organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-(6-Bromo­hex­yl­oxy)-4-methyl-2H-chromen-2-one

aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 17 April 2012; accepted 7 May 2012; online 12 May 2012)

In the title mol­ecule, C16H19BrO3, all non-H atoms apart from the Br atom are approximately coplanar, with a maximum deviation of 0.242 (4) Å. The C—C—C—Br torsion angle is 66.5 (4)°.

Related literature

For the pharmacological activity of coumarin compounds, see: Wu et al. (2009[Wu, L., Wang, X., Xu, W., Farzaneh, F. & Xu, R. (2009). Curr. Med. Chem. 16, 4236-4260.]); Shi & Zhou (2011[Shi, Y. & Zhou, C.-H. (2011). Bioorg. Med. Chem. Lett. 21, 956-960.]). For details of the synthesis, see: Shi et al. (2011[Shi, Y., Zhou, C.-H., Zhou, X.-D., Geng, R.-X. & Ji, Q.-G. (2011). Acta Pharm. Sin. 46, 798-810.]). For a related structure, see: Zhang et al. (2011[Zhang, Y.-Y., Shi, Y. & Zhou, C.-H. (2011). Acta Cryst. E67, o892.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19BrO3

  • Mr = 339.22

  • Monoclinic, C 2/c

  • a = 15.681 (5) Å

  • b = 9.540 (3) Å

  • c = 22.104 (7) Å

  • β = 110.201 (6)°

  • V = 3103.3 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.65 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.593, Tmax = 0.692

  • 8381 measured reflections

  • 3051 independent reflections

  • 1921 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.01

  • 3051 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); cell refinement: SAINT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coumarin compounds are important in medicinal chemistry due to their extensive potential applications in antibacterial, antifungal, antiviral, anti-tubercular, anti-malarial, anticancer and anti-inflammatory fields (Wu, et al., 2009; Shi & Zhou, 2011). Our interest is to develop novel coumarin compounds as antimicrobial agents and some structral related coumarin-triazoles have been reported as potential bioactive agents (Shi, et al., 2011; Zhang, et al., 2011). Herein, we report the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. With the exception of the Br atom, all non-hydrogen atoms are approximately co-planar with a maximum deviation of 0.242 (4)Å (C16). The C14—C15—C16—Br1 torsion angle is 66.5 (4)Å.

Related literature top

For the pharmacological activity of coumarin compounds, see: Wu et al. (2009); Shi & Zhou (2011). For details of the synthesis, see: Shi et al. (2011). For a related structure, see: Zhang et al. (2011).

Experimental top

Compound (I) was prepared according to the procedure of Shi & Zhou (2011). Single crystals were grown by slow evaporation of a solution of (I) in CHCl3 at room temperature.

Refinement top

H atoms were placed at calculated position with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene). The Uiso(H) values were set to 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Sheldrick, 2008); cell refinement: SAINT (Sheldrick, 2008); data reduction: SAINT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
7-(6-Bromohexyloxy)-4-methyl-2H-chromen-2-one top
Crystal data top
C16H19BrO3F(000) = 1392
Mr = 339.22Dx = 1.452 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2005 reflections
a = 15.681 (5) Åθ = 2.6–22.1°
b = 9.540 (3) ŵ = 2.65 mm1
c = 22.104 (7) ÅT = 296 K
β = 110.201 (6)°Block, colorless
V = 3103.3 (18) Å30.22 × 0.18 × 0.15 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
3051 independent reflections
Radiation source: fine-focus sealed tube1921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.593, Tmax = 0.692k = 911
8381 measured reflectionsl = 2720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0527P)2 + 2.7774P]
where P = (Fo2 + 2Fc2)/3
3051 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C16H19BrO3V = 3103.3 (18) Å3
Mr = 339.22Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.681 (5) ŵ = 2.65 mm1
b = 9.540 (3) ÅT = 296 K
c = 22.104 (7) Å0.22 × 0.18 × 0.15 mm
β = 110.201 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
3051 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1921 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.692Rint = 0.028
8381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.01Δρmax = 0.48 e Å3
3051 reflectionsΔρmin = 0.53 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.13272 (3)0.92653 (5)0.02243 (2)0.0880 (2)
C10.7117 (2)0.1670 (3)0.24911 (16)0.0537 (8)
C20.6618 (2)0.2939 (3)0.22745 (15)0.0545 (8)
H2A0.69260.37870.23790.065*
C30.5727 (2)0.2965 (3)0.19283 (15)0.0513 (8)
C40.5235 (3)0.4315 (3)0.1708 (2)0.0741 (11)
H4A0.56540.50820.18470.111*
H4B0.49730.43190.12460.111*
H4C0.47630.44120.18890.111*
C50.5242 (2)0.1647 (3)0.17747 (14)0.0442 (7)
C60.57263 (19)0.0413 (3)0.19839 (14)0.0427 (7)
C70.5329 (2)0.0882 (3)0.18675 (15)0.0478 (7)
H7A0.56740.16870.20120.057*
C80.4408 (2)0.0971 (3)0.15309 (15)0.0514 (8)
C90.3895 (2)0.0240 (3)0.13091 (15)0.0527 (8)
H9A0.32740.01810.10830.063*
C100.4319 (2)0.1512 (3)0.14297 (15)0.0528 (8)
H10A0.39780.23160.12750.063*
C110.3099 (2)0.2471 (3)0.11206 (17)0.0602 (9)
H11A0.27650.19660.13480.072*
H11B0.29150.21180.06830.072*
C120.2914 (2)0.4009 (3)0.11200 (19)0.0612 (9)
H12A0.33060.44970.09320.073*
H12B0.30730.43240.15630.073*
C130.1935 (2)0.4414 (3)0.07516 (16)0.0557 (8)
H13A0.17790.41420.03030.067*
H13B0.15370.39110.09280.067*
C140.1785 (2)0.5971 (3)0.07899 (17)0.0584 (9)
H14A0.19360.62310.12390.070*
H14B0.21990.64660.06250.070*
C150.0828 (2)0.6447 (3)0.04209 (17)0.0579 (8)
H15A0.07130.63320.00360.069*
H15B0.04070.58440.05330.069*
C160.0638 (2)0.7941 (4)0.05454 (19)0.0674 (10)
H16A0.07900.80790.10050.081*
H16B0.00060.81280.03390.081*
O10.79161 (16)0.1577 (2)0.27985 (13)0.0766 (8)
O20.66442 (13)0.0436 (2)0.23286 (10)0.0503 (5)
O30.40587 (14)0.2292 (2)0.14399 (12)0.0649 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0703 (3)0.0743 (3)0.1032 (4)0.0001 (2)0.0092 (2)0.0270 (2)
C10.0448 (19)0.053 (2)0.059 (2)0.0053 (15)0.0121 (16)0.0118 (16)
C20.047 (2)0.0450 (18)0.063 (2)0.0062 (15)0.0084 (16)0.0043 (15)
C30.050 (2)0.0476 (18)0.0523 (19)0.0003 (14)0.0122 (15)0.0034 (15)
C40.061 (2)0.055 (2)0.088 (3)0.0001 (17)0.003 (2)0.0139 (19)
C50.0413 (17)0.0469 (17)0.0416 (16)0.0011 (13)0.0107 (14)0.0022 (13)
C60.0331 (16)0.0509 (18)0.0416 (17)0.0017 (13)0.0097 (13)0.0029 (13)
C70.0411 (17)0.0485 (18)0.0521 (19)0.0018 (14)0.0141 (14)0.0044 (14)
C80.0445 (18)0.056 (2)0.0533 (19)0.0111 (15)0.0160 (15)0.0096 (15)
C90.0376 (17)0.059 (2)0.0545 (19)0.0040 (15)0.0065 (15)0.0024 (16)
C100.0442 (18)0.0516 (19)0.057 (2)0.0047 (14)0.0096 (15)0.0085 (15)
C110.0435 (19)0.064 (2)0.070 (2)0.0135 (16)0.0152 (16)0.0051 (18)
C120.048 (2)0.057 (2)0.077 (2)0.0098 (15)0.0192 (18)0.0057 (17)
C130.0495 (19)0.057 (2)0.058 (2)0.0099 (15)0.0151 (16)0.0016 (16)
C140.0501 (19)0.055 (2)0.065 (2)0.0062 (15)0.0135 (17)0.0026 (16)
C150.052 (2)0.056 (2)0.063 (2)0.0062 (16)0.0154 (17)0.0027 (16)
C160.057 (2)0.065 (2)0.080 (3)0.0135 (17)0.0220 (19)0.0094 (19)
O10.0404 (14)0.0630 (16)0.104 (2)0.0007 (11)0.0028 (14)0.0119 (14)
O20.0358 (12)0.0467 (12)0.0610 (14)0.0013 (9)0.0070 (10)0.0049 (10)
O30.0437 (13)0.0537 (13)0.0888 (17)0.0102 (10)0.0120 (12)0.0073 (12)
Geometric parameters (Å, º) top
Br1—C161.949 (4)C9—H9A0.9300
C1—O11.205 (4)C10—H10A0.9300
C1—O21.371 (4)C11—O31.435 (4)
C1—C21.431 (4)C11—C121.496 (4)
C2—C31.341 (4)C11—H11A0.9700
C2—H2A0.9300C11—H11B0.9700
C3—C51.448 (4)C12—C131.520 (4)
C3—C41.494 (4)C12—H12A0.9700
C4—H4A0.9600C12—H12B0.9700
C4—H4B0.9600C13—C141.511 (4)
C4—H4C0.9600C13—H13A0.9700
C5—C61.391 (4)C13—H13B0.9700
C5—C101.390 (4)C14—C151.510 (4)
C6—O21.377 (3)C14—H14A0.9700
C6—C71.367 (4)C14—H14B0.9700
C7—C81.380 (4)C15—C161.501 (5)
C7—H7A0.9300C15—H15A0.9700
C8—O31.362 (4)C15—H15B0.9700
C8—C91.397 (4)C16—H16A0.9700
C9—C101.365 (4)C16—H16B0.9700
O1—C1—O2116.6 (3)O3—C11—H11B110.4
O1—C1—C2126.4 (3)C12—C11—H11B110.4
O2—C1—C2117.0 (3)H11A—C11—H11B108.6
C3—C2—C1123.2 (3)C11—C12—C13114.1 (3)
C3—C2—H2A118.4C11—C12—H12A108.7
C1—C2—H2A118.4C13—C12—H12A108.7
C2—C3—C5118.5 (3)C11—C12—H12B108.7
C2—C3—C4121.4 (3)C13—C12—H12B108.7
C5—C3—C4120.1 (3)H12A—C12—H12B107.6
C3—C4—H4A109.5C14—C13—C12111.6 (3)
C3—C4—H4B109.5C14—C13—H13A109.3
H4A—C4—H4B109.5C12—C13—H13A109.3
C3—C4—H4C109.5C14—C13—H13B109.3
H4A—C4—H4C109.5C12—C13—H13B109.3
H4B—C4—H4C109.5H13A—C13—H13B108.0
C6—C5—C10116.7 (3)C15—C14—C13114.2 (3)
C6—C5—C3118.4 (3)C15—C14—H14A108.7
C10—C5—C3124.9 (3)C13—C14—H14A108.7
O2—C6—C7116.1 (3)C15—C14—H14B108.7
O2—C6—C5121.1 (3)C13—C14—H14B108.7
C7—C6—C5122.8 (3)H14A—C14—H14B107.6
C8—C7—C6118.7 (3)C16—C15—C14114.2 (3)
C8—C7—H7A120.6C16—C15—H15A108.7
C6—C7—H7A120.6C14—C15—H15A108.7
O3—C8—C7115.5 (3)C16—C15—H15B108.7
O3—C8—C9124.1 (3)C14—C15—H15B108.7
C7—C8—C9120.5 (3)H15A—C15—H15B107.6
C10—C9—C8118.9 (3)C15—C16—Br1112.3 (2)
C10—C9—H9A120.5C15—C16—H16A109.2
C8—C9—H9A120.5Br1—C16—H16A109.2
C9—C10—C5122.3 (3)C15—C16—H16B109.2
C9—C10—H10A118.8Br1—C16—H16B109.2
C5—C10—H10A118.8H16A—C16—H16B107.9
O3—C11—C12106.6 (3)C1—O2—C6121.8 (2)
O3—C11—H11A110.4C8—O3—C11118.9 (3)
C12—C11—H11A110.4
O1—C1—C2—C3179.4 (3)C7—C8—C9—C100.1 (5)
O2—C1—C2—C30.1 (5)C8—C9—C10—C51.1 (5)
C1—C2—C3—C51.1 (5)C6—C5—C10—C91.3 (5)
C1—C2—C3—C4179.5 (3)C3—C5—C10—C9178.8 (3)
C2—C3—C5—C61.1 (4)O3—C11—C12—C13175.4 (3)
C4—C3—C5—C6179.5 (3)C11—C12—C13—C14177.9 (3)
C2—C3—C5—C10179.0 (3)C12—C13—C14—C15178.8 (3)
C4—C3—C5—C100.5 (5)C13—C14—C15—C16170.5 (3)
C10—C5—C6—O2179.9 (3)C14—C15—C16—Br166.5 (4)
C3—C5—C6—O20.0 (4)O1—C1—O2—C6179.3 (3)
C10—C5—C6—C70.5 (4)C2—C1—O2—C61.3 (4)
C3—C5—C6—C7179.5 (3)C7—C6—O2—C1178.3 (3)
O2—C6—C7—C8179.2 (3)C5—C6—O2—C11.3 (4)
C5—C6—C7—C80.3 (5)C7—C8—O3—C11177.1 (3)
C6—C7—C8—O3179.3 (3)C9—C8—O3—C112.7 (5)
C6—C7—C8—C90.6 (5)C12—C11—O3—C8177.3 (3)
O3—C8—C9—C10179.9 (3)

Experimental details

Crystal data
Chemical formulaC16H19BrO3
Mr339.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)15.681 (5), 9.540 (3), 22.104 (7)
β (°) 110.201 (6)
V3)3103.3 (18)
Z8
Radiation typeMo Kα
µ (mm1)2.65
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.593, 0.692
No. of measured, independent and
observed [I > 2σ(I)] reflections
8381, 3051, 1921
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.01
No. of reflections3051
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.53

Computer programs: APEX2 (Sheldrick, 2008), SAINT (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 21172181), the Key Program of the Natural Science Foundation of Chongqing (CSTC2012jjB10026), the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP 20110182110007) and the Research Funds for the Central Universities (XDJK2012B026).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. & Zhou, C.-H. (2011). Bioorg. Med. Chem. Lett. 21, 956–960.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShi, Y., Zhou, C.-H., Zhou, X.-D., Geng, R.-X. & Ji, Q.-G. (2011). Acta Pharm. Sin. 46, 798–810.  CAS Google Scholar
First citationWu, L., Wang, X., Xu, W., Farzaneh, F. & Xu, R. (2009). Curr. Med. Chem. 16, 4236–4260.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Y.-Y., Shi, Y. & Zhou, C.-H. (2011). Acta Cryst. E67, o892.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds