organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(4-bromo­phen­yl)-1-phenyl-1H-benzimidazole-5-carboxyl­ate

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 24 April 2012; accepted 3 May 2012; online 12 May 2012)

In the title compound, C22H17BrN2O2, the benzimidazole ring system is essentially planar, with a maximum deviation of 0.017 (1) Å, and forms dihedral angles of 27.79 (6) and 64.43 (6)° with the phenyl and bromo-substituted benzene rings, respectively. In the crystal, mol­ecules are linked into one-dimensional chains along the a axis by weak C—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯π inter­actions are also present.

Related literature

For background to and the biological activities of benzimidazoles, see: Townsend & Revankar (1970[Townsend, L. B. & Revankar, G. R. (1970). Chem. Rev. 70, 389-438.]); Rao et al. (2002[Rao, A., Chimirri, A., Clercq, E. D., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappala, M. (2002). Il Farmaco, 57, 819-823.]); Thakurdesai et al. (2007[Thakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacologyonline, 1, 314-329.]); Dubey & Sanyal (2010[Dubey, A. K. & Sanyal, P. K. (2010). Vet Scan, 5, 63.]); Lacey (1990[Lacey, E. (1990). Parasitol. Today, 6, 112-115.]). For a related structure, see: Arumugam et al. (2010[Arumugam, N., Abdul Rahim, A. S., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o2412-o2413.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17BrN2O2

  • Mr = 421.29

  • Triclinic, [P \overline 1]

  • a = 9.3121 (2) Å

  • b = 9.8136 (2) Å

  • c = 11.8458 (2) Å

  • α = 108.217 (1)°

  • β = 101.135 (1)°

  • γ = 109.361 (1)°

  • V = 915.39 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 100 K

  • 0.42 × 0.33 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.450, Tmax = 0.728

  • 21718 measured reflections

  • 5326 independent reflections

  • 4846 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.06

  • 5326 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/N1/C1/C6/C7 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.95 2.38 3.311 (2) 166
C19—H19ACg2ii 0.95 2.59 3.4534 (18) 152
C21—H21ACg1iii 0.99 2.64 3.5288 (15) 149
Symmetry codes: (i) x-1, y, z; (ii) -x, -y, -z; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazoles are a class of bioactive heterocyclic compounds which exhibit a wide range of activities such as anti-cancer (Townsend & Revankar, 1970), anti-HIV (Rao et al., 2002), anti-inflammatory (Thakurdesai et al., 2007) and anthelmintics (Dubey & Sanyal, 2010). The primary mechanism of action of benzimidazoles as anthelmintics is by binding to free β-tubulin and inhibiting its polymerization (Lacey, 1990). A number of benzimidazoles have been shown to also inhibit mammalian tubulin polymerization and to be aneugenic in vivo.

The molecular structure is shown in Fig. 1. Bond lengths and angles are within normal ranges and are comparable to a related structure (Arumugam et al.,2010). The benzimidazole ring system (N1/N2/C1—C7) is essentially planar with a maximum deviation of 0.017 (1) Å for atom C7. The dihedral angles of the benzimidazole ring (N1/N2/C1—C7) with the phenyl ring (C14–C19) and the bromo-substituted benzene ring (C8–C13) are 27.79 (6) and 64.43 (6)°, respectively.

In the crystal packing (Fig. 2), intermolecular C15—H15A···O2i (Table 1) hydrogen bonds link the molecules into one-dimensional zigzag chains along the a-axis. In addition, the crystal structure is further stabilized by the intermolecular C21—H21A···Cg1iii and C19—H19A···Cg2ii (Table 1) interactions (Cg1 and Cg2 are the centroids of N1/N1/C1/C6/C7 and C8–C13 rings, respectively).

Related literature top

For background to and the biological activities of benzimidazoles, see: Townsend & Revankar (1970); Rao et al. (2002); Thakurdesai et al. (2007); Dubey & Sanyal (2010); Lacey (1990). For a related structure, see: Arumugam et al. (2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Ethyl 3-amino-4-(phenyl amino) benzoate (0.84 mmol) and sodium metabisulfite adduct of bromo benzaldehyde (1.68 mmol) were dissolved in DMF. The reaction mixture was reflux at 403K for 2 h. After completion, the reaction mixture was diluted in ethyl acetate (20 ml) and washed with water (20 ml). The organic layer was collected, dried over Na2SO4 and the evaporated in vacuo to yield the product. The product was recrystallized from ethyl acetate.

Refinement top

All H atoms were positioned geometrically [C–H = 0.95–0.99 Å] and refined using a riding model with Uiso(H) = 1.2 and 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Ethyl 2-(4-bromophenyl)-1-phenyl-1H-benzimidazole-5-carboxylate top
Crystal data top
C22H17BrN2O2Z = 2
Mr = 421.29F(000) = 428
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3121 (2) ÅCell parameters from 9874 reflections
b = 9.8136 (2) Åθ = 2.4–32.7°
c = 11.8458 (2) ŵ = 2.27 mm1
α = 108.217 (1)°T = 100 K
β = 101.135 (1)°Block, colourless
γ = 109.361 (1)°0.42 × 0.33 × 0.15 mm
V = 915.39 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5326 independent reflections
Radiation source: fine-focus sealed tube4846 reflections with I > I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.450, Tmax = 0.728k = 1313
21718 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.3723P]
where P = (Fo2 + 2Fc2)/3
5326 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C22H17BrN2O2γ = 109.361 (1)°
Mr = 421.29V = 915.39 (3) Å3
Triclinic, P1Z = 2
a = 9.3121 (2) ÅMo Kα radiation
b = 9.8136 (2) ŵ = 2.27 mm1
c = 11.8458 (2) ÅT = 100 K
α = 108.217 (1)°0.42 × 0.33 × 0.15 mm
β = 101.135 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5326 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4846 reflections with I > I > 2σ(I)
Tmin = 0.450, Tmax = 0.728Rint = 0.025
21718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.06Δρmax = 0.53 e Å3
5326 reflectionsΔρmin = 0.65 e Å3
245 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.680059 (17)0.321236 (17)0.071893 (14)0.02360 (5)
O10.66395 (12)0.10601 (12)0.40079 (10)0.0201 (2)
O20.84619 (13)0.14498 (13)0.46778 (10)0.0230 (2)
N10.12223 (14)0.10878 (14)0.20976 (11)0.0180 (2)
N20.16438 (14)0.14058 (14)0.23396 (11)0.0163 (2)
C10.31426 (17)0.14481 (16)0.28300 (13)0.0167 (2)
C20.46861 (18)0.26876 (17)0.34068 (14)0.0202 (3)
H2A0.48670.37360.35050.024*
C30.59380 (18)0.23123 (17)0.38280 (14)0.0205 (3)
H3A0.70050.31230.42260.025*
C40.56651 (17)0.07511 (17)0.36785 (13)0.0181 (3)
C50.41259 (17)0.04732 (17)0.30997 (13)0.0184 (3)
H5A0.39460.15220.29970.022*
C60.28543 (17)0.01088 (16)0.26745 (13)0.0168 (2)
C70.05354 (17)0.01604 (16)0.19171 (12)0.0160 (2)
C80.12145 (16)0.07748 (16)0.13144 (12)0.0164 (2)
C90.21833 (17)0.21394 (17)0.14191 (13)0.0182 (3)
H9A0.16950.25910.18890.022*
C100.38444 (17)0.28386 (17)0.08468 (13)0.0192 (3)
H10A0.44970.37410.09450.023*
C110.45403 (17)0.21985 (17)0.01266 (13)0.0183 (3)
C120.36095 (17)0.08657 (17)0.00143 (13)0.0183 (3)
H12A0.41020.04530.05200.022*
C130.19447 (17)0.01399 (16)0.05949 (13)0.0172 (2)
H13A0.13030.07880.05220.021*
C140.13582 (17)0.27765 (16)0.24107 (13)0.0168 (2)
C150.04564 (17)0.32281 (17)0.31392 (13)0.0187 (3)
H15A0.00000.26190.35690.022*
C160.02336 (18)0.45862 (18)0.32284 (14)0.0220 (3)
H16A0.03690.49140.37320.026*
C170.08845 (19)0.54698 (18)0.25870 (15)0.0236 (3)
H17A0.07290.63970.26540.028*
C180.1760 (2)0.49909 (18)0.18500 (15)0.0250 (3)
H18A0.21880.55820.14000.030*
C190.20176 (19)0.36444 (17)0.17651 (14)0.0208 (3)
H19A0.26350.33260.12730.025*
C200.70792 (17)0.04581 (17)0.41792 (13)0.0183 (3)
C210.79333 (17)0.14750 (17)0.44476 (13)0.0199 (3)
H21A0.84300.09220.53750.024*
H21B0.87780.11790.40630.024*
C220.7174 (2)0.32313 (19)0.40531 (15)0.0264 (3)
H22A0.80040.35800.43160.040*
H22B0.66700.37580.31350.040*
H22C0.63530.35020.44510.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01607 (8)0.02227 (8)0.02755 (8)0.00650 (6)0.00244 (6)0.00860 (6)
O10.0153 (5)0.0192 (5)0.0243 (5)0.0073 (4)0.0042 (4)0.0083 (4)
O20.0168 (5)0.0232 (5)0.0259 (5)0.0062 (4)0.0054 (4)0.0095 (4)
N10.0162 (5)0.0167 (5)0.0189 (5)0.0060 (4)0.0031 (4)0.0071 (5)
N20.0162 (5)0.0144 (5)0.0182 (5)0.0060 (4)0.0053 (4)0.0071 (4)
C10.0171 (6)0.0170 (6)0.0176 (6)0.0076 (5)0.0063 (5)0.0082 (5)
C20.0196 (7)0.0163 (6)0.0232 (7)0.0057 (5)0.0067 (5)0.0083 (5)
C30.0167 (6)0.0182 (6)0.0235 (7)0.0042 (5)0.0061 (5)0.0082 (5)
C40.0167 (6)0.0190 (6)0.0182 (6)0.0073 (5)0.0059 (5)0.0075 (5)
C50.0183 (6)0.0171 (6)0.0193 (6)0.0071 (5)0.0059 (5)0.0073 (5)
C60.0166 (6)0.0155 (6)0.0160 (6)0.0052 (5)0.0042 (5)0.0060 (5)
C70.0173 (6)0.0148 (6)0.0147 (6)0.0057 (5)0.0047 (5)0.0061 (5)
C80.0158 (6)0.0168 (6)0.0141 (6)0.0063 (5)0.0039 (5)0.0046 (5)
C90.0195 (6)0.0185 (6)0.0158 (6)0.0077 (5)0.0044 (5)0.0071 (5)
C100.0191 (6)0.0179 (6)0.0175 (6)0.0053 (5)0.0052 (5)0.0063 (5)
C110.0164 (6)0.0193 (6)0.0170 (6)0.0077 (5)0.0049 (5)0.0049 (5)
C120.0207 (7)0.0188 (6)0.0166 (6)0.0111 (5)0.0053 (5)0.0062 (5)
C130.0188 (6)0.0164 (6)0.0166 (6)0.0077 (5)0.0064 (5)0.0064 (5)
C140.0171 (6)0.0151 (6)0.0163 (6)0.0061 (5)0.0035 (5)0.0058 (5)
C150.0176 (6)0.0197 (6)0.0184 (6)0.0075 (5)0.0055 (5)0.0079 (5)
C160.0202 (7)0.0218 (7)0.0230 (7)0.0107 (6)0.0062 (5)0.0064 (6)
C170.0234 (7)0.0170 (6)0.0267 (7)0.0084 (6)0.0027 (6)0.0076 (6)
C180.0322 (8)0.0193 (7)0.0236 (7)0.0087 (6)0.0086 (6)0.0117 (6)
C190.0262 (7)0.0179 (6)0.0190 (6)0.0087 (6)0.0100 (6)0.0075 (5)
C200.0183 (6)0.0200 (6)0.0172 (6)0.0080 (5)0.0074 (5)0.0076 (5)
C210.0178 (6)0.0230 (7)0.0187 (6)0.0105 (6)0.0043 (5)0.0075 (5)
C220.0304 (8)0.0243 (7)0.0254 (7)0.0135 (6)0.0076 (6)0.0100 (6)
Geometric parameters (Å, º) top
Br1—C111.8967 (14)C10—C111.391 (2)
O1—C201.3428 (17)C10—H10A0.9500
O1—C211.4506 (17)C11—C121.390 (2)
O2—C201.2124 (18)C12—C131.3949 (19)
N1—C71.3182 (17)C12—H12A0.9500
N1—C61.3856 (18)C13—H13A0.9500
N2—C11.3858 (17)C14—C191.3889 (19)
N2—C71.3950 (17)C14—C151.3906 (19)
N2—C141.4360 (17)C15—C161.391 (2)
C1—C21.398 (2)C15—H15A0.9500
C1—C61.4047 (19)C16—C171.392 (2)
C2—C31.385 (2)C16—H16A0.9500
C2—H2A0.9500C17—C181.386 (2)
C3—C41.414 (2)C17—H17A0.9500
C3—H3A0.9500C18—C191.396 (2)
C4—C51.3898 (19)C18—H18A0.9500
C4—C201.4915 (19)C19—H19A0.9500
C5—C61.3953 (19)C21—C221.500 (2)
C5—H5A0.9500C21—H21A0.9900
C7—C81.4692 (19)C21—H21B0.9900
C8—C131.4022 (19)C22—H22A0.9800
C8—C91.4031 (19)C22—H22B0.9800
C9—C101.387 (2)C22—H22C0.9800
C9—H9A0.9500
C20—O1—C21115.96 (11)C11—C12—H12A120.3
C7—N1—C6105.29 (11)C13—C12—H12A120.3
C1—N2—C7106.01 (11)C12—C13—C8120.27 (13)
C1—N2—C14124.37 (11)C12—C13—H13A119.9
C7—N2—C14129.28 (12)C8—C13—H13A119.9
N2—C1—C2131.97 (13)C19—C14—C15121.23 (13)
N2—C1—C6105.65 (12)C19—C14—N2119.07 (12)
C2—C1—C6122.36 (13)C15—C14—N2119.69 (12)
C3—C2—C1116.72 (13)C14—C15—C16118.92 (13)
C3—C2—H2A121.6C14—C15—H15A120.5
C1—C2—H2A121.6C16—C15—H15A120.5
C2—C3—C4121.52 (13)C15—C16—C17120.63 (14)
C2—C3—H3A119.2C15—C16—H16A119.7
C4—C3—H3A119.2C17—C16—H16A119.7
C5—C4—C3121.27 (13)C18—C17—C16119.74 (14)
C5—C4—C20120.79 (13)C18—C17—H17A120.1
C3—C4—C20117.94 (13)C16—C17—H17A120.1
C4—C5—C6117.74 (13)C17—C18—C19120.41 (14)
C4—C5—H5A121.1C17—C18—H18A119.8
C6—C5—H5A121.1C19—C18—H18A119.8
N1—C6—C5129.29 (13)C14—C19—C18119.06 (13)
N1—C6—C1110.30 (12)C14—C19—H19A120.5
C5—C6—C1120.40 (13)C18—C19—H19A120.5
N1—C7—N2112.74 (12)O2—C20—O1123.35 (13)
N1—C7—C8121.69 (12)O2—C20—C4125.07 (13)
N2—C7—C8125.56 (12)O1—C20—C4111.58 (12)
C13—C8—C9119.05 (13)O1—C21—C22106.03 (12)
C13—C8—C7124.21 (12)O1—C21—H21A110.5
C9—C8—C7116.64 (12)C22—C21—H21A110.5
C10—C9—C8120.93 (13)O1—C21—H21B110.5
C10—C9—H9A119.5C22—C21—H21B110.5
C8—C9—H9A119.5H21A—C21—H21B108.7
C9—C10—C11119.00 (13)C21—C22—H22A109.5
C9—C10—H10A120.5C21—C22—H22B109.5
C11—C10—H10A120.5H22A—C22—H22B109.5
C12—C11—C10121.39 (13)C21—C22—H22C109.5
C12—C11—Br1119.62 (11)H22A—C22—H22C109.5
C10—C11—Br1118.97 (11)H22B—C22—H22C109.5
C11—C12—C13119.32 (13)
C7—N2—C1—C2178.43 (15)C13—C8—C9—C101.5 (2)
C14—N2—C1—C24.5 (2)C7—C8—C9—C10177.86 (12)
C7—N2—C1—C60.05 (14)C8—C9—C10—C112.2 (2)
C14—N2—C1—C6173.96 (12)C9—C10—C11—C120.9 (2)
N2—C1—C2—C3178.10 (14)C9—C10—C11—Br1177.12 (10)
C6—C1—C2—C30.2 (2)C10—C11—C12—C131.0 (2)
C1—C2—C3—C40.1 (2)Br1—C11—C12—C13179.04 (10)
C2—C3—C4—C50.1 (2)C11—C12—C13—C81.7 (2)
C2—C3—C4—C20179.00 (13)C9—C8—C13—C120.5 (2)
C3—C4—C5—C60.3 (2)C7—C8—C13—C12175.61 (13)
C20—C4—C5—C6178.81 (12)C1—N2—C14—C1965.95 (18)
C7—N1—C6—C5178.30 (14)C7—N2—C14—C19121.62 (16)
C7—N1—C6—C10.54 (15)C1—N2—C14—C15112.87 (15)
C4—C5—C6—N1178.52 (13)C7—N2—C14—C1559.56 (19)
C4—C5—C6—C10.2 (2)C19—C14—C15—C160.8 (2)
N2—C1—C6—N10.30 (15)N2—C14—C15—C16178.04 (13)
C2—C1—C6—N1178.95 (13)C14—C15—C16—C170.8 (2)
N2—C1—C6—C5178.66 (12)C15—C16—C17—C180.1 (2)
C2—C1—C6—C50.0 (2)C16—C17—C18—C191.1 (2)
C6—N1—C7—N20.58 (15)C15—C14—C19—C180.2 (2)
C6—N1—C7—C8179.77 (12)N2—C14—C19—C18179.03 (13)
C1—N2—C7—N10.40 (15)C17—C18—C19—C141.2 (2)
C14—N2—C7—N1173.91 (13)C21—O1—C20—O20.62 (19)
C1—N2—C7—C8179.56 (12)C21—O1—C20—C4179.17 (11)
C14—N2—C7—C86.9 (2)C5—C4—C20—O2178.78 (14)
N1—C7—C8—C13149.98 (14)C3—C4—C20—O22.1 (2)
N2—C7—C8—C1329.1 (2)C5—C4—C20—O11.01 (18)
N1—C7—C8—C926.20 (19)C3—C4—C20—O1178.09 (12)
N2—C7—C8—C9154.71 (13)C20—O1—C21—C22175.08 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N1/C1/C6/C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.952.383.311 (2)166
C19—H19A···Cg2ii0.952.593.4534 (18)152
C21—H21A···Cg1iii0.992.643.5288 (15)149
Symmetry codes: (i) x1, y, z; (ii) x, y, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H17BrN2O2
Mr421.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.3121 (2), 9.8136 (2), 11.8458 (2)
α, β, γ (°)108.217 (1), 101.135 (1), 109.361 (1)
V3)915.39 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.42 × 0.33 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.450, 0.728
No. of measured, independent and
observed [I > I > 2σ(I)] reflections
21718, 5326, 4846
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.06
No. of reflections5326
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.65

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N1/C1/C6/C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.952.383.311 (2)166
C19—H19A···Cg2ii0.952.593.4534 (18)152
C21—H21A···Cg1iii0.992.643.5288 (15)149
Symmetry codes: (i) x1, y, z; (ii) x, y, z; (iii) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University grants Nos. 1001/PFIZIK/811151 and 1001/PSK/8620012. The authors also thank Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malaysia.

References

First citationArumugam, N., Abdul Rahim, A. S., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o2412–o2413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDubey, A. K. & Sanyal, P. K. (2010). Vet Scan, 5, 63.  Google Scholar
First citationLacey, E. (1990). Parasitol. Today, 6, 112–115.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRao, A., Chimirri, A., Clercq, E. D., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappala, M. (2002). Il Farmaco, 57, 819–823.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacologyonline, 1, 314–329.  Google Scholar
First citationTownsend, L. B. & Revankar, G. R. (1970). Chem. Rev. 70, 389–438.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds