organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1601-o1602

2-Amino-3-carb­­oxy­pyridinium perchlorate

aLaboratoire de Chimie Appliquée et Technologie des Matériaux (LCATM), Université d'Oum El Bouaghi 04000, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr

(Received 11 April 2012; accepted 26 April 2012; online 2 May 2012)

The asymmetric unit includes two crystallographically independent equivalents of the title salt, C6H7N2O2+·ClO4. The cations and anions form separate layers alternating along the c axis, which are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds into a two-dimensional network parallel to (100). Further C—H⋯O contacts connect these layers, forming a three-dimensional network, in which R44(20) rings and C22(11) infinite chains can be identified.

Related literature

For structural studies of hybrid compounds of 2-amino­nicotinic acid, see: Akriche & Rzaigui (2007[Akriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460.]); Berrah et al. (2011a[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o953-o954.],b[Berrah, F., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o2057-o2058.]). For related perchlorate compounds, see: Toumi Akriche et al. (2010[Toumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst. E66, o300.]); Bendjeddou et al. (2003[Bendjeddou, L., Cherouana, A., Berrah, F. & Benali-Cherif, N. (2003). Acta Cryst. E59, o574-o576.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Grell et al. (1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N2O2+·ClO4

  • Mr = 238.59

  • Monoclinic, P 2/c

  • a = 17.3573 (12) Å

  • b = 5.0800 (4) Å

  • c = 21.6293 (17) Å

  • β = 107.239 (2)°

  • V = 1821.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 150 K

  • 0.48 × 0.17 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.847, Tmax = 0.966

  • 13822 measured reflections

  • 4142 independent reflections

  • 3305 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.110

  • S = 1.11

  • 4142 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O21 0.82 1.99 2.810 (3) 173
O1B—H1B⋯O42 0.82 1.96 2.779 (3) 176
N2A—H2A⋯O32 0.86 2.24 2.968 (3) 142
N2B—H2B⋯O31 0.86 2.31 3.005 (3) 138
N2B—H2B⋯O22i 0.86 2.34 2.992 (3) 133
N1A—H11A⋯O22ii 0.86 2.50 3.211 (3) 141
N1A—H11A⋯O32 0.86 2.58 3.231 (3) 133
N1B—H11B⋯O31 0.86 2.32 3.000 (3) 136
N1B—H11B⋯O41iii 0.86 2.54 3.268 (3) 143
N1A—H12A⋯O2Bii 0.86 2.19 2.928 (3) 144
N1B—H12B⋯O2Aiii 0.86 2.22 2.971 (3) 145
C4A—H4A⋯O11iv 0.93 2.57 3.312 (3) 137
C4B—H4B⋯O32v 0.93 2.53 3.433 (3) 165
C5A—H5A⋯O11vi 0.93 2.37 3.277 (3) 164
C5B—H5B⋯O12vii 0.93 2.52 3.450 (3) 177
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) x, y-1, z; (iv) [x, -y, z-{\script{1\over 2}}]; (v) [x, -y+1, z+{\script{1\over 2}}]; (vi) [-x+1, y-1, -z+{\script{1\over 2}}]; (vii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a continuation of the systematic studies on synthesis and structural characterization of the products of derivatives of nicotinic acid with inorganic acids, and as an attempt to establish a relationship between the nature of the anion and the resulting hydrogen-bonding pattern, we report here the crystal structure of the title compound obtained by reaction between 2-aminonicotinic and perchloric acids. Related compounds obtained with dihydrogen phosphate, sulfate and nitrate anions, have been reported previously (Akriche & Rzaigui 2007; Berrah et al. 2011a,b).

The dimers of 2-aminonicotinium cations are formed via N—H···O h-bonds (NH of the amine group with the O of the carboxylic group). Similar dimers have been also observed in the structures with dihydrogen phosphate and sulfate anions (Akriche & Rzaigui 2007; Berrah et al. 2011a), while cations in the nitrate structure adopt a different configuration (Berrah et al. 2011b).

In the crystal structure, cationic and anionic layers alternate along the c axis and are linked by intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds (see table 1) resulting in a two-dimensional network parallel to (100) (Fig.2). Further C—H···O contacts connect these layers, forming a three-dimensional network in which R44(20) rings and C22(11) infinite chains are generated (Etter et al. 1990; Grell et al. 1999).

Related literature top

For structural studies of hybrid compounds of 2-aminonicotinic acid, see: Akriche & Rzaigui (2007); Berrah et al. (2011a,b). For related perchlorate compounds, see: Toumi Akriche et al. (2010); Bendjeddou et al. (2003). For hydrogen-bond motifs, see: Etter et al. (1990); Grell et al. (1999).

Experimental top

Colourless crystals of compound (I) were grown by slow evaporation of an aquoes solution of 2-amino-pyridine-3-carboxylic acid and perchloric acid in an 1:1 stoichiometric ratio.

Refinement top

All H atoms were located in a difference Fourier maps but introduced at calculated positions and treated as riding on their parent atoms (C,N or O) with C—H = 0.93 Å,N—H = 0.88 Å and O—H = 0.82 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. asymmetric unit of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view parallel to (010) showing cationic and anionic layers alternation along the c axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A view of the two-dimensional network showing how dimers are stacked within cationic layers. Hydrogen bonds are shown as dashed lines.
2-Amino-3-carboxypyridinium perchlorate top
Crystal data top
C6H7N2O2+·ClO4F(000) = 976
Mr = 238.59Dx = 1.74 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 3823 reflections
a = 17.3573 (12) Åθ = 2.5–27.4°
b = 5.0800 (4) ŵ = 0.43 mm1
c = 21.6293 (17) ÅT = 150 K
β = 107.239 (2)°Stick, colourless
V = 1821.5 (2) Å30.48 × 0.17 × 0.08 mm
Z = 8
Data collection top
Bruker APEXII
diffractometer
3305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 2212
Tmin = 0.847, Tmax = 0.966k = 66
13822 measured reflectionsl = 2728
4142 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0377P)2 + 1.7007P]
where P = (Fo2 + 2Fc2)/3
4142 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C6H7N2O2+·ClO4V = 1821.5 (2) Å3
Mr = 238.59Z = 8
Monoclinic, P2/cMo Kα radiation
a = 17.3573 (12) ŵ = 0.43 mm1
b = 5.0800 (4) ÅT = 150 K
c = 21.6293 (17) Å0.48 × 0.17 × 0.08 mm
β = 107.239 (2)°
Data collection top
Bruker APEXII
diffractometer
4142 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3305 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.966Rint = 0.044
13822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.11Δρmax = 0.34 e Å3
4142 reflectionsΔρmin = 0.40 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.12456 (3)0.07231 (11)0.11690 (3)0.01685 (14)
Cl10.37576 (3)0.54151 (11)0.35382 (3)0.01875 (14)
O220.19785 (10)0.2141 (4)0.11310 (8)0.0251 (4)
O1B0.07544 (11)0.1702 (4)0.02704 (8)0.0275 (4)
H1B0.07860.07310.00240.041*
O420.09107 (12)0.1755 (4)0.06809 (9)0.0330 (5)
O210.42254 (13)0.6540 (4)0.31530 (9)0.0369 (5)
O310.35147 (11)0.2777 (3)0.33137 (9)0.0300 (4)
O410.30450 (11)0.6993 (4)0.34659 (8)0.0264 (4)
O2B0.18407 (11)0.0563 (4)0.08267 (8)0.0282 (4)
O320.14319 (11)0.2034 (3)0.10376 (9)0.0269 (4)
O2A0.31277 (11)0.5865 (4)0.15454 (8)0.0287 (4)
O110.42313 (11)0.5324 (4)0.42050 (8)0.0269 (4)
O1A0.42090 (11)0.3499 (4)0.20638 (8)0.0323 (5)
H1A0.41720.43520.23760.049*
O120.06824 (11)0.1019 (4)0.17999 (8)0.0274 (4)
N2A0.31083 (12)0.1811 (4)0.01596 (9)0.0189 (4)
H2A0.27590.21140.05280.023*
N2B0.18027 (12)0.3604 (4)0.24939 (9)0.0198 (4)
H2B0.21370.33060.28690.024*
C3B0.18684 (14)0.2122 (4)0.19911 (11)0.0165 (5)
N1B0.24371 (13)0.0283 (4)0.21094 (9)0.0225 (5)
H11B0.27510.00610.24960.027*
H12B0.24920.06850.17990.027*
C2B0.13013 (14)0.2659 (4)0.13757 (11)0.0156 (5)
C2A0.36459 (14)0.2707 (5)0.09571 (11)0.0166 (5)
N1A0.24775 (12)0.5022 (4)0.02580 (9)0.0204 (4)
H11A0.21450.52370.01220.025*
H12A0.24320.59620.05760.025*
C3A0.30586 (14)0.3245 (4)0.03538 (11)0.0160 (5)
C5A0.42317 (15)0.0621 (5)0.04338 (12)0.0239 (5)
H5A0.46180.19150.04570.029*
C6A0.42192 (15)0.0799 (5)0.09851 (12)0.0213 (5)
H6A0.46050.04470.13780.026*
C4A0.36681 (15)0.0065 (5)0.01335 (12)0.0223 (5)
H4A0.36660.09780.05070.027*
C6B0.07394 (14)0.4623 (5)0.13287 (11)0.0200 (5)
H6B0.03730.49910.09270.024*
C1A0.36249 (15)0.4192 (5)0.15434 (11)0.0199 (5)
C1B0.13334 (15)0.1106 (5)0.08066 (11)0.0183 (5)
C4B0.12476 (15)0.5518 (5)0.24461 (12)0.0229 (5)
H4B0.12380.64560.28130.027*
C5B0.07058 (15)0.6081 (5)0.18698 (12)0.0222 (5)
H5B0.03220.73960.18330.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0180 (3)0.0159 (3)0.0166 (3)0.0000 (2)0.0052 (2)0.0011 (2)
Cl10.0213 (3)0.0159 (3)0.0199 (3)0.0054 (2)0.0074 (2)0.0038 (2)
O220.0216 (9)0.0260 (10)0.0251 (9)0.0067 (7)0.0028 (7)0.0018 (7)
O1B0.0229 (10)0.0384 (11)0.0194 (9)0.0070 (8)0.0036 (7)0.0085 (8)
O420.0463 (12)0.0321 (11)0.0289 (10)0.0153 (9)0.0242 (9)0.0079 (8)
O210.0472 (13)0.0380 (12)0.0356 (11)0.0184 (10)0.0275 (10)0.0084 (9)
O310.0327 (11)0.0164 (9)0.0365 (11)0.0060 (8)0.0034 (9)0.0079 (8)
O410.0268 (10)0.0233 (9)0.0271 (9)0.0037 (8)0.0050 (8)0.0032 (8)
O2B0.0348 (11)0.0259 (10)0.0228 (9)0.0121 (8)0.0067 (8)0.0040 (8)
O320.0322 (11)0.0143 (9)0.0295 (10)0.0002 (7)0.0019 (8)0.0008 (7)
O2A0.0334 (11)0.0286 (10)0.0225 (9)0.0122 (8)0.0058 (8)0.0031 (8)
O110.0237 (10)0.0305 (10)0.0227 (9)0.0036 (8)0.0013 (7)0.0032 (8)
O1A0.0249 (10)0.0511 (13)0.0176 (9)0.0117 (9)0.0010 (8)0.0044 (9)
O120.0232 (9)0.0331 (11)0.0214 (9)0.0054 (8)0.0005 (7)0.0064 (8)
N2A0.0215 (11)0.0188 (10)0.0156 (9)0.0020 (8)0.0044 (8)0.0008 (8)
N2B0.0230 (11)0.0192 (10)0.0165 (9)0.0029 (8)0.0047 (8)0.0026 (8)
C3B0.0185 (12)0.0137 (11)0.0182 (11)0.0045 (9)0.0071 (9)0.0022 (9)
N1B0.0279 (12)0.0187 (10)0.0182 (10)0.0048 (9)0.0024 (8)0.0005 (8)
C2B0.0167 (12)0.0127 (10)0.0186 (11)0.0040 (9)0.0071 (9)0.0013 (9)
C2A0.0149 (12)0.0162 (11)0.0190 (11)0.0007 (9)0.0055 (9)0.0020 (9)
N1A0.0227 (11)0.0177 (10)0.0178 (9)0.0073 (8)0.0012 (8)0.0002 (8)
C3A0.0177 (12)0.0125 (10)0.0186 (11)0.0025 (9)0.0067 (9)0.0012 (9)
C5A0.0213 (13)0.0204 (12)0.0326 (13)0.0071 (10)0.0120 (11)0.0006 (11)
C6A0.0187 (12)0.0225 (12)0.0222 (12)0.0015 (10)0.0050 (10)0.0044 (10)
C4A0.0267 (13)0.0174 (12)0.0260 (12)0.0003 (10)0.0127 (10)0.0035 (10)
C6B0.0179 (12)0.0187 (12)0.0230 (11)0.0025 (10)0.0053 (9)0.0005 (10)
C1A0.0219 (13)0.0201 (12)0.0176 (11)0.0015 (10)0.0056 (10)0.0014 (9)
C1B0.0201 (12)0.0169 (12)0.0183 (11)0.0018 (10)0.0062 (9)0.0009 (9)
C4B0.0279 (14)0.0193 (12)0.0251 (12)0.0043 (11)0.0135 (10)0.0075 (10)
C5B0.0213 (13)0.0174 (12)0.0302 (13)0.0012 (10)0.0112 (11)0.0047 (10)
Geometric parameters (Å, º) top
Cl2—O121.4316 (17)C3B—C2B1.428 (3)
Cl2—O221.4427 (18)N1B—H11B0.86
Cl2—O421.4463 (18)N1B—H12B0.86
Cl2—O321.4466 (18)C2B—C6B1.378 (3)
Cl1—O111.4336 (17)C2B—C1B1.477 (3)
Cl1—O211.4427 (19)C2A—C6A1.378 (3)
Cl1—O411.4430 (18)C2A—C3A1.424 (3)
Cl1—O311.4451 (18)C2A—C1A1.485 (3)
O1B—C1B1.325 (3)N1A—C3A1.324 (3)
O1B—H1B0.82N1A—H11A0.86
O2B—C1B1.214 (3)N1A—H12A0.86
O2A—C1A1.212 (3)C5A—C4A1.353 (3)
O1A—C1A1.320 (3)C5A—C6A1.399 (3)
O1A—H1A0.82C5A—H5A0.93
N2A—C4A1.350 (3)C6A—H6A0.93
N2A—C3A1.352 (3)C4A—H4A0.93
N2A—H2A0.86C6B—C5B1.401 (3)
N2B—C4B1.351 (3)C6B—H6B0.93
N2B—C3B1.355 (3)C4B—C5B1.351 (3)
N2B—H2B0.86C4B—H4B0.93
C3B—N1B1.328 (3)C5B—H5B0.93
O12—Cl2—O22110.08 (10)C3A—C2A—C1A119.5 (2)
O12—Cl2—O42110.43 (12)C3A—N1A—H11A120
O22—Cl2—O42108.41 (12)C3A—N1A—H12A120
O12—Cl2—O32109.81 (11)H11A—N1A—H12A120
O22—Cl2—O32109.27 (11)N1A—C3A—N2A118.0 (2)
O42—Cl2—O32108.81 (11)N1A—C3A—C2A125.4 (2)
O11—Cl1—O21109.92 (11)N2A—C3A—C2A116.5 (2)
O11—Cl1—O41110.16 (11)C4A—C5A—C6A118.4 (2)
O21—Cl1—O41109.17 (12)C4A—C5A—H5A120.8
O11—Cl1—O31109.34 (11)C6A—C5A—H5A120.8
O21—Cl1—O31109.36 (12)C2A—C6A—C5A121.2 (2)
O41—Cl1—O31108.87 (11)C2A—C6A—H6A119.4
C1B—O1B—H1B109.5C5A—C6A—H6A119.4
C1A—O1A—H1A109.5N2A—C4A—C5A120.2 (2)
C4A—N2A—C3A124.5 (2)N2A—C4A—H4A119.9
C4A—N2A—H2A117.8C5A—C4A—H4A119.9
C3A—N2A—H2A117.8C2B—C6B—C5B121.7 (2)
C4B—N2B—C3B124.5 (2)C2B—C6B—H6B119.2
C4B—N2B—H2B117.8C5B—C6B—H6B119.2
C3B—N2B—H2B117.8O2A—C1A—O1A123.5 (2)
N1B—C3B—N2B118.1 (2)O2A—C1A—C2A123.8 (2)
N1B—C3B—C2B125.6 (2)O1A—C1A—C2A112.7 (2)
N2B—C3B—C2B116.3 (2)O2B—C1B—O1B123.0 (2)
C3B—N1B—H11B120O2B—C1B—C2B123.3 (2)
C3B—N1B—H12B120O1B—C1B—C2B113.6 (2)
H11B—N1B—H12B120C5B—C4B—N2B120.6 (2)
C6B—C2B—C3B119.0 (2)C5B—C4B—H4B119.7
C6B—C2B—C1B121.7 (2)N2B—C4B—H4B119.7
C3B—C2B—C1B119.3 (2)C4B—C5B—C6B118.0 (2)
C6A—C2A—C3A119.1 (2)C4B—C5B—H5B121
C6A—C2A—C1A121.3 (2)C6B—C5B—H5B121
C4B—N2B—C3B—N1B179.2 (2)C3A—N2A—C4A—C5A0.1 (4)
C4B—N2B—C3B—C2B0.3 (3)C6A—C5A—C4A—N2A0.3 (4)
N1B—C3B—C2B—C6B179.4 (2)C3B—C2B—C6B—C5B0.7 (4)
N2B—C3B—C2B—C6B0.7 (3)C1B—C2B—C6B—C5B179.5 (2)
N1B—C3B—C2B—C1B0.8 (4)C6A—C2A—C1A—O2A179.1 (2)
N2B—C3B—C2B—C1B179.6 (2)C3A—C2A—C1A—O2A0.4 (4)
C4A—N2A—C3A—N1A180.0 (2)C6A—C2A—C1A—O1A1.1 (3)
C4A—N2A—C3A—C2A0.2 (3)C3A—C2A—C1A—O1A179.4 (2)
C6A—C2A—C3A—N1A179.8 (2)C6B—C2B—C1B—O2B176.9 (2)
C1A—C2A—C3A—N1A0.7 (4)C3B—C2B—C1B—O2B2.8 (4)
C6A—C2A—C3A—N2A0.0 (3)C6B—C2B—C1B—O1B3.2 (3)
C1A—C2A—C3A—N2A179.6 (2)C3B—C2B—C1B—O1B177.1 (2)
C3A—C2A—C6A—C5A0.3 (4)C3B—N2B—C4B—C5B0.0 (4)
C1A—C2A—C6A—C5A179.2 (2)N2B—C4B—C5B—C6B0.0 (4)
C4A—C5A—C6A—C2A0.5 (4)C2B—C6B—C5B—C4B0.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O210.821.992.810 (3)173
O1B—H1B···O420.821.962.779 (3)176
N2A—H2A···O320.862.242.968 (3)142
N2A—H2A···O41i0.862.413.004 (3)126
N2B—H2B···O310.862.313.005 (3)138
N2B—H2B···O410.862.543.057 (3)120
N2B—H2B···O22ii0.862.342.992 (3)133
N1A—H11A···O22iii0.862.503.211 (3)141
N1A—H11A···O320.862.583.231 (3)133
N1B—H11B···O310.862.323.000 (3)136
N1B—H11B···O41iv0.862.543.268 (3)143
N1A—H12A···O2A0.862.092.711 (3)129
N1A—H12A···O2Biii0.862.192.928 (3)144
N1B—H12B···O2Aiv0.862.222.971 (3)145
N1B—H12B···O2B0.862.072.693 (3)128
C4A—H4A···O11v0.932.573.312 (3)137
C4B—H4B···O32vi0.932.533.433 (3)165
C5A—H5A···O11vii0.932.373.277 (3)164
C5B—H5B···O12viii0.932.523.450 (3)177
C6A—H6A···O1A0.932.382.711 (3)100
C6B—H6B···O1B0.932.412.735 (3)100
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z+1/2; (iii) x, y+1, z; (iv) x, y1, z; (v) x, y, z1/2; (vi) x, y+1, z+1/2; (vii) x+1, y1, z+1/2; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H7N2O2+·ClO4
Mr238.59
Crystal system, space groupMonoclinic, P2/c
Temperature (K)150
a, b, c (Å)17.3573 (12), 5.0800 (4), 21.6293 (17)
β (°) 107.239 (2)
V3)1821.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.48 × 0.17 × 0.08
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.847, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
13822, 4142, 3305
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.110, 1.11
No. of reflections4142
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.40

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O210.821.992.810 (3)173
O1B—H1B···O420.821.962.779 (3)176
N2A—H2A···O320.862.242.968 (3)142
N2B—H2B···O310.862.313.005 (3)138
N2B—H2B···O22i0.862.342.992 (3)133
N1A—H11A···O22ii0.862.503.211 (3)141
N1A—H11A···O320.862.583.231 (3)133
N1B—H11B···O310.862.323.000 (3)136
N1B—H11B···O41iii0.862.543.268 (3)143
N1A—H12A···O2Bii0.862.192.928 (3)144
N1B—H12B···O2Aiii0.862.222.971 (3)145
C4A—H4A···O11iv0.932.573.312 (3)137
C4B—H4B···O32v0.932.533.433 (3)165
C5A—H5A···O11vi0.932.373.277 (3)164
C5B—H5B···O12vii0.932.523.450 (3)177
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y, z1/2; (v) x, y+1, z+1/2; (vi) x+1, y1, z+1/2; (vii) x, y+1, z.
 

Acknowledgements

We are grateful to the LCATM laboratory, Université d'Oum El Bouaghi, Algeria, for financial support.

References

First citationAkriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBendjeddou, L., Cherouana, A., Berrah, F. & Benali-Cherif, N. (2003). Acta Cryst. E59, o574–o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o2057–o2058.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o953–o954.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst. E66, o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1601-o1602
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds