organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­benzyl­­idene)naphthalen-1-amine

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: ruitaozhu@126.com

(Received 27 April 2012; accepted 3 May 2012; online 12 May 2012)

The title mol­ecule, C17H12BrN, is in a E conformation with respect to the C=N bond. The dihedral angle between the naphthalene ring system and the benzene ring is 53.26 (3)°.

Related literature

For general background on the properties of Schiff bases, see: Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]); Weber et al. (2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]). For related structures, see: Zhu et al. (2010[Zhu, R., Zhang, Y. & Ren, Y. (2010). Acta Cryst. E66, o2337.]); Harada et al. (2004[Harada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578-588.]); Tariq et al. (2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12BrN

  • Mr = 310.19

  • Monoclinic, P 21 /c

  • a = 7.0823 (6) Å

  • b = 25.555 (2) Å

  • c = 7.5712 (5) Å

  • β = 94.431 (1)°

  • V = 1366.19 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.99 mm−1

  • T = 298 K

  • 0.45 × 0.41 × 0.28 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.346, Tmax = 0.488

  • 6750 measured reflections

  • 2405 independent reflections

  • 1643 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.100

  • S = 1.03

  • 2405 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been receiving considerable attention for many years, primarily due to their importance as ligands in metal complexes with special magnetic (Weber et al., 2007), catalytic (Chen et al., 2008) and biological properties (May et al.,2004). As a part of our studies on the synthesis and structural properties of Schiff bases with naphthylamine and arylaldehydes, we have determined the structure of the title compound (Fig. 1). The molecule is in a trans configuration with respect to the C11N1 bond. The mean planes of the naphthylene ring system and benzene ring, C1—C10 and C12—C17 respectively, form dihedral angle of 53.26 (3)°. Some examples of related structures already appear in the literature (Zhu et al., 2010; Harada et al., 2004; Tariq et al., 2010).

Related literature top

For general background on the properties of Schiff bases, see: Chen et al. (2008); May et al. (2004); Weber et al. (2007). For related structures, see: Zhu et al. (2010); Harada et al. (2004); Tariq et al. (2010).

Experimental top

1-Naphthylamine (0.72 g,5 mmol) and p-bromobenzaldehyde (0.92 g, 5 mmol) were dissolved in ethanol (30 ml). The mixture was refluxed for 2 h, and then cooled to room temperature. The reaction mixture was filtered and the filter cake was recreystallized from ethyl alcohol (yield 90%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution of the title compound.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
N-(4-Bromobenzylidene)naphthalen-1-amine top
Crystal data top
C17H12BrNF(000) = 624
Mr = 310.19Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2253 reflections
a = 7.0823 (6) Åθ = 2.7–24.1°
b = 25.555 (2) ŵ = 2.99 mm1
c = 7.5712 (5) ÅT = 298 K
β = 94.431 (1)°Block, yellow
V = 1366.19 (18) Å30.45 × 0.41 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2405 independent reflections
Radiation source: fine-focus sealed tube1643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.346, Tmax = 0.488k = 2430
6750 measured reflectionsl = 98
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.2762P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2405 reflectionsΔρmax = 0.45 e Å3
173 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0366 (19)
Crystal data top
C17H12BrNV = 1366.19 (18) Å3
Mr = 310.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0823 (6) ŵ = 2.99 mm1
b = 25.555 (2) ÅT = 298 K
c = 7.5712 (5) Å0.45 × 0.41 × 0.28 mm
β = 94.431 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2405 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1643 reflections with I > 2σ(I)
Tmin = 0.346, Tmax = 0.488Rint = 0.080
6750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
2405 reflectionsΔρmin = 0.32 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.13531 (5)0.479652 (16)0.74533 (7)0.0722 (3)
N10.4392 (3)0.26397 (10)0.6574 (4)0.0388 (7)
C10.4699 (4)0.30922 (13)0.7241 (4)0.0368 (8)
H10.59180.31730.77070.044*
C20.3235 (4)0.34896 (12)0.7310 (4)0.0353 (8)
C30.3651 (5)0.39638 (13)0.8152 (5)0.0452 (9)
H30.48570.40180.86980.054*
C40.2310 (5)0.43560 (13)0.8194 (5)0.0497 (10)
H40.26100.46740.87440.060*
C50.0531 (5)0.42671 (13)0.7408 (5)0.0429 (9)
C60.0059 (5)0.38013 (15)0.6560 (5)0.0492 (10)
H60.11490.37490.60160.059*
C70.1413 (4)0.34164 (13)0.6537 (5)0.0475 (10)
H70.11000.30990.59890.057*
C80.5943 (4)0.22972 (13)0.6450 (4)0.0371 (8)
C90.7594 (4)0.24571 (14)0.5768 (5)0.0453 (10)
H90.77260.28040.54220.054*
C100.9082 (5)0.21025 (16)0.5588 (5)0.0546 (11)
H101.01870.22170.51210.066*
C110.8930 (5)0.15948 (15)0.6086 (5)0.0558 (11)
H110.99320.13660.59600.067*
C120.7270 (5)0.14119 (14)0.6791 (5)0.0440 (10)
C130.5735 (4)0.17643 (12)0.6966 (4)0.0343 (8)
C140.4062 (5)0.15755 (13)0.7641 (4)0.0430 (9)
H140.30480.18010.77520.052*
C150.3920 (5)0.10638 (15)0.8134 (5)0.0552 (10)
H150.28050.09450.85700.066*
C160.5417 (6)0.07172 (15)0.7995 (6)0.0609 (12)
H160.53070.03710.83510.073*
C170.7043 (6)0.08871 (15)0.7337 (6)0.0585 (11)
H170.80330.06520.72420.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0609 (3)0.0474 (3)0.1084 (5)0.01858 (19)0.0070 (3)0.0096 (3)
N10.0399 (15)0.0300 (16)0.0466 (19)0.0018 (12)0.0048 (13)0.0012 (14)
C10.0397 (18)0.033 (2)0.038 (2)0.0005 (15)0.0021 (15)0.0049 (16)
C20.0434 (19)0.0287 (19)0.034 (2)0.0012 (15)0.0055 (16)0.0028 (15)
C30.047 (2)0.036 (2)0.051 (2)0.0023 (16)0.0061 (18)0.0006 (18)
C40.059 (2)0.0260 (19)0.063 (3)0.0008 (17)0.001 (2)0.0061 (18)
C50.0459 (19)0.032 (2)0.052 (2)0.0059 (16)0.0117 (17)0.0064 (18)
C60.0381 (19)0.042 (2)0.068 (3)0.0009 (17)0.0076 (18)0.0029 (19)
C70.044 (2)0.029 (2)0.070 (3)0.0028 (16)0.0113 (18)0.0076 (19)
C80.0351 (17)0.040 (2)0.035 (2)0.0026 (15)0.0031 (15)0.0061 (16)
C90.0435 (19)0.038 (2)0.054 (3)0.0024 (16)0.0033 (18)0.0066 (18)
C100.0395 (19)0.053 (3)0.073 (3)0.0048 (18)0.0131 (19)0.015 (2)
C110.040 (2)0.046 (3)0.080 (3)0.0071 (17)0.004 (2)0.024 (2)
C120.0397 (19)0.038 (2)0.053 (2)0.0018 (16)0.0073 (18)0.0130 (18)
C130.0382 (17)0.0290 (19)0.035 (2)0.0007 (15)0.0022 (15)0.0066 (16)
C140.050 (2)0.035 (2)0.044 (2)0.0000 (16)0.0041 (17)0.0072 (18)
C150.070 (3)0.041 (2)0.055 (3)0.009 (2)0.014 (2)0.001 (2)
C160.078 (3)0.030 (2)0.073 (3)0.006 (2)0.005 (2)0.006 (2)
C170.063 (2)0.034 (2)0.076 (3)0.0115 (19)0.013 (2)0.008 (2)
Geometric parameters (Å, º) top
Br1—C51.902 (3)C9—C101.405 (5)
N1—C11.274 (4)C9—H90.9300
N1—C81.413 (4)C10—C111.358 (5)
C1—C21.455 (4)C10—H100.9300
C1—H10.9300C11—C121.408 (5)
C2—C71.388 (4)C11—H110.9300
C2—C31.390 (5)C12—C171.416 (5)
C3—C41.383 (5)C12—C131.426 (5)
C3—H30.9300C13—C141.412 (4)
C4—C51.370 (5)C14—C151.366 (5)
C4—H40.9300C14—H140.9300
C5—C61.381 (5)C15—C161.392 (5)
C6—C71.375 (5)C15—H150.9300
C6—H60.9300C16—C171.361 (6)
C7—H70.9300C16—H160.9300
C8—C91.376 (5)C17—H170.9300
C8—C131.427 (4)
C1—N1—C8118.6 (3)C8—C9—H9119.7
N1—C1—C2123.2 (3)C10—C9—H9119.7
N1—C1—H1118.4C11—C10—C9120.9 (4)
C2—C1—H1118.4C11—C10—H10119.6
C7—C2—C3117.9 (3)C9—C10—H10119.6
C7—C2—C1122.2 (3)C10—C11—C12120.6 (3)
C3—C2—C1119.9 (3)C10—C11—H11119.7
C4—C3—C2121.4 (3)C12—C11—H11119.7
C4—C3—H3119.3C11—C12—C17122.8 (3)
C2—C3—H3119.3C11—C12—C13119.4 (3)
C5—C4—C3118.7 (3)C17—C12—C13117.8 (3)
C5—C4—H4120.6C14—C13—C12119.0 (3)
C3—C4—H4120.6C14—C13—C8122.2 (3)
C4—C5—C6121.7 (3)C12—C13—C8118.8 (3)
C4—C5—Br1119.8 (3)C15—C14—C13120.5 (3)
C6—C5—Br1118.5 (2)C15—C14—H14119.7
C7—C6—C5118.6 (3)C13—C14—H14119.7
C7—C6—H6120.7C14—C15—C16121.1 (4)
C5—C6—H6120.7C14—C15—H15119.5
C6—C7—C2121.7 (3)C16—C15—H15119.5
C6—C7—H7119.2C17—C16—C15119.7 (4)
C2—C7—H7119.2C17—C16—H16120.1
C9—C8—N1121.9 (3)C15—C16—H16120.1
C9—C8—C13119.6 (3)C16—C17—C12121.9 (4)
N1—C8—C13118.4 (3)C16—C17—H17119.1
C8—C9—C10120.7 (3)C12—C17—H17119.1
C8—N1—C1—C2175.2 (3)C9—C10—C11—C120.2 (6)
N1—C1—C2—C74.6 (5)C10—C11—C12—C17179.7 (3)
N1—C1—C2—C3176.3 (3)C10—C11—C12—C130.5 (5)
C7—C2—C3—C41.2 (6)C11—C12—C13—C14178.8 (3)
C1—C2—C3—C4178.0 (3)C17—C12—C13—C141.0 (5)
C2—C3—C4—C51.0 (6)C11—C12—C13—C81.2 (5)
C3—C4—C5—C61.0 (6)C17—C12—C13—C8179.0 (3)
C3—C4—C5—Br1179.6 (3)C9—C8—C13—C14178.7 (3)
C4—C5—C6—C71.1 (6)N1—C8—C13—C142.0 (5)
Br1—C5—C6—C7179.5 (3)C9—C8—C13—C121.3 (5)
C5—C6—C7—C21.3 (6)N1—C8—C13—C12178.0 (3)
C3—C2—C7—C61.3 (6)C12—C13—C14—C150.5 (5)
C1—C2—C7—C6177.8 (4)C8—C13—C14—C15179.5 (3)
C1—N1—C8—C948.1 (5)C13—C14—C15—C160.4 (6)
C1—N1—C8—C13135.2 (3)C14—C15—C16—C170.9 (6)
N1—C8—C9—C10177.2 (3)C15—C16—C17—C120.4 (6)
C13—C8—C9—C100.6 (5)C11—C12—C17—C16179.2 (4)
C8—C9—C10—C110.1 (6)C13—C12—C17—C160.5 (6)

Experimental details

Crystal data
Chemical formulaC17H12BrN
Mr310.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.0823 (6), 25.555 (2), 7.5712 (5)
β (°) 94.431 (1)
V3)1366.19 (18)
Z4
Radiation typeMo Kα
µ (mm1)2.99
Crystal size (mm)0.45 × 0.41 × 0.28
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.346, 0.488
No. of measured, independent and
observed [I > 2σ(I)] reflections
6750, 2405, 1643
Rint0.080
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.100, 1.03
No. of reflections2405
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.32

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors gratefully acknowledge the Project of the Taiyuan Normal University Young Academic Leaders.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578–588.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, R., Zhang, Y. & Ren, Y. (2010). Acta Cryst. E66, o2337.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds