the title compound obtained by reaction between 2-aminonicotinic and perchloric acids. Related compounds obtained with dihydrogen phosphate, sulfate and nitrate anions, have been reported previously (Akriche & Rzaigui 2007; Berrah et al. 2011a,b).
The dimers of 2-aminonicotinium cations are formed via N—H···O h-bonds (NH of the amine group with the O of the carboxylic group). Similar dimers have been also observed in the structures with dihydrogen phosphate and sulfate anions (Akriche & Rzaigui 2007; Berrah et al. 2011a), while cations in the nitrate structure adopt a different configuration (Berrah et al. 2011b).
In the crystal structure, cationic and anionic layers alternate along the c axis and are linked by intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds (see table 1) resulting in a two-dimensional network parallel to (100) (Fig.2). Further C—H···O contacts connect these layers, forming a three-dimensional network in which R44(20) rings and C22(11) infinite chains are generated (Etter et al. 1990; Grell et al. 1999).