metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1H-benzimidazole-κN3)(pyridine-2,6-dicarb­­oxy­lato-κ3O2,N,O6)nickel(II)

aCollege of Chemical Engineering, Hebei United University, Tangshan 063009, People's Republic of China, bCollege of Light Industry, Hebei United University, Tangshan 063009, People's Republic of China, and cQian'an College, Hebei United University, Tangshan 063009, People's Republic of China
*Correspondence e-mail: tsdgying@126.com

(Received 20 April 2012; accepted 1 May 2012; online 5 May 2012)

In the title complex, [Ni(C7H3NO4)(C7H6N2)3], the NiII ion is coordinated by two carboxyl­ate O atoms and the N atom from a pyridine-2,6-dicarboxyl­ate ligand and by three N atoms from three benzimidazole ligands to form a slightly distorted octa­hedral geometry. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds to form a three-dimensional network.

Related literature

For related structures of NiII dipicolinate complexes, see: Liu et al. (2011[Liu, T. F., Wu, W. F., Wan, C. Q., He, C. H., Jiao, C. H. & Cui, G. H. (2011). J. Coord. Chem. pp. 975-986.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H3NO4)(C7H6N2)3]

  • Mr = 578.21

  • Monoclinic, P 21 /c

  • a = 9.4546 (19) Å

  • b = 10.487 (2) Å

  • c = 27.532 (5) Å

  • β = 98.94 (3)°

  • V = 2696.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 298 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.934

  • 21674 measured reflections

  • 4752 independent reflections

  • 2842 reflections with I > 2σ(I)

  • Rint = 0.153

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.143

  • S = 1.12

  • 4752 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.86 1.83 2.683 (6) 169
N4—H4A⋯O2ii 0.86 2.07 2.775 (6) 139
N6—H6A⋯O2iii 0.86 2.00 2.856 (6) 177
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dipicolinic acid (pyridine–2,6–dicarboxylic acid) has important biological functions in organisms and commonly coordinates to transition metals by either carboxylate bridges between metal centers, to form polymeric or dimeric complexes or tridentate (O, N, O') chelation to one metal ion. Some Ni(II) dipicolinate complexes with imidazoles have been reported (Liu et al. 2011). Here, we report here the crystal structure of the title compound.

The molecular structure of the title compound is illustrated in Fig. 1. Bond lengths and angles common to related structures are in the normal range (Liu et al. 2011). The NiII ion is coordinated by two carboxylate oxygen atoms and one N atom from a pyridine-2,6-dicarboxylato ligand and three N atoms from three benzimidazole ligands to form a slightly distorted octahedral geometry. In the crystal, molecules are linked by N—H···O hydrogen bonds to form a three-dimensional network.

Related literature top

For related structures of NiII dipicolinate complexes, see: Liu et al. (2011).

Experimental top

Nickel(II) hydroxide (92.7 mg, 1 mmol) was mixed with a 15 ml aqueous solution of dipicoline acid (334 mg, 2 mmol) in a steam bath until the solid disappeared. The methanol solution (10 ml) of benzimidazole (472 mg, 4 mmol) was then added to the above solution. The resultant green solution was warmed on a steam bath for 1.5 h. The solution was filtered and allowed to stand at room temperature. Green crystals suitable for X-ray diffraction were obtained after 15 days.

Refinement top

All H atoms were positioned geometrically an refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) for the NH group.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Tris(1H-benzimidazole-κN3)(pyridine-2,6-dicarboxylato- κ3O2,N,O6)nickel(II) top
Crystal data top
[Ni(C7H3NO4)(C7H6N2)3]Z = 4
Mr = 578.21F(000) = 1192
Monoclinic, P21/cDx = 1.424 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.4546 (19) ŵ = 0.77 mm1
b = 10.487 (2) ÅT = 298 K
c = 27.532 (5) ÅBlock, green
β = 98.94 (3)°0.10 × 0.10 × 0.10 mm
V = 2696.7 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4752 independent reflections
Radiation source: fine-focus sealed tube2842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.153
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.934, Tmax = 0.934k = 1212
21674 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0345P)2 + 1.7256P]
where P = (Fo2 + 2Fc2)/3
4752 reflections(Δ/σ)max = 0.004
361 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C7H3NO4)(C7H6N2)3]V = 2696.7 (9) Å3
Mr = 578.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4546 (19) ŵ = 0.77 mm1
b = 10.487 (2) ÅT = 298 K
c = 27.532 (5) Å0.10 × 0.10 × 0.10 mm
β = 98.94 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4752 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2842 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.934Rint = 0.153
21674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.12Δρmax = 0.33 e Å3
4752 reflectionsΔρmin = 0.32 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.09815 (7)0.43868 (7)0.38239 (2)0.0360 (2)
O10.1890 (4)0.3672 (3)0.45593 (12)0.0401 (10)
O20.3778 (4)0.2602 (4)0.49567 (13)0.0502 (11)
O40.2432 (4)0.4481 (4)0.24837 (14)0.0621 (12)
N10.0148 (5)0.2663 (4)0.36705 (16)0.0394 (12)
N70.2861 (4)0.3605 (4)0.37243 (16)0.0337 (11)
O30.1016 (4)0.4723 (3)0.30609 (12)0.0415 (10)
N30.2048 (5)0.6140 (4)0.40368 (16)0.0404 (12)
N50.0917 (4)0.5276 (4)0.39039 (17)0.0407 (12)
C90.3706 (6)0.3067 (5)0.4103 (2)0.0360 (14)
C100.2085 (6)0.5587 (5)0.35471 (19)0.0393 (14)
C110.3074 (6)0.3110 (5)0.4579 (2)0.0380 (14)
C120.4561 (6)0.3234 (5)0.3201 (2)0.0525 (17)
H12A0.48300.32930.28900.063*
C130.0723 (6)0.1829 (5)0.3985 (2)0.0387 (14)
N40.3530 (5)0.7511 (5)0.44750 (18)0.0543 (14)
H4A0.41550.77990.47100.065*
C150.1244 (6)0.5731 (6)0.4318 (2)0.0471 (16)
H15A0.06430.56700.46190.057*
C160.1950 (6)0.7325 (5)0.3796 (2)0.0415 (15)
C170.2152 (6)0.4356 (5)0.2902 (2)0.0413 (14)
N20.1251 (5)0.1077 (5)0.32270 (18)0.0532 (14)
H2A0.15760.06250.29730.064*
C190.1402 (6)0.0824 (6)0.3708 (2)0.0485 (16)
N60.2532 (5)0.6289 (4)0.42619 (17)0.0494 (13)
H6A0.29310.66320.44900.059*
C210.3245 (5)0.3690 (5)0.32835 (19)0.0325 (13)
C220.5470 (7)0.2690 (6)0.3587 (2)0.064 (2)
H22A0.63630.23820.35420.077*
C230.3100 (6)0.6213 (5)0.3772 (2)0.0418 (15)
C240.1126 (6)0.7707 (6)0.3352 (2)0.0507 (17)
H24A0.05020.71460.31650.061*
C250.5027 (6)0.2609 (5)0.4046 (2)0.0508 (17)
H25A0.56220.22480.43110.061*
C260.0736 (6)0.1876 (6)0.4489 (2)0.0518 (17)
H26A0.02980.25390.46800.062*
C270.3606 (7)0.5783 (6)0.2782 (2)0.0623 (19)
H27A0.37980.56410.24450.075*
C280.2870 (6)0.8200 (6)0.4068 (2)0.0430 (15)
C290.2074 (7)0.0108 (7)0.4412 (3)0.075 (2)
H29A0.25120.07550.45650.089*
C300.0497 (6)0.2167 (6)0.3230 (2)0.0442 (15)
H30A0.02460.25330.29480.053*
C310.2331 (6)0.5352 (6)0.3045 (2)0.0522 (17)
H31A0.16640.49200.28920.063*
C320.1423 (7)0.0900 (7)0.4692 (3)0.065 (2)
H32A0.14550.09140.50280.079*
C330.1278 (7)0.8935 (7)0.3208 (2)0.064 (2)
H33A0.07430.92150.29150.077*
C340.3009 (6)0.6319 (6)0.4433 (2)0.0492 (16)
H34A0.32980.56810.46610.059*
C350.2207 (8)0.9783 (7)0.3484 (3)0.075 (2)
H35A0.22691.06120.33700.090*
C360.4618 (7)0.6430 (7)0.3015 (3)0.066 (2)
H36A0.54640.67140.28280.079*
C370.3030 (7)0.9447 (7)0.3917 (3)0.069 (2)
H37A0.36561.00160.40990.083*
C380.4384 (6)0.6650 (6)0.3507 (2)0.0562 (18)
H38A0.50550.70750.36610.067*
C390.2081 (7)0.0165 (6)0.3912 (3)0.066 (2)
H39A0.25180.08300.37220.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0339 (4)0.0399 (4)0.0320 (4)0.0057 (4)0.0019 (3)0.0012 (4)
O10.036 (2)0.052 (3)0.030 (2)0.008 (2)0.0010 (18)0.0041 (18)
O20.049 (3)0.065 (3)0.034 (2)0.012 (2)0.001 (2)0.011 (2)
O40.065 (3)0.090 (3)0.033 (2)0.024 (3)0.014 (2)0.018 (2)
N10.044 (3)0.040 (3)0.032 (3)0.004 (2)0.000 (2)0.000 (2)
N70.034 (3)0.031 (3)0.034 (3)0.003 (2)0.003 (2)0.008 (2)
O30.035 (2)0.052 (3)0.035 (2)0.0104 (19)0.0010 (19)0.0037 (18)
N30.038 (3)0.038 (3)0.042 (3)0.002 (2)0.005 (2)0.005 (2)
N50.034 (3)0.041 (3)0.045 (3)0.006 (2)0.001 (2)0.003 (2)
C90.029 (3)0.035 (3)0.042 (4)0.004 (3)0.001 (3)0.001 (3)
C100.036 (3)0.043 (4)0.037 (3)0.004 (3)0.002 (3)0.001 (3)
C110.035 (4)0.042 (4)0.034 (4)0.005 (3)0.004 (3)0.001 (3)
C120.053 (4)0.058 (4)0.051 (4)0.017 (3)0.020 (3)0.008 (3)
C130.034 (3)0.038 (4)0.042 (4)0.007 (3)0.003 (3)0.002 (3)
N40.054 (3)0.049 (4)0.055 (4)0.004 (3)0.007 (3)0.012 (3)
C150.046 (4)0.056 (4)0.036 (4)0.011 (3)0.005 (3)0.003 (3)
C160.037 (4)0.040 (4)0.045 (4)0.010 (3)0.000 (3)0.001 (3)
C170.046 (4)0.039 (4)0.035 (4)0.004 (3)0.003 (3)0.000 (3)
N20.050 (3)0.052 (4)0.053 (4)0.004 (3)0.004 (3)0.018 (3)
C190.043 (4)0.047 (4)0.053 (4)0.005 (3)0.001 (3)0.007 (4)
N60.049 (3)0.057 (3)0.043 (3)0.018 (3)0.010 (3)0.005 (3)
C210.031 (3)0.032 (3)0.034 (3)0.005 (3)0.005 (3)0.003 (3)
C220.046 (4)0.089 (6)0.058 (5)0.032 (4)0.009 (4)0.014 (4)
C230.040 (4)0.045 (4)0.041 (4)0.008 (3)0.006 (3)0.006 (3)
C240.052 (4)0.044 (4)0.051 (4)0.005 (3)0.003 (3)0.001 (3)
C250.048 (4)0.058 (4)0.044 (4)0.015 (3)0.001 (3)0.009 (3)
C260.052 (4)0.050 (4)0.053 (4)0.006 (3)0.007 (3)0.005 (3)
C270.049 (4)0.094 (6)0.041 (4)0.001 (4)0.002 (3)0.001 (4)
C280.034 (3)0.043 (4)0.051 (4)0.005 (3)0.003 (3)0.002 (3)
C290.062 (5)0.066 (6)0.097 (7)0.003 (4)0.015 (5)0.027 (5)
C300.043 (4)0.049 (4)0.039 (4)0.004 (3)0.005 (3)0.002 (3)
C310.038 (4)0.071 (5)0.047 (4)0.007 (3)0.003 (3)0.003 (3)
C320.062 (5)0.069 (6)0.066 (5)0.007 (4)0.013 (4)0.010 (4)
C330.066 (5)0.063 (5)0.061 (5)0.017 (4)0.001 (4)0.008 (4)
C340.054 (4)0.039 (4)0.051 (4)0.006 (3)0.003 (3)0.004 (3)
C350.076 (5)0.046 (5)0.100 (6)0.006 (4)0.007 (5)0.011 (4)
C360.037 (4)0.092 (6)0.065 (5)0.011 (4)0.001 (4)0.021 (4)
C370.068 (5)0.045 (5)0.092 (6)0.004 (4)0.005 (4)0.000 (4)
C380.048 (4)0.068 (5)0.053 (4)0.017 (4)0.011 (4)0.017 (4)
C390.069 (5)0.044 (5)0.085 (6)0.013 (4)0.010 (5)0.003 (4)
Geometric parameters (Å, º) top
Ni1—N72.014 (4)N2—C301.347 (7)
Ni1—N52.065 (4)N2—C191.379 (7)
Ni1—N12.109 (4)N2—H2A0.8600
Ni1—N32.134 (4)C19—C391.384 (8)
Ni1—O32.135 (3)N6—C231.375 (6)
Ni1—O12.204 (3)N6—H6A0.8600
O1—C111.259 (6)C22—C251.393 (7)
O2—C111.262 (6)C22—H22A0.9300
O4—C171.227 (6)C23—C381.393 (7)
N1—C301.314 (6)C24—C331.362 (8)
N1—C131.398 (7)C24—H24A0.9300
N7—C211.323 (6)C25—H25A0.9300
N7—C91.337 (6)C26—C321.377 (8)
O3—C171.281 (6)C26—H26A0.9300
N3—C341.320 (6)C27—C311.382 (7)
N3—C161.405 (6)C27—C361.406 (8)
N5—C151.317 (6)C27—H27A0.9300
N5—C101.398 (6)C28—C371.387 (8)
C9—C251.370 (7)C29—C391.377 (8)
C9—C111.523 (7)C29—C321.395 (9)
C10—C231.386 (7)C29—H29A0.9300
C10—C311.387 (7)C30—H30A0.9300
C12—C221.383 (7)C31—H31A0.9300
C12—C211.385 (7)C32—H32A0.9300
C12—H12A0.9300C33—C351.391 (9)
C13—C261.390 (7)C33—H33A0.9300
C13—C191.397 (7)C34—H34A0.9300
N4—C341.342 (7)C35—C371.364 (8)
N4—C281.397 (7)C35—H35A0.9300
N4—H4A0.8600C36—C381.359 (7)
C15—N61.339 (6)C36—H36A0.9300
C15—H15A0.9300C37—H37A0.9300
C16—C241.402 (7)C38—H38A0.9300
C16—C281.398 (7)C39—H39A0.9300
C17—C211.524 (7)
N7—Ni1—N5176.78 (18)C39—C19—C13123.1 (6)
N7—Ni1—N193.10 (17)C15—N6—C23107.3 (5)
N5—Ni1—N189.25 (17)C15—N6—H6A126.3
N7—Ni1—N389.93 (16)C23—N6—H6A126.3
N5—Ni1—N387.88 (17)N7—C21—C12120.7 (5)
N1—Ni1—N3175.03 (18)N7—C21—C17114.2 (5)
N7—Ni1—O377.57 (16)C12—C21—C17125.1 (5)
N5—Ni1—O3100.17 (16)C12—C22—C25119.0 (6)
N1—Ni1—O391.68 (15)C12—C22—H22A120.5
N3—Ni1—O392.82 (16)C25—C22—H22A120.5
N7—Ni1—O176.15 (16)N6—C23—C10105.9 (5)
N5—Ni1—O1106.06 (16)N6—C23—C38132.1 (6)
N1—Ni1—O190.31 (15)C10—C23—C38122.0 (5)
N3—Ni1—O186.59 (16)C33—C24—C16117.0 (6)
O3—Ni1—O1153.72 (14)C33—C24—H24A121.5
C11—O1—Ni1114.6 (3)C16—C24—H24A121.5
C30—N1—C13104.9 (5)C9—C25—C22119.4 (5)
C30—N1—Ni1124.8 (4)C9—C25—H25A120.3
C13—N1—Ni1130.3 (4)C22—C25—H25A120.3
C21—N7—C9121.9 (5)C32—C26—C13117.2 (6)
C21—N7—Ni1118.1 (3)C32—C26—H26A121.4
C9—N7—Ni1119.9 (4)C13—C26—H26A121.4
C17—O3—Ni1115.4 (3)C31—C27—C36121.2 (6)
C34—N3—C16104.4 (5)C31—C27—H27A119.4
C34—N3—Ni1125.8 (4)C36—C27—H27A119.4
C16—N3—Ni1129.7 (4)C37—C28—C16123.1 (6)
C15—N5—C10105.0 (4)C37—C28—N4132.2 (6)
C15—N5—Ni1125.5 (4)C16—C28—N4104.7 (5)
C10—N5—Ni1129.4 (4)C39—C29—C32121.3 (7)
N7—C9—C25120.2 (5)C39—C29—H29A119.4
N7—C9—C11113.1 (5)C32—C29—H29A119.4
C25—C9—C11126.6 (5)N1—C30—N2113.5 (5)
C23—C10—C31120.5 (5)N1—C30—H30A123.3
C23—C10—N5108.9 (5)N2—C30—H30A123.3
C31—C10—N5130.6 (5)C27—C31—C10117.5 (6)
O2—C11—O1125.9 (5)C27—C31—H31A121.2
O2—C11—C9118.0 (5)C10—C31—H31A121.2
O1—C11—C9116.2 (5)C26—C32—C29122.3 (7)
C22—C12—C21118.8 (6)C26—C32—H32A118.9
C22—C12—H12A120.6C29—C32—H32A118.9
C21—C12—H12A120.6C24—C33—C35122.1 (6)
C26—C13—C19119.8 (6)C24—C33—H33A118.9
C26—C13—N1131.2 (5)C35—C33—H33A118.9
C19—C13—N1109.0 (5)N3—C34—N4113.6 (5)
C34—N4—C28107.5 (5)N3—C34—H34A123.2
C34—N4—H4A126.3N4—C34—H34A123.2
C28—N4—H4A126.3C37—C35—C33122.6 (7)
N5—C15—N6113.0 (5)C37—C35—H35A118.7
N5—C15—H15A123.5C33—C35—H35A118.7
N6—C15—H15A123.5C38—C36—C27121.3 (6)
C24—C16—C28119.6 (6)C38—C36—H36A119.4
C24—C16—N3130.6 (5)C27—C36—H36A119.4
C28—C16—N3109.8 (5)C35—C37—C28115.5 (6)
O4—C17—O3127.1 (5)C35—C37—H37A122.2
O4—C17—C21118.3 (5)C28—C37—H37A122.2
O3—C17—C21114.6 (5)C36—C38—C23117.4 (6)
C30—N2—C19106.9 (5)C36—C38—H38A121.3
C30—N2—H2A126.5C23—C38—H38A121.3
C19—N2—H2A126.5C29—C39—C19116.3 (6)
N2—C19—C39131.1 (6)C29—C39—H39A121.9
N2—C19—C13105.7 (5)C19—C39—H39A121.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.861.832.683 (6)169
N4—H4A···O2ii0.862.072.775 (6)139
N6—H6A···O2iii0.862.002.856 (6)177
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C7H3NO4)(C7H6N2)3]
Mr578.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.4546 (19), 10.487 (2), 27.532 (5)
β (°) 98.94 (3)
V3)2696.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.934, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
21674, 4752, 2842
Rint0.153
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.143, 1.12
No. of reflections4752
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.861.832.683 (6)169
N4—H4A···O2ii0.862.072.775 (6)139
N6—H6A···O2iii0.862.002.856 (6)177
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
 

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, T. F., Wu, W. F., Wan, C. Q., He, C. H., Jiao, C. H. & Cui, G. H. (2011). J. Coord. Chem. pp. 975–986.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds