organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2,N5-Bis[(E)-2-hy­dr­oxy­benzyl­­idene]-3,4-di­methyl­thio­phene-2,5-dicarbohydrazide

aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: geng0712@swu.edu.cn, zhouch@swu.edu.cn

(Received 23 April 2012; accepted 5 May 2012; online 16 May 2012)

In the title mol­ecule, C22H20N4O4S, both C=N bonds are in an E conformation. The benzene rings form dihedral angles of 12.10 (13) and 25.17 (12)° with the thio­phene ring. The dihedral angle between the two benzene rings is 17.59 (14)°. There are two intra­molecular O—H⋯N hydrogen bonds. In the crystal, N—H⋯O hydrogen bonds connect mol­ecules into chains along [010].

Related literature

For the medicinal properties of thio­phene derivatives, see: Bondock et al. (2010[Bondock, S., Metwally, M. A. & Fadaly, W. (2010). Eur. J. Med. Chem. 45, 3692-3701.]); Geng & Zhou (2008[Geng, R.-X. & Zhou, C.-H. (2008). Chin. J. Org. Chem. 24, 163-168.]). For a related structure, see: Tang et al. (2010[Tang, Y.-D., Geng, R.-X. & Zhou, C.-H. (2010). Acta Cryst. E66, o100.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N4O4S

  • Mr = 436.48

  • Triclinic, [P \overline 1]

  • a = 8.392 (8) Å

  • b = 9.511 (9) Å

  • c = 12.937 (8) Å

  • α = 99.853 (17)°

  • β = 90.804 (18)°

  • γ = 92.374 (18)°

  • V = 1016.2 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.19 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.969

  • 5573 measured reflections

  • 3925 independent reflections

  • 2660 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.02

  • 3925 reflections

  • 283 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.91 2.626 (4) 145
N2—H2⋯O3i 0.86 1.97 2.789 (4) 159
N4—H4⋯O2ii 0.86 1.97 2.812 (4) 165
O4—H4B⋯N3 0.82 1.85 2.569 (4) 146
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiophene is a electron-rich five-membered aromatic heterocycle containing a sulfur atom whose derivatives display various biological activities. Much effort has been devoted to the researches of thiophene-based compounds as medicinal agents (Geng et al., 2008; Bondock et al., 2010). Our interest is to develop novel thiophene compounds with high bioactivities especially broad antimicrobial spectrum. We have already prepared a thiophene compound incorporating Schiff base moieties and determined its crystal structure (Tang et al., 2010). Herein, the crystal structure of title compound (I) is reported.

The molecular structure of (I) is shown in Fig. 1. Both CN bonds are in an E conformation. The benzene rings form dihedral angles of 12.10 (13)° (C17-C22) and 25.17 (12) ° (C1-C6) with the thiophene ring (S1/C9/C10/C12/C14). The dihedral angle between the two benzene rings is 17.59 (14)°. There are two intramolecular O—H···N hydrogen bonds. In the crystal, N—H···O hydrogen bonds connect molecules into chains along [010].

Related literature top

For the medicinal properties of thiophene derivatives, see: Bondock et al. (2010); Geng & Zhou (2008). For a related structure, see: Tang et al. (2010).

Experimental top

A mixture of 3,4-dimethylthiophene-2,5-dicarbohydrazide (0.11 g, 0.5 mmol) and 2-hydroxybenzaldehyde (0.24 g, 2 mmol) in methanol (10.0 ml) was stirred at room temperature. Upon the completion of the reaction (monitored by TLC, eluent, ethyl acetate), the formed precipitate was filtered and then washed with cold methanol to afford a yellow solid of the title compound (0.35 g). A crystal suitable for X-ray analysis was grown from a mixed solution of (I) in chloroform and methanol by slow evaporation at room temperature.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), N—H = 0.86Å and O—H = 0.82Å. The Uiso(H) values were set equal to 1.2Ueq(Caromatic,N) and 1.5Ueq(Cmethyl,O).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the displacement ellipsoids drawn at the 50% probability level.
N'2,N'5-Bis[(E)-2-hydroxybenzylidene]- 3,4-dimethylthiophene-2,5-dicarbohydrazide top
Crystal data top
C22H20N4O4SZ = 2
Mr = 436.48F(000) = 456
Triclinic, P1Dx = 1.426 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.392 (8) ÅCell parameters from 1480 reflections
b = 9.511 (9) Åθ = 2.9–24.4°
c = 12.937 (8) ŵ = 0.20 mm1
α = 99.853 (17)°T = 296 K
β = 90.804 (18)°Block, yellow
γ = 92.374 (18)°0.19 × 0.18 × 0.16 mm
V = 1016.2 (15) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3925 independent reflections
Radiation source: fine-focus sealed tube2660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 910
Tmin = 0.963, Tmax = 0.969k = 1110
5573 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.0881P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3925 reflectionsΔρmax = 0.23 e Å3
283 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0062 (17)
Crystal data top
C22H20N4O4Sγ = 92.374 (18)°
Mr = 436.48V = 1016.2 (15) Å3
Triclinic, P1Z = 2
a = 8.392 (8) ÅMo Kα radiation
b = 9.511 (9) ŵ = 0.20 mm1
c = 12.937 (8) ÅT = 296 K
α = 99.853 (17)°0.19 × 0.18 × 0.16 mm
β = 90.804 (18)°
Data collection top
Bruker APEXII CCD
diffractometer
3925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2660 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.969Rint = 0.019
5573 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
3925 reflectionsΔρmin = 0.30 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9005 (2)0.2862 (2)0.73465 (15)0.0457 (5)
N20.8176 (2)0.32288 (19)0.65213 (15)0.0463 (6)
H20.81120.41090.64550.056*
N30.0145 (2)0.15155 (19)0.30284 (15)0.0423 (5)
N40.1633 (2)0.16130 (19)0.34807 (16)0.0448 (5)
H40.19900.09260.37590.054*
C11.0429 (3)0.2314 (3)0.92331 (19)0.0473 (6)
C21.1287 (4)0.2087 (3)1.0091 (2)0.0631 (8)
H2A1.11100.12511.03630.076*
C31.2397 (4)0.3085 (4)1.0542 (2)0.0702 (9)
H3A1.29920.29191.11180.084*
C41.2661 (4)0.4336 (4)1.0168 (2)0.0658 (8)
H4A1.34240.50141.04880.079*
C51.1795 (3)0.4575 (3)0.9320 (2)0.0524 (7)
H5A1.19580.54290.90710.063*
C61.0681 (3)0.3567 (3)0.88285 (18)0.0424 (6)
C70.9818 (3)0.3853 (3)0.79290 (18)0.0432 (6)
H7A0.98540.47720.77710.052*
C80.7473 (3)0.2195 (2)0.5826 (2)0.0438 (6)
C90.6441 (3)0.2671 (2)0.50316 (18)0.0392 (6)
C100.6698 (3)0.3655 (2)0.44024 (17)0.0365 (5)
C110.8216 (3)0.4475 (3)0.4339 (2)0.0482 (6)
H11A0.89740.42380.48370.072*
H11B0.80350.54790.44930.072*
H11C0.86260.42420.36440.072*
C120.5355 (3)0.3773 (2)0.37593 (16)0.0348 (5)
C130.5400 (3)0.4737 (3)0.29632 (19)0.0482 (6)
H13A0.43820.46810.26070.072*
H13B0.62100.44480.24640.072*
H13C0.56360.57020.33060.072*
C140.4126 (3)0.2878 (2)0.39320 (17)0.0356 (5)
C150.2514 (3)0.2808 (2)0.34768 (17)0.0364 (5)
C160.0755 (3)0.0451 (2)0.31184 (19)0.0454 (6)
H16A0.04330.02000.35320.055*
C170.2275 (3)0.0243 (3)0.25834 (19)0.0452 (6)
C180.2791 (3)0.1158 (3)0.1937 (2)0.0490 (7)
C190.4226 (4)0.0886 (4)0.1412 (2)0.0686 (9)
H19A0.45690.15000.09750.082*
C200.5150 (4)0.0277 (4)0.1529 (3)0.0798 (11)
H20A0.61330.04460.11790.096*
C210.4657 (4)0.1201 (4)0.2151 (3)0.0795 (10)
H21A0.52910.20050.22180.095*
C220.3236 (4)0.0936 (3)0.2669 (2)0.0639 (8)
H22A0.29000.15680.30940.077*
O10.9338 (3)0.13019 (19)0.88189 (15)0.0640 (6)
H10.89080.15360.83050.096*
O20.7611 (2)0.09444 (16)0.58491 (16)0.0683 (6)
O30.1986 (2)0.38046 (15)0.31228 (12)0.0443 (4)
O40.1926 (2)0.2321 (2)0.17967 (17)0.0681 (6)
H4B0.10730.23550.21190.102*
S10.46125 (8)0.18434 (6)0.48365 (5)0.0450 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0422 (13)0.0467 (11)0.0497 (12)0.0023 (10)0.0194 (10)0.0140 (9)
N20.0483 (13)0.0348 (10)0.0563 (13)0.0007 (9)0.0264 (11)0.0116 (9)
N30.0329 (11)0.0371 (10)0.0555 (13)0.0001 (9)0.0143 (10)0.0054 (9)
N40.0351 (12)0.0350 (10)0.0654 (14)0.0012 (9)0.0191 (10)0.0139 (9)
C10.0444 (16)0.0562 (15)0.0425 (14)0.0076 (13)0.0018 (12)0.0105 (12)
C20.068 (2)0.0745 (19)0.0507 (17)0.0153 (17)0.0077 (15)0.0200 (15)
C30.066 (2)0.100 (2)0.0455 (17)0.022 (2)0.0139 (15)0.0112 (17)
C40.0513 (18)0.090 (2)0.0512 (17)0.0001 (17)0.0179 (14)0.0003 (16)
C50.0446 (16)0.0620 (16)0.0495 (15)0.0029 (13)0.0072 (13)0.0081 (13)
C60.0372 (14)0.0525 (14)0.0378 (13)0.0056 (12)0.0054 (11)0.0087 (11)
C70.0417 (15)0.0443 (13)0.0445 (14)0.0030 (12)0.0087 (12)0.0103 (11)
C80.0358 (14)0.0387 (12)0.0574 (15)0.0030 (11)0.0172 (12)0.0126 (11)
C90.0329 (13)0.0339 (11)0.0493 (14)0.0015 (10)0.0148 (11)0.0053 (10)
C100.0332 (13)0.0350 (11)0.0390 (13)0.0008 (10)0.0045 (10)0.0007 (10)
C110.0361 (14)0.0584 (15)0.0488 (15)0.0058 (12)0.0059 (12)0.0083 (12)
C120.0338 (13)0.0354 (11)0.0338 (12)0.0009 (10)0.0044 (10)0.0031 (9)
C130.0444 (15)0.0530 (14)0.0494 (15)0.0021 (12)0.0073 (12)0.0169 (12)
C140.0347 (13)0.0327 (11)0.0390 (13)0.0016 (10)0.0090 (10)0.0057 (9)
C150.0369 (13)0.0328 (11)0.0380 (12)0.0016 (10)0.0082 (10)0.0028 (10)
C160.0406 (15)0.0412 (13)0.0547 (15)0.0008 (12)0.0119 (12)0.0107 (11)
C170.0340 (14)0.0495 (14)0.0494 (15)0.0022 (12)0.0052 (12)0.0028 (12)
C180.0382 (15)0.0529 (15)0.0542 (16)0.0047 (13)0.0055 (12)0.0039 (12)
C190.0429 (18)0.091 (2)0.069 (2)0.0100 (18)0.0190 (15)0.0056 (17)
C200.0352 (17)0.114 (3)0.079 (2)0.0092 (19)0.0133 (16)0.011 (2)
C210.050 (2)0.096 (2)0.086 (2)0.0327 (18)0.0060 (18)0.008 (2)
C220.0540 (19)0.0697 (18)0.0668 (19)0.0183 (15)0.0059 (15)0.0136 (15)
O10.0706 (15)0.0566 (11)0.0683 (14)0.0086 (11)0.0167 (11)0.0253 (10)
O20.0728 (15)0.0334 (9)0.0996 (15)0.0046 (9)0.0467 (12)0.0197 (9)
O30.0427 (10)0.0366 (8)0.0548 (10)0.0001 (8)0.0179 (8)0.0135 (7)
O40.0557 (13)0.0601 (11)0.0935 (16)0.0018 (10)0.0228 (11)0.0293 (11)
S10.0398 (4)0.0391 (3)0.0577 (4)0.0084 (3)0.0212 (3)0.0167 (3)
Geometric parameters (Å, º) top
N1—C71.270 (3)C11—H11A0.9600
N1—N21.368 (3)C11—H11B0.9600
N2—C81.326 (3)C11—H11C0.9600
N2—H20.8600C12—C141.355 (3)
N3—C161.261 (3)C12—C131.491 (3)
N3—N41.365 (3)C13—H13A0.9600
N4—C151.331 (3)C13—H13B0.9600
N4—H40.8600C13—H13C0.9600
C1—O11.337 (3)C14—C151.462 (3)
C1—C21.368 (3)C14—S11.708 (2)
C1—C61.391 (4)C15—O31.217 (3)
C2—C31.354 (4)C16—C171.432 (3)
C2—H2A0.9300C16—H16A0.9300
C3—C41.370 (4)C17—C221.375 (4)
C3—H3A0.9300C17—C181.384 (4)
C4—C51.364 (4)C18—O41.338 (3)
C4—H4A0.9300C18—C191.367 (4)
C5—C61.377 (3)C19—C201.355 (5)
C5—H5A0.9300C19—H19A0.9300
C6—C71.433 (3)C20—C211.361 (5)
C7—H7A0.9300C20—H20A0.9300
C8—O21.205 (3)C21—C221.354 (4)
C8—C91.476 (3)C21—H21A0.9300
C9—C101.355 (3)C22—H22A0.9300
C9—S11.690 (3)O1—H10.8200
C10—C121.411 (3)O4—H4B0.8200
C10—C111.477 (4)
C7—N1—N2117.0 (2)H11A—C11—H11C109.5
C8—N2—N1118.42 (19)H11B—C11—H11C109.5
C8—N2—H2120.8C14—C12—C10111.9 (2)
N1—N2—H2120.8C14—C12—C13126.7 (2)
C16—N3—N4118.1 (2)C10—C12—C13121.3 (2)
C15—N4—N3117.69 (19)C12—C13—H13A109.5
C15—N4—H4121.2C12—C13—H13B109.5
N3—N4—H4121.2H13A—C13—H13B109.5
O1—C1—C2117.5 (3)C12—C13—H13C109.5
O1—C1—C6122.1 (2)H13A—C13—H13C109.5
C2—C1—C6120.4 (3)H13B—C13—H13C109.5
C3—C2—C1119.6 (3)C12—C14—C15126.6 (2)
C3—C2—H2A120.2C12—C14—S1112.18 (17)
C1—C2—H2A120.2C15—C14—S1121.11 (18)
C2—C3—C4121.3 (3)O3—C15—N4121.2 (2)
C2—C3—H3A119.4O3—C15—C14121.7 (2)
C4—C3—H3A119.4N4—C15—C14117.08 (19)
C5—C4—C3119.3 (3)N3—C16—C17119.9 (2)
C5—C4—H4A120.3N3—C16—H16A120.0
C3—C4—H4A120.3C17—C16—H16A120.0
C4—C5—C6120.9 (3)C22—C17—C18118.1 (3)
C4—C5—H5A119.6C22—C17—C16119.6 (2)
C6—C5—H5A119.6C18—C17—C16122.3 (2)
C5—C6—C1118.5 (2)O4—C18—C19117.7 (3)
C5—C6—C7119.0 (2)O4—C18—C17122.2 (2)
C1—C6—C7122.6 (2)C19—C18—C17120.1 (3)
N1—C7—C6120.5 (2)C20—C19—C18120.0 (3)
N1—C7—H7A119.8C20—C19—H19A120.0
C6—C7—H7A119.8C18—C19—H19A120.0
O2—C8—N2123.2 (2)C19—C20—C21120.9 (3)
O2—C8—C9121.3 (2)C19—C20—H20A119.6
N2—C8—C9115.5 (2)C21—C20—H20A119.6
C10—C9—C8131.5 (2)C22—C21—C20119.2 (3)
C10—C9—S1112.63 (17)C22—C21—H21A120.4
C8—C9—S1115.89 (19)C20—C21—H21A120.4
C9—C10—C12112.1 (2)C21—C22—C17121.6 (3)
C9—C10—C11125.2 (2)C21—C22—H22A119.2
C12—C10—C11122.6 (2)C17—C22—H22A119.2
C10—C11—H11A109.5C1—O1—H1109.5
C10—C11—H11B109.5C18—O4—H4B109.5
H11A—C11—H11B109.5C9—S1—C1491.09 (12)
C10—C11—H11C109.5
C7—N1—N2—C8172.0 (2)C11—C10—C12—C130.5 (3)
C16—N3—N4—C15173.2 (2)C10—C12—C14—C15174.1 (2)
O1—C1—C2—C3179.5 (3)C13—C12—C14—C159.0 (4)
C6—C1—C2—C30.5 (4)C10—C12—C14—S12.3 (2)
C1—C2—C3—C41.1 (5)C13—C12—C14—S1174.64 (18)
C2—C3—C4—C50.4 (5)N3—N4—C15—O33.1 (3)
C3—C4—C5—C61.1 (4)N3—N4—C15—C14178.0 (2)
C4—C5—C6—C11.6 (4)C12—C14—C15—O320.8 (4)
C4—C5—C6—C7178.9 (2)S1—C14—C15—O3155.27 (18)
O1—C1—C6—C5178.1 (2)C12—C14—C15—N4160.2 (2)
C2—C1—C6—C50.9 (4)S1—C14—C15—N423.7 (3)
O1—C1—C6—C71.3 (4)N4—N3—C16—C17174.8 (2)
C2—C1—C6—C7179.7 (2)N3—C16—C17—C22178.7 (2)
N2—N1—C7—C6178.1 (2)N3—C16—C17—C181.8 (4)
C5—C6—C7—N1167.1 (2)C22—C17—C18—O4179.2 (3)
C1—C6—C7—N113.4 (4)C16—C17—C18—O42.2 (4)
N1—N2—C8—O24.8 (4)C22—C17—C18—C190.6 (4)
N1—N2—C8—C9172.8 (2)C16—C17—C18—C19177.6 (2)
O2—C8—C9—C10133.2 (3)O4—C18—C19—C20179.9 (3)
N2—C8—C9—C1049.2 (4)C17—C18—C19—C200.3 (4)
O2—C8—C9—S145.7 (3)C18—C19—C20—C211.1 (5)
N2—C8—C9—S1132.0 (2)C19—C20—C21—C221.0 (5)
C8—C9—C10—C12179.5 (2)C20—C21—C22—C170.0 (5)
S1—C9—C10—C121.6 (2)C18—C17—C22—C210.8 (4)
C8—C9—C10—C113.4 (4)C16—C17—C22—C21177.8 (3)
S1—C9—C10—C11175.46 (18)C10—C9—S1—C142.47 (18)
C9—C10—C12—C140.4 (3)C8—C9—S1—C14178.49 (18)
C11—C10—C12—C14177.6 (2)C12—C14—S1—C92.72 (17)
C9—C10—C12—C13176.7 (2)C15—C14—S1—C9173.90 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.626 (4)145
N2—H2···O3i0.861.972.789 (4)159
N4—H4···O2ii0.861.972.812 (4)165
O4—H4B···N30.821.852.569 (4)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H20N4O4S
Mr436.48
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.392 (8), 9.511 (9), 12.937 (8)
α, β, γ (°)99.853 (17), 90.804 (18), 92.374 (18)
V3)1016.2 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.19 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.963, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
5573, 3925, 2660
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.02
No. of reflections3925
No. of parameters283
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.626 (4)145
N2—H2···O3i0.861.972.789 (4)159
N4—H4···O2ii0.861.972.812 (4)165
O4—H4B···N30.821.852.569 (4)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 21172181), the Key Program of the Natural Science Foundation of Chongqing (CSTC2012jjB10026), the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP 20110182110007) and the Research Funds for the Central Universities (XDJK2011D007, XDJK2012B026).

References

First citationBondock, S., Metwally, M. A. & Fadaly, W. (2010). Eur. J. Med. Chem. 45, 3692–3701.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeng, R.-X. & Zhou, C.-H. (2008). Chin. J. Org. Chem. 24, 163–168.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Y.-D., Geng, R.-X. & Zhou, C.-H. (2010). Acta Cryst. E66, o100.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds