organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1-[4-Fluoro-2-(pyrrolidin-1-yl)phen­yl]-3-phenyl-2-(1H-1,2,4-triazol-1-yl)prop-2-en-1-one

aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 5 March 2012; accepted 25 April 2012; online 5 May 2012)

In the title mol­ecule, C21H19FN4O, the triazole ring forms dihedral angles of 67.0 (1) and 59.6 (1)° with the phenyl and fluoro-substituted benzene rings, respectively. The dihedral angle between the phenyl ring and the fluoro-substituted benzene ring is 79.1 (1)°. The pyrrolidine ring is in a half-chair conformation. In the crystal, weak C—H⋯O and C—H⋯N hydrogen bonds connect mol­ecules into layers parallel to (001).

Related literature

For clinical uses of triazole compounds, see: Wang & Zhou (2011[Wang, Y. & Zhou, C.-H. (2011). Sci. Sin. Chim, 41, 1429-1456.]); Zhou & Wang (2012[Zhou, C.-H. & Wang, Y. (2012). Curr. Med. Chem. 19, 239-280.]); Chang et al. (2011[Chang, J.-J., Wang, Y., Zhang, H.-Z., Zhou, C.-H., Geng, R.-X. & Ji, Q.-G. (2011). Chem. J. Chin. Univ. 32, 1970-1985.]). For the synthesis, see: Solankee et al. (2010[Solankee, A., Kapadia, K., Ćirić, A., Soković, M., Doytchinova, I. & Geronikaki, A. (2010). Eur. J. Med. Chem. 45, 510-518.]). For related structures, see: Wang et al. (2009[Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.]); Yan et al. (2009[Yan, C.-Y., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2054.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19FN4O

  • Mr = 362.40

  • Monoclinic, P 21 /c

  • a = 11.217 (2) Å

  • b = 10.067 (2) Å

  • c = 15.793 (3) Å

  • β = 94.47 (3)°

  • V = 1778.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.30 × 0.08 × 0.03 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.973, Tmax = 0.997

  • 13447 measured reflections

  • 3403 independent reflections

  • 2341 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.118

  • S = 1.05

  • 3403 reflections

  • 321 parameters

  • 2 restraints

  • All H-atom parameters refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H12⋯O1i 0.981 (19) 2.435 (19) 3.347 (2) 154.6 (14)
C16—H23⋯N1ii 0.906 (19) 2.525 (19) 3.388 (3) 159.3 (16)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Chalcones are an important type of biologically active compounds with a diarylenone structural unit (Solankee et al., 2010). Triazole compounds have been shown to have clinical uses (Wang et al., 2011; Zhou et al., 2012; Chang et al., 2011). Our group have been contributing to the research and development of triazolyl chalcones as potential antimicrobial agents. Related structures of triazolylchalcones have alreay been reported (Wang et al., 2009; Yan et al., 2009). Herein we report the crystal structure of the title compound (I).

In the molecular structure (Fig. 1) the triazole ring [N1/N2/N3/C9/C10] forms dihedral angles of 67.0 (1) and 59.6 (1)° with the phenyl [C1-C6] and fluoro-substituted benzene [C12-C17] rings. The dihedral angles between the phenyl and fluoro-substituted bezene rings is 79.1 (1)°. The pyrrolidine ring [N4/C18-C21] is in a half-chair conformation. In the crystal, weak C—H···O and C—H···N hydrogen bonds connect molecules into layers parallel to (001).

Related literature top

For clinical uses of triazole compounds, see: Wang & Zhou (2011); Zhou & Wang (2012); Chang et al. (2011). For the synthesis, see: Solankee et al. (2010). For related structures, see: Wang et al. (2009); Yan et al. (2009).

Experimental top

The title compound (I) was synthesized according to the procedure of Solankee et al. (2010). To a stirring mixture of 1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone (2.23 g, 10 mmol) and benzaldehyde (1.06 g, 10 mmol) in ethanol (20 mL) in the presence of acetic acid (0.08 mL, 1.4 mmol) was added pyrrolidine (0.71 g, 10 mmol). The mixed solution was refluxed until the reaction came to the end (monitored by TLC). Subsequently, the solvent was removed under reduced pressure, and the residue was dissolved in dichloromethane (20 mL) and extracted with water (3 x 20 mL). The combined organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure to produce the crude product, which was purified by silica gel column chromatography eluting with petroleum ether/ethyl acetate (15/1:1/1, V/V) to afford the desired compound. A crystal suitable for X-ray analysis was grown from a solution of (I) in petroleum ether and ethyl acetate by slow evaporation at room temperature.

Refinement top

All hydrogen atoms were refined independently with isotropic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot.
(Z)-1-[4-Fluoro-2-(pyrrolidin-1-yl)phenyl]-3-phenyl- 2-(1H-1,2,4-triazol-1-yl)prop-2-en-1-one top
Crystal data top
C21H19FN4OZ = 4
Mr = 362.40F(000) = 760
Monoclinic, P21/cDx = 1.354 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.217 (2) Åθ = 2.3–27.7°
b = 10.067 (2) ŵ = 0.09 mm1
c = 15.793 (3) ÅT = 173 K
β = 94.47 (3)°Plate, yellow
V = 1778.0 (6) Å30.30 × 0.08 × 0.03 mm
Data collection top
Bruker SMART CCD
diffractometer
3403 independent reflections
Radiation source: fine-focus sealed tube2341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.973, Tmax = 0.997k = 1112
13447 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048All H-atom parameters refined
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0576P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3403 reflectionsΔρmax = 0.23 e Å3
321 parametersΔρmin = 0.19 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0075 (13)
Crystal data top
C21H19FN4OV = 1778.0 (6) Å3
Mr = 362.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.217 (2) ŵ = 0.09 mm1
b = 10.067 (2) ÅT = 173 K
c = 15.793 (3) Å0.30 × 0.08 × 0.03 mm
β = 94.47 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3403 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2341 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.997Rint = 0.058
13447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.118All H-atom parameters refined
S = 1.05Δρmax = 0.23 e Å3
3403 reflectionsΔρmin = 0.19 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.06331 (9)0.07121 (12)0.14879 (7)0.0506 (4)
N30.73647 (12)0.01216 (15)0.27605 (9)0.0291 (4)
O10.54633 (11)0.01888 (14)0.36550 (8)0.0389 (4)
C80.62355 (15)0.06156 (19)0.24237 (11)0.0289 (4)
C160.18387 (18)0.0239 (2)0.25987 (13)0.0340 (5)
C170.29747 (16)0.06191 (18)0.29689 (11)0.0290 (4)
C120.39893 (16)0.02771 (18)0.25277 (11)0.0290 (4)
N20.76525 (14)0.11901 (16)0.27051 (10)0.0378 (4)
N40.30375 (13)0.13062 (16)0.37147 (9)0.0320 (4)
C130.38080 (18)0.02722 (19)0.17088 (12)0.0336 (5)
C60.70879 (16)0.19160 (19)0.12221 (11)0.0291 (4)
C110.52247 (16)0.02255 (19)0.29265 (12)0.0306 (5)
C70.61641 (17)0.14582 (19)0.17621 (11)0.0312 (5)
C30.87605 (18)0.2952 (2)0.01763 (12)0.0369 (5)
N10.91459 (14)0.00330 (19)0.34166 (10)0.0422 (5)
C50.68283 (18)0.3030 (2)0.07170 (11)0.0324 (5)
C20.90214 (18)0.1816 (2)0.06478 (12)0.0369 (5)
C10.82010 (17)0.1292 (2)0.11679 (12)0.0330 (5)
C150.17490 (16)0.0344 (2)0.18190 (13)0.0363 (5)
C180.19584 (18)0.1755 (2)0.41003 (13)0.0387 (5)
C100.82587 (17)0.0775 (2)0.31872 (12)0.0354 (5)
C90.87283 (19)0.1214 (2)0.31018 (13)0.0406 (5)
C140.26982 (18)0.0594 (2)0.13393 (14)0.0365 (5)
C40.76540 (19)0.3541 (2)0.01975 (12)0.0365 (5)
C210.40905 (18)0.2063 (2)0.40537 (14)0.0392 (5)
C200.3575 (2)0.3164 (2)0.45719 (15)0.0446 (6)
C190.2455 (2)0.2535 (3)0.48764 (15)0.0477 (6)
H150.5351 (16)0.1852 (18)0.1620 (10)0.031 (5)*
H230.1166 (17)0.0388 (19)0.2867 (12)0.038 (6)*
H3A0.4540 (15)0.2398 (18)0.3554 (11)0.037 (5)*
H50.2578 (17)0.1005 (19)0.0796 (12)0.042 (6)*
H120.6041 (17)0.3451 (19)0.0728 (11)0.036 (5)*
H70.8209 (17)0.174 (2)0.3276 (12)0.044 (6)*
H8A0.1441 (17)0.096 (2)0.4266 (11)0.043 (6)*
H2A0.3393 (17)0.396 (2)0.4217 (12)0.044 (6)*
H180.4500 (16)0.0451 (18)0.1429 (12)0.037 (5)*
H60.9173 (18)0.205 (2)0.3160 (12)0.048 (6)*
H40.7450 (17)0.432 (2)0.0150 (12)0.041 (6)*
H140.9352 (18)0.332 (2)0.0180 (11)0.047 (6)*
H110.9777 (18)0.1339 (19)0.0632 (11)0.039 (5)*
H8B0.1457 (18)0.2321 (19)0.3678 (12)0.046 (6)*
H100.8385 (17)0.0451 (19)0.1478 (12)0.044 (6)*
H3B0.4656 (19)0.144 (2)0.4417 (13)0.057 (7)*
H1A0.1847 (19)0.322 (2)0.5052 (13)0.060 (7)*
H2B0.4184 (19)0.346 (2)0.5040 (12)0.049 (6)*
H1B0.267 (2)0.193 (2)0.5352 (14)0.068 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0285 (7)0.0611 (9)0.0608 (8)0.0060 (6)0.0043 (6)0.0095 (6)
N30.0224 (8)0.0345 (10)0.0308 (8)0.0006 (7)0.0053 (7)0.0009 (7)
O10.0283 (8)0.0522 (10)0.0372 (8)0.0007 (7)0.0075 (6)0.0078 (7)
C80.0218 (10)0.0320 (11)0.0329 (10)0.0000 (8)0.0030 (8)0.0016 (9)
C160.0223 (10)0.0366 (12)0.0439 (12)0.0043 (9)0.0078 (9)0.0025 (10)
C170.0254 (10)0.0299 (11)0.0322 (10)0.0002 (8)0.0048 (8)0.0047 (8)
C120.0236 (10)0.0302 (11)0.0337 (10)0.0025 (8)0.0058 (8)0.0019 (8)
N20.0318 (10)0.0360 (10)0.0458 (10)0.0048 (8)0.0035 (8)0.0013 (8)
N40.0231 (8)0.0370 (10)0.0367 (9)0.0018 (7)0.0083 (7)0.0001 (7)
C130.0277 (11)0.0356 (12)0.0387 (11)0.0006 (9)0.0098 (10)0.0000 (9)
C60.0257 (10)0.0330 (11)0.0288 (10)0.0029 (9)0.0035 (8)0.0026 (8)
C110.0268 (10)0.0327 (11)0.0329 (11)0.0002 (9)0.0066 (9)0.0015 (9)
C70.0235 (10)0.0355 (12)0.0355 (11)0.0020 (9)0.0070 (9)0.0044 (9)
C30.0363 (12)0.0447 (13)0.0306 (10)0.0121 (10)0.0084 (9)0.0003 (10)
N10.0268 (9)0.0613 (13)0.0389 (10)0.0053 (9)0.0053 (8)0.0048 (9)
C50.0337 (11)0.0331 (12)0.0308 (10)0.0020 (10)0.0042 (9)0.0042 (9)
C20.0249 (11)0.0521 (14)0.0341 (11)0.0002 (10)0.0048 (9)0.0006 (10)
C10.0272 (11)0.0398 (12)0.0325 (10)0.0008 (9)0.0060 (9)0.0008 (10)
C150.0219 (10)0.0383 (12)0.0480 (12)0.0018 (9)0.0028 (9)0.0021 (10)
C180.0315 (11)0.0439 (14)0.0429 (12)0.0019 (10)0.0172 (10)0.0001 (10)
C100.0260 (11)0.0468 (14)0.0340 (11)0.0029 (10)0.0068 (9)0.0041 (10)
C90.0330 (12)0.0464 (14)0.0427 (12)0.0101 (11)0.0049 (10)0.0016 (11)
C140.0358 (12)0.0367 (12)0.0371 (12)0.0028 (10)0.0032 (10)0.0045 (10)
C40.0436 (13)0.0345 (13)0.0319 (11)0.0027 (10)0.0069 (10)0.0014 (10)
C210.0328 (12)0.0448 (14)0.0409 (12)0.0070 (11)0.0086 (10)0.0048 (11)
C200.0460 (14)0.0441 (15)0.0447 (13)0.0036 (12)0.0099 (11)0.0071 (12)
C190.0506 (15)0.0478 (15)0.0471 (13)0.0030 (12)0.0187 (12)0.0058 (12)
Geometric parameters (Å, º) top
F1—C151.370 (2)C3—H140.974 (19)
N3—C101.337 (2)N1—C101.314 (3)
N3—N21.364 (2)N1—C91.358 (3)
N3—C81.425 (2)C5—C41.383 (3)
O1—C111.233 (2)C5—H120.980 (19)
C8—C71.343 (3)C2—C11.385 (3)
C8—C111.487 (2)C2—H110.976 (19)
C16—C151.361 (3)C1—H100.99 (2)
C16—C171.413 (3)C15—C141.377 (3)
C16—H230.906 (19)C18—C191.524 (3)
C17—N41.363 (2)C18—H8A1.03 (2)
C17—C121.422 (2)C18—H8B1.01 (2)
C12—C131.407 (3)C10—H70.98 (2)
C12—C111.478 (3)C9—H60.98 (2)
N2—C91.316 (3)C14—H50.954 (19)
N4—C181.468 (2)C4—H40.98 (2)
N4—C211.471 (2)C21—C201.519 (3)
C13—C141.372 (3)C21—H3A1.026 (18)
C13—H180.940 (19)C21—H3B1.03 (2)
C6—C51.394 (3)C20—C191.519 (3)
C6—C11.406 (3)C20—H2A0.99 (2)
C6—C71.467 (2)C20—H2B1.01 (2)
C7—H151.004 (18)C19—H1A1.03 (2)
C3—C41.378 (3)C19—H1B0.98 (2)
C3—C21.384 (3)
C10—N3—N2109.69 (16)C2—C1—H10119.7 (11)
C10—N3—C8128.79 (17)C6—C1—H10120.2 (11)
N2—N3—C8121.47 (15)C16—C15—F1117.59 (17)
C7—C8—N3120.55 (16)C16—C15—C14124.80 (18)
C7—C8—C11125.48 (17)F1—C15—C14117.60 (17)
N3—C8—C11113.65 (15)N4—C18—C19103.35 (17)
C15—C16—C17119.48 (19)N4—C18—H8A111.4 (10)
C15—C16—H23119.3 (12)C19—C18—H8A111.9 (10)
C17—C16—H23121.2 (12)N4—C18—H8B109.5 (11)
N4—C17—C16118.64 (16)C19—C18—H8B112.8 (11)
N4—C17—C12123.83 (16)H8A—C18—H8B107.9 (15)
C16—C17—C12117.52 (17)N1—C10—N3110.9 (2)
C13—C12—C17118.80 (17)N1—C10—H7128.5 (12)
C13—C12—C11116.20 (16)N3—C10—H7120.6 (12)
C17—C12—C11124.01 (16)N2—C9—N1115.8 (2)
C9—N2—N3101.55 (17)N2—C9—H6120.1 (12)
C17—N4—C18121.73 (16)N1—C9—H6124.1 (12)
C17—N4—C21124.29 (15)C13—C14—C15115.96 (19)
C18—N4—C21110.76 (15)C13—C14—H5123.1 (12)
C14—C13—C12123.04 (19)C15—C14—H5120.9 (12)
C14—C13—H18120.7 (11)C3—C4—C5120.1 (2)
C12—C13—H18116.2 (11)C3—C4—H4120.3 (11)
C5—C6—C1118.15 (17)C5—C4—H4119.6 (11)
C5—C6—C7117.39 (17)N4—C21—C20104.23 (17)
C1—C6—C7124.45 (18)N4—C21—H3A108.6 (10)
O1—C11—C12122.52 (16)C20—C21—H3A113.9 (10)
O1—C11—C8117.93 (16)N4—C21—H3B109.3 (12)
C12—C11—C8119.47 (16)C20—C21—H3B112.6 (12)
C8—C7—C6130.44 (18)H3A—C21—H3B108.0 (15)
C8—C7—H15114.9 (10)C21—C20—C19103.03 (19)
C6—C7—H15114.6 (10)C21—C20—H2A110.8 (11)
C4—C3—C2119.69 (19)C19—C20—H2A112.1 (12)
C4—C3—H14120.5 (12)C21—C20—H2B110.3 (12)
C2—C3—H14119.8 (12)C19—C20—H2B114.9 (12)
C10—N1—C9102.06 (18)H2A—C20—H2B105.9 (17)
C4—C5—C6121.24 (19)C20—C19—C18102.69 (18)
C4—C5—H12119.7 (11)C20—C19—H1A112.8 (12)
C6—C5—H12119.1 (11)C18—C19—H1A110.9 (12)
C3—C2—C1120.8 (2)C20—C19—H1B110.2 (14)
C3—C2—H11122.7 (11)C18—C19—H1B110.3 (14)
C1—C2—H11116.5 (12)H1A—C19—H1B109.8 (18)
C2—C1—C6120.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H12···O1i0.981 (19)2.435 (19)3.347 (2)154.6 (14)
C16—H23···N1ii0.906 (19)2.525 (19)3.388 (3)159.3 (16)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H19FN4O
Mr362.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.217 (2), 10.067 (2), 15.793 (3)
β (°) 94.47 (3)
V3)1778.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.08 × 0.03
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
13447, 3403, 2341
Rint0.058
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.118, 1.05
No. of reflections3403
No. of parameters321
No. of restraints2
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H12···O1i0.981 (19)2.435 (19)3.347 (2)154.6 (14)
C16—H23···N1ii0.906 (19)2.525 (19)3.388 (3)159.3 (16)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

This work was partially supported by the Natural Science Foundation of China (21172181) and the Research Funds for the Central Universities, the key program of the Natural Science Foundation of Chongqing (CSTC2012jjB10026), the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP 20110182110007) and the Research Funds for the Central Universities (XDJK2011D007, XDJK2012B026).

References

First citationBruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, J.-J., Wang, Y., Zhang, H.-Z., Zhou, C.-H., Geng, R.-X. & Ji, Q.-G. (2011). Chem. J. Chin. Univ. 32, 1970–1985.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolankee, A., Kapadia, K., Ćirić, A., Soković, M., Doytchinova, I. & Geronikaki, A. (2010). Eur. J. Med. Chem. 45, 510–518.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y. & Zhou, C.-H. (2011). Sci. Sin. Chim, 41, 1429–1456.  CrossRef Google Scholar
First citationYan, C.-Y., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, C.-H. & Wang, Y. (2012). Curr. Med. Chem. 19, 239–280.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds