organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1609-o1610

5-Carbamoyl-2-methyl-1-(2-methyl­benz­yl)pyridinium bromide

aDepartment of Fine Chemistry, Seoul National University of Science & Technology, Seoul 139-743, Republic of Korea, and bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@seoultech.ac.kr, ymeekim@ewha.ac.kr

(Received 20 April 2012; accepted 27 April 2012; online 5 May 2012)

In the title mol­ecular salt, C15H17N2O+·Br, the benzene and pyridinium rings form a dihedral angle of 83.0 (1)°. In the crystal, N—H⋯Br and N—H⋯O hydrogen bonds link the components into chains along [010]. These chains are linked by weak C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network.

Related literature

The title compound was prepared as an NAD+ (nicotinamide adenine dinucleotide) model. For the role of reduced nicotinamide co-factors (NADH and NADPH) in enzyme-catalysed reactions, see: Hollmann et al. (2001[Hollmann, F., Schmid, A. & Steckhan, E. (2001). Angew. Chem. Int. Ed. 40, 169-171.]); Lee et al. (2011[Lee, H. J., Lee, S. H., Park, C. B. & Won, K. (2011). Chem. Commun. 47, 12538-12540.]); Maenaka et al. (2012[Maenaka, Y., Suenobu, T. & Fukuzumi, S. (2012). J. Am. Chem. Soc. 134, 367-374.]); Park et al. (2008[Park, C. B., Lee, S. H., Subramanian, E., Kale, B. B., Lee, S. M. & Baeg, J.-O. (2008). Chem. Commun. pp. 5423-5425.]); Ruppert et al. (1988[Ruppert, R., Herrmann, S. & Steckhan, E. (1988). J. Chem. Soc. Chem. Commun. pp. 1150-2251.]); Zhu et al. (2003[Zhu, X.-Q., Yang, Y., Zhang, M. & Cheng, J.-P. (2003). J. Am. Chem. Soc. 125, 15298-15299.], 2006[Zhu, X.-Q., Zhang, J.-Y. & Cheng, J.-P. (2006). J. Org. Chem. 71, 7007-7015.]). For the generation of NADH, see: Qing et al. (2006[Qing, S., Yang, D., Jiang, Z. & Li, J. (2006). J. Mol. Catal. B Enzym. 43, 44-48.]). For an efficient method of in situ regeneration, see: Song et al. (2008[Song, H.-K., Lee, S. H., Won, K., Park, J. H., Kim, J. K., Lee, H., Moon, S.-J., Kim, D. K. & Park, C. B. (2008). Angew. Chem. Int. Ed. 47, 1749-1752.]). For a related structure, see: Kim et al. (2012[Kim, K. B., Jung, K.-D., Kim, C. & Kim, Y. (2012). Acta Cryst. E68, o1441-o1442.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N2O+·Br

  • Mr = 321.22

  • Monoclinic, C 2/c

  • a = 8.4880 (17) Å

  • b = 10.502 (2) Å

  • c = 33.450 (7) Å

  • β = 96.85 (3)°

  • V = 2960.5 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.77 mm−1

  • T = 293 K

  • 0.50 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.338, Tmax = 0.769

  • 8103 measured reflections

  • 2879 independent reflections

  • 1857 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.096

  • S = 1.00

  • 2879 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1 0.86 2.67 3.477 (3) 157
N1—H1B⋯O1i 0.86 2.35 3.207 (4) 173
C3—H3⋯O1i 0.93 2.22 3.149 (5) 174
C4—H4⋯Br1i 0.93 2.78 3.712 (4) 175
C6—H6C⋯Br1ii 0.96 2.73 3.638 (3) 157
C8—H8B⋯Br1iii 0.97 2.87 3.782 (3) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

Reduced nicotinamide co-factors (NADH and NADPH) play an important role in a variety of enzyme-catalyzed reactions (Hollmann et al., 2001; Lee et al., 2011; Maenaka et al., 2012; Park et al., 2008; Ruppert et al., 1988; Zhu et al., 2003; Zhu et al., 2006). For example, in biocatalytic systems, many enzymes depend on nicotinamide co-factors (NAD and NADP) for their functions (Park et al., 2008).To date, a number of strategies including enzymatic catalysis, whole-cell conversion, chemical method, have been devised to the regeneration of NADH (Qing et al., 2006). The high cost of these co-factors, however, is prohibitive of industrialization of many promising enzymatic processes. An efficient method of their in situ regeneration is the only means for making the processes economically and industrially feasible (Song et al., 2008). Therefore, we and many researchers have given considerable attention to the chemistry of NADH and its models (Hollmann et al., 2001; Kim et al., 2012). In this work, we have synthesized the title compound as a NAD+ model and report here the crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The benzene and pyridinium rings form a dihedral angle of 83.0 (1)°. In the crystal, N—H···Br and N—H···O hydrogen bonds link the components into chains along [010]. These chains are linked by weak intermolecular C—H···O and C—H···Br hydrogen bonds to form a three-dimensional network.

Related literature top

The title compound was prepared as an NAD+ (nicotinamide adenine dinucleotide) model. For the role of reduced nicotinamide co-factors (NADH and NADPH) in enzyme-catalysed reactions, see: Hollmann et al. (2001); Lee et al. (2011); Maenaka et al. (2012); Park et al. (2008); Ruppert et al. (1988); Zhu et al. (2003, 2006). For the generation of NADH, see: Qing et al. (2006). For an efficient method of in situ regeneration, see: Song et al. (2008). For a related structure, see: Kim et al. (2012).

Experimental top

6-Methylnicotinamide (136.15 mg, 1 mmol) was dissolved 10 ml dimethylformamide. After stirring for a few minutes, 2-methylbenzyl bromide (185.06 mg, 1 mmol) was carefully added to the reaction solution. The solution was stirred for 3 h at 353K. The precipitate was filtered, washed three times with methylene chloride, and dried under vacuum. 3-Carbamoyl-6-methyl-1-(2-methylbenzyl)pyridinium bromide (16.06 mg, 0.05 mmol) was dissolved in 1 ml methanol and carefully layered by 3 ml isopropyl ether. Suitable crystals of the title compound for X-ray analysis were obtained in a few days.

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C—H distances of 0.93 Å for aromatic C atoms, 0.96 Å for methyl C atoms, and 0.97 Å for a methylene C atoms. They were included in the refinement in riding-motion approximation with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C). The positions of N—H atoms of the amine were included with N—H = 0.86 A and Uiso(H) =1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Brandenburg, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level.
5-Carbamoyl-2-methyl-1-(2-methylbenzyl)pyridinium bromide top
Crystal data top
C15H17N2O+·BrF(000) = 1312
Mr = 321.22Dx = 1.441 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2248 reflections
a = 8.4880 (17) Åθ = 2.3–25.2°
b = 10.502 (2) ŵ = 2.77 mm1
c = 33.450 (7) ÅT = 293 K
β = 96.85 (3)°Block, colorless
V = 2960.5 (10) Å30.50 × 0.20 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
2879 independent reflections
Radiation source: fine-focus sealed tube1857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 910
Tmin = 0.338, Tmax = 0.769k = 128
8103 measured reflectionsl = 4140
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0247P)2 + 1.3939P]
where P = (Fo2 + 2Fc2)/3
2879 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C15H17N2O+·BrV = 2960.5 (10) Å3
Mr = 321.22Z = 8
Monoclinic, C2/cMo Kα radiation
a = 8.4880 (17) ŵ = 2.77 mm1
b = 10.502 (2) ÅT = 293 K
c = 33.450 (7) Å0.50 × 0.20 × 0.10 mm
β = 96.85 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2879 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1857 reflections with I > 2σ(I)
Tmin = 0.338, Tmax = 0.769Rint = 0.043
8103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.00Δρmax = 0.36 e Å3
2879 reflectionsΔρmin = 0.31 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.01684 (4)0.38708 (4)0.349683 (12)0.06234 (17)
N10.2074 (3)0.3760 (3)0.26330 (9)0.0686 (9)
H1A0.15990.40330.28300.082*
H1B0.21110.29570.25850.082*
N20.4953 (3)0.4466 (3)0.15096 (8)0.0435 (6)
O10.2735 (4)0.5725 (3)0.24558 (9)0.0862 (9)
C10.2742 (4)0.4572 (4)0.24056 (11)0.0577 (9)
C20.3589 (4)0.4032 (3)0.20721 (10)0.0466 (8)
C30.3794 (4)0.2738 (4)0.20086 (11)0.0590 (9)
H30.34140.21440.21800.071*
C40.4560 (4)0.2342 (3)0.16924 (11)0.0570 (9)
H40.46960.14750.16520.068*
C50.5131 (4)0.3198 (3)0.14343 (10)0.0468 (8)
C60.5919 (4)0.2774 (3)0.10809 (10)0.0599 (10)
H6A0.53540.31120.08380.090*
H6B0.59160.18610.10680.090*
H6C0.69930.30780.11090.090*
C70.4195 (3)0.4868 (3)0.18186 (9)0.0452 (8)
H70.40830.57370.18600.054*
C80.5564 (4)0.5431 (3)0.12466 (10)0.0503 (9)
H8A0.66350.51990.12010.060*
H8B0.56170.62460.13840.060*
C90.4566 (4)0.5572 (3)0.08456 (10)0.0500 (9)
C100.3025 (4)0.5121 (3)0.07804 (11)0.0609 (10)
H100.25790.47120.09860.073*
C110.2144 (5)0.5281 (4)0.04038 (14)0.0816 (13)
H110.11130.49710.03560.098*
C120.2825 (7)0.5909 (4)0.01029 (14)0.0939 (17)
H120.22480.60270.01490.113*
C130.4333 (7)0.6351 (4)0.01754 (14)0.0880 (14)
H130.47730.67670.00300.106*
C140.5231 (5)0.6206 (3)0.05406 (12)0.0664 (11)
C150.6904 (6)0.6707 (5)0.06056 (15)0.1029 (16)
H15A0.71390.71440.03680.154*
H15B0.76290.60100.06610.154*
H15C0.70100.72860.08290.154*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0576 (3)0.0523 (3)0.0775 (3)0.0027 (2)0.00950 (18)0.0134 (2)
N10.075 (2)0.078 (2)0.0571 (19)0.0028 (19)0.0258 (17)0.0019 (17)
N20.0468 (15)0.0348 (15)0.0494 (16)0.0015 (13)0.0076 (13)0.0034 (13)
O10.118 (2)0.0592 (18)0.091 (2)0.0093 (18)0.0527 (18)0.0127 (16)
C10.057 (2)0.065 (3)0.052 (2)0.007 (2)0.0107 (18)0.001 (2)
C20.0435 (18)0.051 (2)0.0451 (19)0.0017 (16)0.0045 (15)0.0026 (17)
C30.071 (2)0.045 (2)0.061 (2)0.0051 (19)0.011 (2)0.0024 (18)
C40.072 (2)0.035 (2)0.065 (2)0.0027 (18)0.0104 (19)0.0033 (18)
C50.0427 (19)0.037 (2)0.059 (2)0.0023 (16)0.0002 (16)0.0075 (17)
C60.057 (2)0.053 (2)0.071 (2)0.0049 (18)0.0164 (19)0.0177 (19)
C70.0461 (19)0.044 (2)0.0453 (19)0.0041 (16)0.0042 (16)0.0068 (16)
C80.057 (2)0.038 (2)0.058 (2)0.0058 (17)0.0144 (18)0.0061 (17)
C90.064 (2)0.0372 (19)0.050 (2)0.0100 (18)0.0107 (18)0.0060 (17)
C100.065 (2)0.054 (2)0.062 (3)0.018 (2)0.001 (2)0.0070 (19)
C110.078 (3)0.073 (3)0.090 (3)0.029 (2)0.008 (3)0.021 (3)
C120.142 (5)0.079 (4)0.055 (3)0.046 (3)0.014 (3)0.002 (2)
C130.129 (4)0.071 (3)0.064 (3)0.014 (3)0.013 (3)0.004 (2)
C140.103 (3)0.042 (2)0.055 (2)0.007 (2)0.014 (2)0.0017 (19)
C150.137 (4)0.088 (3)0.092 (3)0.044 (3)0.048 (3)0.005 (3)
Geometric parameters (Å, º) top
N1—C11.315 (5)C7—H70.9300
N1—H1A0.8600C8—C91.506 (5)
N1—H1B0.8600C8—H8A0.9700
N2—C71.348 (4)C8—H8B0.9700
N2—C51.367 (4)C9—C101.384 (5)
N2—C81.476 (4)C9—C141.393 (5)
O1—C11.224 (4)C10—C111.397 (5)
C1—C21.508 (5)C10—H100.9300
C2—C71.363 (4)C11—C121.385 (7)
C2—C31.390 (5)C11—H110.9300
C3—C41.371 (5)C12—C131.357 (7)
C3—H30.9300C12—H120.9300
C4—C51.374 (5)C13—C141.369 (6)
C4—H40.9300C13—H130.9300
C5—C61.494 (4)C14—C151.505 (6)
C6—H6A0.9600C15—H15A0.9600
C6—H6B0.9600C15—H15B0.9600
C6—H6C0.9600C15—H15C0.9600
C1—N1—H1A120.0N2—C8—C9113.5 (3)
C1—N1—H1B120.0N2—C8—H8A108.9
H1A—N1—H1B120.0C9—C8—H8A108.9
C7—N2—C5121.3 (3)N2—C8—H8B108.9
C7—N2—C8118.4 (3)C9—C8—H8B108.9
C5—N2—C8120.3 (3)H8A—C8—H8B107.7
O1—C1—N1123.6 (4)C10—C9—C14120.4 (3)
O1—C1—C2118.9 (4)C10—C9—C8121.8 (3)
N1—C1—C2117.5 (3)C14—C9—C8117.7 (3)
C7—C2—C3118.1 (3)C9—C10—C11119.7 (4)
C7—C2—C1117.9 (3)C9—C10—H10120.2
C3—C2—C1124.0 (3)C11—C10—H10120.2
C4—C3—C2119.6 (3)C12—C11—C10119.2 (4)
C4—C3—H3120.2C12—C11—H11120.4
C2—C3—H3120.2C10—C11—H11120.4
C3—C4—C5121.4 (3)C13—C12—C11120.0 (4)
C3—C4—H4119.3C13—C12—H12120.0
C5—C4—H4119.3C11—C12—H12120.0
N2—C5—C4117.8 (3)C12—C13—C14122.3 (5)
N2—C5—C6120.4 (3)C12—C13—H13118.8
C4—C5—C6121.8 (3)C14—C13—H13118.8
C5—C6—H6A109.5C13—C14—C9118.4 (4)
C5—C6—H6B109.5C13—C14—C15120.3 (4)
H6A—C6—H6B109.5C9—C14—C15121.3 (4)
C5—C6—H6C109.5C14—C15—H15A109.5
H6A—C6—H6C109.5C14—C15—H15B109.5
H6B—C6—H6C109.5H15A—C15—H15B109.5
N2—C7—C2121.7 (3)C14—C15—H15C109.5
N2—C7—H7119.1H15A—C15—H15C109.5
C2—C7—H7119.1H15B—C15—H15C109.5
O1—C1—C2—C75.5 (5)C1—C2—C7—N2179.2 (3)
N1—C1—C2—C7175.8 (3)C7—N2—C8—C9103.9 (3)
O1—C1—C2—C3174.2 (4)C5—N2—C8—C974.9 (4)
N1—C1—C2—C34.5 (5)N2—C8—C9—C1017.3 (4)
C7—C2—C3—C41.4 (5)N2—C8—C9—C14164.3 (3)
C1—C2—C3—C4178.9 (3)C14—C9—C10—C111.2 (5)
C2—C3—C4—C50.1 (5)C8—C9—C10—C11179.6 (3)
C7—N2—C5—C42.2 (4)C9—C10—C11—C120.9 (6)
C8—N2—C5—C4179.0 (3)C10—C11—C12—C130.4 (7)
C7—N2—C5—C6177.6 (3)C11—C12—C13—C140.2 (7)
C8—N2—C5—C61.1 (4)C12—C13—C14—C90.5 (6)
C3—C4—C5—N21.9 (5)C12—C13—C14—C15179.6 (4)
C3—C4—C5—C6177.9 (3)C10—C9—C14—C131.0 (5)
C5—N2—C7—C20.8 (5)C8—C9—C14—C13179.5 (3)
C8—N2—C7—C2179.5 (3)C10—C9—C14—C15179.9 (4)
C3—C2—C7—N21.1 (5)C8—C9—C14—C151.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.862.673.477 (3)157
N1—H1B···O1i0.862.353.207 (4)173
C3—H3···O1i0.932.223.149 (5)174
C4—H4···Br1i0.932.783.712 (4)175
C6—H6C···Br1ii0.962.733.638 (3)157
C8—H8B···Br1iii0.972.873.782 (3)156
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17N2O+·Br
Mr321.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)8.4880 (17), 10.502 (2), 33.450 (7)
β (°) 96.85 (3)
V3)2960.5 (10)
Z8
Radiation typeMo Kα
µ (mm1)2.77
Crystal size (mm)0.50 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.338, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
8103, 2879, 1857
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.096, 1.00
No. of reflections2879
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.31

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.862.673.477 (3)156.8
N1—H1B···O1i0.862.353.207 (4)172.7
C3—H3···O1i0.932.223.149 (5)173.8
C4—H4···Br1i0.932.783.712 (4)175.1
C6—H6C···Br1ii0.962.733.638 (3)157.0
C8—H8B···Br1iii0.972.873.782 (3)156.0
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Converging Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011 K000675), and Seoul National University of Science & Technology is gratefully acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHollmann, F., Schmid, A. & Steckhan, E. (2001). Angew. Chem. Int. Ed. 40, 169–171.  Web of Science CrossRef CAS Google Scholar
First citationKim, K. B., Jung, K.-D., Kim, C. & Kim, Y. (2012). Acta Cryst. E68, o1441–o1442.  CSD CrossRef IUCr Journals Google Scholar
First citationLee, H. J., Lee, S. H., Park, C. B. & Won, K. (2011). Chem. Commun. 47, 12538–12540.  Web of Science CrossRef CAS Google Scholar
First citationMaenaka, Y., Suenobu, T. & Fukuzumi, S. (2012). J. Am. Chem. Soc. 134, 367–374.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPark, C. B., Lee, S. H., Subramanian, E., Kale, B. B., Lee, S. M. & Baeg, J.-O. (2008). Chem. Commun. pp. 5423–5425.  Web of Science CrossRef Google Scholar
First citationQing, S., Yang, D., Jiang, Z. & Li, J. (2006). J. Mol. Catal. B Enzym. 43, 44–48.  Google Scholar
First citationRuppert, R., Herrmann, S. & Steckhan, E. (1988). J. Chem. Soc. Chem. Commun. pp. 1150–2251.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, H.-K., Lee, S. H., Won, K., Park, J. H., Kim, J. K., Lee, H., Moon, S.-J., Kim, D. K. & Park, C. B. (2008). Angew. Chem. Int. Ed. 47, 1749–1752.  Web of Science CrossRef CAS Google Scholar
First citationZhu, X.-Q., Yang, Y., Zhang, M. & Cheng, J.-P. (2003). J. Am. Chem. Soc. 125, 15298–15299.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhu, X.-Q., Zhang, J.-Y. & Cheng, J.-P. (2006). J. Org. Chem. 71, 7007–7015.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1609-o1610
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds