metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m773-m774

[4,6-Di­methyl­pyrimidine-2(1H)-thione-κS]iodidobis(tri­phenyl­phosphane-κP)copper(I)

aDepartment of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Thailand
*Correspondence e-mail: chaveng.p@psu.ac.th

(Received 2 May 2012; accepted 9 May 2012; online 16 May 2012)

In the mononuclear title complex, [CuI(C6H8N2S)(C18H15P)2], the CuI ion is in a slightly distorted tetra­hedral coordination geometry formed by two P atoms from two triphenyl­phosphane ligands, one S atom from a 4,6-dimethyl­pyrimidine-2(1H)-thione ligand and one iodide ion. There is an intra­molecular N—H⋯I hydrogen bond. In the crystal, ππ stacking inter­actions [centroid–centroid distance = 3.594 (1) Å] are observed.

Related literature

For the coordination and potential applications of CuI complexes, see: Santra et al. (1999[Santra, P. K., Das, D., Misra, T. K., Roy, R., Sinhaa, C. & Pengb, S.-M. (1999). Polyhedron, 18, 1909-1915.]); Fujisawa et al. (2004[Fujisawa, K., Fujita, K., Takahashi, T., Kitajima, N., Moro-oka, Y., Matsunaga, Y., Miyashita, Y. & Okamoto, K. (2004). Inorg. Chem. Commun. 7, 1188-1190.]); Tian et al. (2004[Tian, Y.-Q., Xu, H.-J., Weng, L.-H., Chen, Z.-X., Zhao, D.-Y. & You, X.-Z. (2004). Eur. J. Inorg. Chem. pp. 1813-1816.]); Kang (2006[Kang, J. H. (2006). J. Biochem. Mol. Biol. 39, 335-338.]); Reymond & Cossy (2008[Reymond, S. & Cossy, J. (2008). Chem. Rev. 108, 5359-5406.]); Gong et al. (2010[Gong, F., Wang, Q., Chen, J., Yang, Z., Liu, M., Li, S. & Yang, G. (2010). Inorg. Chem. 49, 1658-1666.]). For relevant examples of discrete complexes, see: Voutsas et al. (1995[Voutsas, G. P., Kokkou, S. C., Cheer, C. J., Aslanidis, P. & Karagiannidis, P. (1995). Polyhedron, 14, 2287-2292.]); Lemos et al. (2001[Lemos, S. S., Camargo, M. A., Cardoso, Z. Z., Deflon, V. M., Försterling, F. H. & Hagenbach, A. (2001). Polyhedron, 20, 849-854.]); Lobana et al. (2008[Lobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008-1016.]); Nimthong et al. (2008[Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.]).

[Scheme 1]

Experimental

Crystal data
  • [CuI(C6H8N2S)(C18H15P)2]

  • Mr = 855.18

  • Triclinic, [P \overline 1]

  • a = 11.5605 (7) Å

  • b = 13.0076 (8) Å

  • c = 13.6456 (8) Å

  • α = 92.243 (1)°

  • β = 99.247 (1)°

  • γ = 106.092 (1)°

  • V = 1938.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 K

  • 0.32 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.744, Tmax = 0.882

  • 26730 measured reflections

  • 9368 independent reflections

  • 8066 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.03

  • 9368 reflections

  • 448 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯I1 0.87 (3) 2.62 (3) 3.4858 (18) 176 (3)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis and coordination chemistry of copper(I) complexes have been widely studied. Some of these complexes have been found to have unusual structural features, exhibit corrosion-inhibiting properties (Tian et al., 2004), catalytic activity in photo-redox reactions (Santra et al., 1999), phosphorescence due to close Cu···Cu interactions (Gong, et al., 2010), precursors to blue copper–protein model (Fujisawa et al., 2004) and catalysts in enantiomer selective Diels–Alder reactions (Reymond & Cossy, 2008). Moreover, the role of copper(I) is evident in several biologically important reactions, such as a dioxygen carrier and models for several enzymes (Kang, 2006).

The molecular structure of the title compound is shown in Fig. 1. The complex is monomeric with a slightly distorted tetrahedral coordination enviroment around Cu1. The Cu1—S bond length of 2.3404 (6) Å, is in good agreement with values reported for other copper(I) complexes with heterocyclic thione ligands, such as 2.3723 (12) Å for [Cu(N3)(dmpymtH)(PPh3)2] (Lemos et al., 2001) and 2.344 (3) Å for [CuI(1κs-imzsH)(PPh3)2] (Lobana et al., 2008). The Cu1—P1 and Cu1—P2 bond distances, 2.2897 (5) and 2.3047 (5) Å, are as expected. The bond distance of Cu1—I1, 2.6801 (3), is comparable to those found [2.6658 (8) Å] for [Cu2(C7H8N2S)(C18 H13P)2I] (Nimthong et al., 2008) and 2.674 (2) Å for [Cu(PPh3)2(pymtH)I] (Voutsas et al., 1995). In the crystal, π(pyrimidine)···π(pyrimidine) (centroid-centroid distances = 3.594 Å) interactions are observed. In addition, an intramolecular hydrogen bond is also observed (see Table 1 and Fig. 2).

Related literature top

For the coordination and potential applications of CuI complexes, see: Santra et al. (1999); Fujisawa et al. (2004); Tian et al. (2004); Kang (2006); Reymond & Cossy (2008); Gong et al. (2010). For relevant examples of discrete complexes, see: Voutsas et al. (1995); Lemos et al. (2001); Lobana et al. (2008); Nimthong et al. (2008).

Experimental top

A solution of 4,6-dimethylpyrimidine-2(1H)-thione, (0.08 g, 0.52 mmol) in 30 cm3 of methanol was stirred at 333 K then CuI (0.10 g, 0.52 mmol) solid was added and stirred for 3 h. Solid of triphenylphosphane (0.27 g, 1.04 mmol) was added and heated with continuous stirring for a period of 2 h. The clear yellow solution was formed then filtered off and kept at room temperature. Slow evaporation of the solvent gave the yellow colored crystalline solids, which were filtered off and dried in vacuo. Analysis found: C 60.11, H 4.46, N 2.88, S 3.22%; calculated for C42H37CuIN2P2S: C 59.03, H 4.37, N 3.28, S 3.76%.

Refinement top

The H atoms bonded to C atoms were constrained with a riding model of 0.93–0.96 Å, and Uiso(H) = 1.2Ueq(C). The H atom bonded to the N atom was located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with the intramolecular hydrogen bond and ππ stacking interactions shown asphosphine dashed lines.
[4,6-Dimethylpyrimidine-2(1H)-thione- κS]iodidobis(triphenylphosphane-κP)copper(I) top
Crystal data top
[CuI(C6H8N2S)(C18H15P)2]Z = 2
Mr = 855.18F(000) = 864
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.5605 (7) ÅCell parameters from 9368 reflections
b = 13.0076 (8) Åθ = 1.5–28.1°
c = 13.6456 (8) ŵ = 1.53 mm1
α = 92.243 (1)°T = 293 K
β = 99.247 (1)°Block, yellow
γ = 106.092 (1)°0.32 × 0.16 × 0.08 mm
V = 1938.3 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
9368 independent reflections
Radiation source: fine-focus sealed tube8066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1515
Tmin = 0.744, Tmax = 0.882k = 1717
26730 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.040P)2 + 0.4017P]
where P = (Fo2 + 2Fc2)/3
9368 reflections(Δ/σ)max = 0.009
448 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[CuI(C6H8N2S)(C18H15P)2]γ = 106.092 (1)°
Mr = 855.18V = 1938.3 (2) Å3
Triclinic, P1Z = 2
a = 11.5605 (7) ÅMo Kα radiation
b = 13.0076 (8) ŵ = 1.53 mm1
c = 13.6456 (8) ÅT = 293 K
α = 92.243 (1)°0.32 × 0.16 × 0.08 mm
β = 99.247 (1)°
Data collection top
Bruker SMART CCD
diffractometer
9368 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
8066 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.882Rint = 0.019
26730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.90 e Å3
9368 reflectionsΔρmin = 0.26 e Å3
448 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C280.1739 (3)0.7348 (2)0.7628 (3)0.0828 (9)
H280.18740.80680.75110.099*
N10.30622 (16)0.47879 (16)0.54816 (13)0.0497 (4)
N20.50121 (16)0.58089 (15)0.62532 (14)0.0522 (4)
I10.059857 (12)0.249292 (11)0.536351 (9)0.05129 (5)
Cu10.20767 (2)0.292271 (17)0.714703 (16)0.03664 (6)
P10.23312 (4)0.13349 (4)0.76683 (3)0.03493 (10)
P20.11163 (4)0.37674 (4)0.81382 (3)0.03521 (10)
S0.40255 (5)0.40670 (5)0.71098 (4)0.05366 (14)
C250.13677 (17)0.52001 (15)0.79783 (16)0.0419 (4)
C360.2937 (2)0.4210 (2)0.97987 (18)0.0589 (6)
H360.34340.45070.93490.071*
C310.16908 (18)0.37741 (15)0.94672 (14)0.0413 (4)
C70.08651 (17)0.04295 (14)0.78284 (14)0.0390 (4)
C130.33044 (18)0.13894 (16)0.88752 (14)0.0413 (4)
C200.12265 (19)0.38591 (17)0.84239 (16)0.0479 (5)
H200.08320.45330.87580.057*
C190.05481 (16)0.32710 (14)0.80249 (13)0.0361 (4)
C1A0.40371 (17)0.49478 (16)0.62299 (15)0.0436 (4)
C150.3912 (3)0.0614 (3)1.03790 (19)0.0688 (7)
H150.37910.00471.07820.083*
C10.29216 (18)0.05372 (14)0.68461 (15)0.0413 (4)
C240.11585 (18)0.22715 (16)0.75210 (15)0.0457 (4)
H240.07210.18690.72440.055*
C120.0372 (2)0.06523 (18)0.86484 (17)0.0519 (5)
H120.08230.12090.91250.062*
C230.2420 (2)0.18691 (19)0.74285 (18)0.0582 (6)
H230.28220.11970.70930.070*
C300.1607 (2)0.59860 (18)0.8761 (2)0.0595 (6)
H300.16470.57930.94120.071*
C4A0.4968 (2)0.64843 (17)0.55446 (18)0.0528 (5)
C3A0.3966 (2)0.63329 (19)0.47959 (19)0.0590 (6)
H3A0.39600.68270.43220.071*
C210.2480 (2)0.3452 (2)0.83287 (19)0.0588 (6)
H210.29240.38500.86030.071*
C260.1312 (2)0.5507 (2)0.70146 (18)0.0577 (5)
H260.11530.49910.64810.069*
C60.3865 (2)0.0101 (2)0.7182 (2)0.0607 (6)
H60.42330.02160.78500.073*
C140.3145 (2)0.0530 (2)0.94765 (17)0.0549 (5)
H140.25180.01000.92660.066*
C110.0780 (2)0.0054 (2)0.8761 (2)0.0636 (6)
H110.10990.02050.93160.076*
C80.0176 (2)0.03985 (19)0.71278 (18)0.0577 (6)
H80.04890.05630.65750.069*
C180.4263 (2)0.23035 (18)0.91961 (17)0.0545 (5)
H180.43940.28780.88030.065*
C320.0970 (2)0.33340 (18)1.01459 (16)0.0523 (5)
H320.01320.30330.99400.063*
C220.3075 (2)0.2458 (2)0.78291 (19)0.0608 (6)
H220.39200.21860.77640.073*
C100.1458 (2)0.0765 (2)0.8056 (2)0.0730 (7)
H100.22360.11670.81300.088*
C350.3454 (3)0.4211 (3)1.0784 (2)0.0741 (8)
H350.42920.45101.09940.089*
C20.2401 (2)0.03643 (19)0.58387 (17)0.0567 (5)
H20.17860.06710.55980.068*
C2A0.2996 (2)0.5461 (2)0.47577 (18)0.0589 (6)
C170.5035 (3)0.2368 (2)1.0107 (2)0.0738 (8)
H170.56760.29881.03180.089*
C160.4861 (3)0.1539 (3)1.0685 (2)0.0743 (8)
H160.53820.15921.12920.089*
C6A0.6067 (3)0.7428 (2)0.5611 (3)0.0796 (8)
H6A10.61280.79030.61850.119*
H6A20.59940.78010.50210.119*
H6A30.67870.71870.56680.119*
C330.1498 (3)0.3341 (2)1.11417 (18)0.0693 (7)
H330.10090.30511.15990.083*
C340.2736 (3)0.3774 (2)1.1448 (2)0.0761 (8)
H340.30850.37701.21110.091*
C5A0.1858 (3)0.5182 (3)0.3989 (2)0.1030 (13)
H5A10.12440.54320.42380.155*
H5A20.15670.44170.38400.155*
H5A30.20320.55190.33950.155*
C50.4258 (3)0.0509 (3)0.6519 (3)0.0819 (9)
H50.48980.07930.67440.098*
C30.2792 (3)0.0261 (2)0.5190 (2)0.0716 (7)
H30.24280.03840.45200.086*
C40.3712 (3)0.0695 (2)0.5536 (2)0.0793 (9)
H40.39690.11190.51010.095*
C290.1787 (3)0.7050 (2)0.8583 (3)0.0758 (8)
H290.19420.75690.91140.091*
C90.0984 (2)0.0983 (2)0.7250 (2)0.0791 (8)
H90.14460.15340.67720.095*
C270.1490 (3)0.6578 (2)0.6843 (2)0.0777 (8)
H270.14420.67770.61940.093*
H1N0.247 (3)0.420 (2)0.547 (2)0.078 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C280.0644 (16)0.0417 (13)0.141 (3)0.0128 (12)0.0139 (18)0.0234 (17)
N10.0387 (9)0.0553 (11)0.0455 (9)0.0002 (8)0.0018 (7)0.0137 (8)
N20.0393 (9)0.0523 (10)0.0570 (11)0.0014 (8)0.0059 (8)0.0074 (8)
I10.04691 (8)0.05672 (9)0.03803 (8)0.00194 (6)0.00378 (5)0.00007 (6)
Cu10.03788 (12)0.03647 (12)0.03407 (11)0.00853 (9)0.00599 (9)0.00272 (9)
P10.0365 (2)0.0340 (2)0.0347 (2)0.00952 (18)0.00871 (18)0.00224 (18)
P20.0338 (2)0.0356 (2)0.0343 (2)0.00938 (18)0.00254 (18)0.00113 (18)
S0.0366 (2)0.0665 (3)0.0475 (3)0.0004 (2)0.0008 (2)0.0205 (2)
C250.0321 (9)0.0378 (9)0.0543 (11)0.0091 (7)0.0050 (8)0.0045 (8)
C360.0478 (12)0.0735 (15)0.0511 (13)0.0197 (11)0.0040 (10)0.0108 (11)
C310.0464 (10)0.0423 (10)0.0352 (9)0.0187 (8)0.0011 (8)0.0062 (7)
C70.0376 (9)0.0364 (9)0.0447 (10)0.0111 (7)0.0105 (8)0.0078 (8)
C130.0419 (10)0.0473 (10)0.0392 (10)0.0198 (8)0.0076 (8)0.0049 (8)
C200.0456 (11)0.0457 (11)0.0520 (12)0.0134 (9)0.0090 (9)0.0031 (9)
C190.0342 (9)0.0399 (9)0.0339 (9)0.0105 (7)0.0051 (7)0.0033 (7)
C1A0.0340 (9)0.0501 (11)0.0424 (10)0.0052 (8)0.0064 (8)0.0063 (8)
C150.0698 (16)0.093 (2)0.0561 (14)0.0397 (15)0.0136 (12)0.0321 (14)
C10.0449 (10)0.0329 (9)0.0487 (11)0.0086 (8)0.0206 (9)0.0018 (8)
C240.0410 (10)0.0466 (11)0.0474 (11)0.0099 (8)0.0085 (8)0.0046 (8)
C120.0540 (12)0.0546 (12)0.0484 (12)0.0127 (10)0.0188 (10)0.0042 (9)
C230.0449 (11)0.0560 (13)0.0625 (14)0.0012 (10)0.0088 (10)0.0096 (11)
C300.0603 (14)0.0433 (11)0.0696 (15)0.0089 (10)0.0095 (12)0.0041 (10)
C4A0.0460 (11)0.0459 (11)0.0656 (14)0.0075 (9)0.0174 (10)0.0075 (10)
C3A0.0579 (13)0.0559 (13)0.0653 (15)0.0139 (11)0.0169 (11)0.0248 (11)
C210.0489 (12)0.0665 (14)0.0676 (15)0.0228 (11)0.0197 (11)0.0006 (12)
C260.0566 (13)0.0569 (13)0.0584 (13)0.0179 (11)0.0021 (11)0.0128 (11)
C60.0605 (14)0.0649 (15)0.0646 (15)0.0274 (12)0.0188 (12)0.0008 (12)
C140.0509 (12)0.0621 (13)0.0546 (13)0.0191 (11)0.0096 (10)0.0175 (10)
C110.0568 (14)0.0752 (16)0.0663 (15)0.0175 (12)0.0318 (12)0.0194 (13)
C80.0476 (12)0.0582 (13)0.0604 (14)0.0034 (10)0.0135 (10)0.0086 (11)
C180.0553 (13)0.0501 (12)0.0539 (13)0.0164 (10)0.0042 (10)0.0009 (10)
C320.0597 (13)0.0524 (12)0.0429 (11)0.0169 (10)0.0025 (9)0.0044 (9)
C220.0376 (11)0.0735 (16)0.0674 (15)0.0082 (10)0.0136 (10)0.0014 (12)
C100.0452 (13)0.0726 (17)0.097 (2)0.0019 (12)0.0246 (14)0.0171 (15)
C350.0616 (15)0.096 (2)0.0607 (16)0.0371 (15)0.0184 (13)0.0229 (14)
C20.0665 (14)0.0596 (13)0.0490 (12)0.0225 (11)0.0183 (11)0.0018 (10)
C2A0.0535 (13)0.0669 (15)0.0515 (13)0.0109 (11)0.0041 (10)0.0193 (11)
C170.0651 (16)0.0727 (17)0.0712 (17)0.0201 (13)0.0208 (13)0.0064 (14)
C160.0705 (17)0.103 (2)0.0530 (14)0.0422 (17)0.0090 (12)0.0069 (14)
C6A0.0615 (16)0.0562 (15)0.110 (2)0.0056 (12)0.0211 (16)0.0166 (15)
C330.095 (2)0.0756 (17)0.0410 (12)0.0339 (15)0.0062 (12)0.0104 (11)
C340.099 (2)0.089 (2)0.0442 (13)0.0519 (18)0.0173 (14)0.0088 (13)
C5A0.0741 (19)0.124 (3)0.082 (2)0.0040 (19)0.0207 (16)0.055 (2)
C50.083 (2)0.085 (2)0.099 (2)0.0493 (17)0.0372 (18)0.0027 (17)
C30.0882 (19)0.0708 (16)0.0584 (15)0.0197 (15)0.0300 (14)0.0112 (12)
C40.094 (2)0.0695 (17)0.086 (2)0.0278 (16)0.0473 (18)0.0101 (15)
C290.0727 (17)0.0385 (12)0.110 (2)0.0092 (12)0.0121 (16)0.0065 (14)
C90.0520 (14)0.0715 (17)0.095 (2)0.0115 (12)0.0176 (14)0.0172 (15)
C270.0728 (18)0.0692 (18)0.092 (2)0.0231 (14)0.0062 (15)0.0383 (16)
Geometric parameters (Å, º) top
C28—C291.372 (5)C4A—C6A1.490 (3)
C28—C271.375 (5)C3A—C2A1.349 (3)
C28—H280.9300C3A—H3A0.9300
N1—C2A1.352 (3)C21—C221.377 (3)
N1—C1A1.356 (3)C21—H210.9300
N1—H1N0.87 (3)C26—C271.386 (3)
N2—C4A1.336 (3)C26—H260.9300
N2—C1A1.346 (2)C6—C51.390 (3)
I1—Cu12.6801 (3)C6—H60.9300
Cu1—P12.2897 (5)C14—H140.9300
Cu1—P22.3047 (5)C11—C101.374 (4)
Cu1—S2.3404 (6)C11—H110.9300
P1—C131.826 (2)C8—C91.385 (3)
P1—C71.8276 (19)C8—H80.9300
P1—C11.8301 (18)C18—C171.394 (3)
P2—C311.8271 (19)C18—H180.9300
P2—C191.8306 (18)C32—C331.396 (3)
P2—C251.832 (2)C32—H320.9300
S—C1A1.691 (2)C22—H220.9300
C25—C261.386 (3)C10—C91.359 (4)
C25—C301.388 (3)C10—H100.9300
C36—C351.380 (3)C35—C341.362 (4)
C36—C311.385 (3)C35—H350.9300
C36—H360.9300C2—C31.388 (3)
C31—C321.380 (3)C2—H20.9300
C7—C81.381 (3)C2A—C5A1.491 (4)
C7—C121.390 (3)C17—C161.350 (4)
C13—C181.381 (3)C17—H170.9300
C13—C141.401 (3)C16—H160.9300
C20—C211.380 (3)C6A—H6A10.9600
C20—C191.391 (3)C6A—H6A20.9600
C20—H200.9300C6A—H6A30.9600
C19—C241.388 (3)C33—C341.372 (4)
C15—C141.378 (3)C33—H330.9300
C15—C161.382 (4)C34—H340.9300
C15—H150.9300C5A—H5A10.9600
C1—C61.387 (3)C5A—H5A20.9600
C1—C21.392 (3)C5A—H5A30.9600
C24—C231.389 (3)C5—C41.369 (5)
C24—H240.9300C5—H50.9300
C12—C111.380 (3)C3—C41.365 (4)
C12—H120.9300C3—H30.9300
C23—C221.372 (3)C4—H40.9300
C23—H230.9300C29—H290.9300
C30—C291.378 (3)C9—H90.9300
C30—H300.9300C27—H270.9300
C4A—C3A1.379 (3)
C29—C28—C27119.7 (2)C25—C26—H26119.8
C29—C28—H28120.1C27—C26—H26119.8
C27—C28—H28120.1C1—C6—C5120.0 (3)
C2A—N1—C1A123.70 (19)C1—C6—H6120.0
C2A—N1—H1N119.8 (19)C5—C6—H6120.0
C1A—N1—H1N116.5 (19)C15—C14—C13120.3 (2)
C4A—N2—C1A118.34 (19)C15—C14—H14119.8
P1—Cu1—P2114.845 (19)C13—C14—H14119.8
P1—Cu1—S107.14 (2)C10—C11—C12120.1 (2)
P2—Cu1—S108.80 (2)C10—C11—H11119.9
P1—Cu1—I1107.867 (15)C12—C11—H11119.9
P2—Cu1—I1104.908 (15)C7—C8—C9119.9 (2)
S—Cu1—I1113.453 (16)C7—C8—H8120.1
C13—P1—C7102.91 (9)C9—C8—H8120.1
C13—P1—C1102.99 (9)C13—C18—C17120.3 (2)
C7—P1—C1104.14 (9)C13—C18—H18119.9
C13—P1—Cu1117.33 (7)C17—C18—H18119.9
C7—P1—Cu1110.26 (6)C31—C32—C33120.1 (2)
C1—P1—Cu1117.49 (6)C31—C32—H32120.0
C31—P2—C19104.15 (9)C33—C32—H32120.0
C31—P2—C25102.49 (9)C23—C22—C21119.9 (2)
C19—P2—C25102.70 (8)C23—C22—H22120.0
C31—P2—Cu1112.72 (6)C21—C22—H22120.0
C19—P2—Cu1118.86 (6)C9—C10—C11119.6 (2)
C25—P2—Cu1114.09 (7)C9—C10—H10120.2
C1A—S—Cu1113.57 (7)C11—C10—H10120.2
C26—C25—C30118.6 (2)C34—C35—C36119.9 (3)
C26—C25—P2117.47 (17)C34—C35—H35120.1
C30—C25—P2123.89 (17)C36—C35—H35120.1
C35—C36—C31121.2 (3)C3—C2—C1120.6 (2)
C35—C36—H36119.4C3—C2—H2119.7
C31—C36—H36119.4C1—C2—H2119.7
C32—C31—C36118.4 (2)C3A—C2A—N1117.0 (2)
C32—C31—P2124.09 (16)C3A—C2A—C5A125.5 (2)
C36—C31—P2117.43 (17)N1—C2A—C5A117.5 (2)
C8—C7—C12118.64 (19)C16—C17—C18120.6 (3)
C8—C7—P1123.06 (15)C16—C17—H17119.7
C12—C7—P1118.01 (15)C18—C17—H17119.7
C18—C13—C14118.5 (2)C17—C16—C15120.2 (2)
C18—C13—P1118.66 (16)C17—C16—H16119.9
C14—C13—P1122.82 (17)C15—C16—H16119.9
C21—C20—C19120.6 (2)C4A—C6A—H6A1109.5
C21—C20—H20119.7C4A—C6A—H6A2109.5
C19—C20—H20119.7H6A1—C6A—H6A2109.5
C24—C19—C20118.64 (18)C4A—C6A—H6A3109.5
C24—C19—P2118.91 (14)H6A1—C6A—H6A3109.5
C20—C19—P2122.45 (15)H6A2—C6A—H6A3109.5
N2—C1A—N1119.00 (18)C34—C33—C32120.2 (3)
N2—C1A—S120.84 (15)C34—C33—H33119.9
N1—C1A—S120.16 (15)C32—C33—H33119.9
C14—C15—C16120.0 (2)C35—C34—C33120.1 (2)
C14—C15—H15120.0C35—C34—H34119.9
C16—C15—H15120.0C33—C34—H34119.9
C6—C1—C2118.65 (19)C2A—C5A—H5A1109.5
C6—C1—P1122.95 (17)C2A—C5A—H5A2109.5
C2—C1—P1118.40 (16)H5A1—C5A—H5A2109.5
C19—C24—C23120.29 (19)C2A—C5A—H5A3109.5
C19—C24—H24119.9H5A1—C5A—H5A3109.5
C23—C24—H24119.9H5A2—C5A—H5A3109.5
C11—C12—C7120.6 (2)C4—C5—C6120.5 (3)
C11—C12—H12119.7C4—C5—H5119.7
C7—C12—H12119.7C6—C5—H5119.7
C22—C23—C24120.3 (2)C4—C3—C2119.9 (3)
C22—C23—H23119.8C4—C3—H3120.1
C24—C23—H23119.8C2—C3—H3120.1
C29—C30—C25120.6 (3)C3—C4—C5120.3 (2)
C29—C30—H30119.7C3—C4—H4119.8
C25—C30—H30119.7C5—C4—H4119.8
N2—C4A—C3A122.6 (2)C28—C29—C30120.4 (3)
N2—C4A—C6A116.1 (2)C28—C29—H29119.8
C3A—C4A—C6A121.3 (2)C30—C29—H29119.8
C2A—C3A—C4A119.3 (2)C10—C9—C8121.2 (3)
C2A—C3A—H3A120.3C10—C9—H9119.4
C4A—C3A—H3A120.3C8—C9—H9119.4
C22—C21—C20120.2 (2)C28—C27—C26120.3 (3)
C22—C21—H21119.9C28—C27—H27119.8
C20—C21—H21119.9C26—C27—H27119.8
C25—C26—C27120.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···I10.87 (3)2.62 (3)3.4858 (18)176 (3)

Experimental details

Crystal data
Chemical formula[CuI(C6H8N2S)(C18H15P)2]
Mr855.18
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.5605 (7), 13.0076 (8), 13.6456 (8)
α, β, γ (°)92.243 (1), 99.247 (1), 106.092 (1)
V3)1938.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.32 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.744, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
26730, 9368, 8066
Rint0.019
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.03
No. of reflections9368
No. of parameters448
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.90, 0.26

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···I10.87 (3)2.62 (3)3.4858 (18)176 (3)
 

Acknowledgements

We gratefully acknowledge financial support from the Center for Innovation in Chemistry (PERCH–CIC), the Commission on Higher Education, Ministry of Education, the Department of Chemistry and the Graduate School, Prince of Songkla University.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujisawa, K., Fujita, K., Takahashi, T., Kitajima, N., Moro-oka, Y., Matsunaga, Y., Miyashita, Y. & Okamoto, K. (2004). Inorg. Chem. Commun. 7, 1188–1190.  Web of Science CSD CrossRef CAS Google Scholar
First citationGong, F., Wang, Q., Chen, J., Yang, Z., Liu, M., Li, S. & Yang, G. (2010). Inorg. Chem. 49, 1658–1666.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKang, J. H. (2006). J. Biochem. Mol. Biol. 39, 335–338.  CrossRef PubMed CAS Google Scholar
First citationLemos, S. S., Camargo, M. A., Cardoso, Z. Z., Deflon, V. M., Försterling, F. H. & Hagenbach, A. (2001). Polyhedron, 20, 849–854.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008–1016.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReymond, S. & Cossy, J. (2008). Chem. Rev. 108, 5359–5406.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSantra, P. K., Das, D., Misra, T. K., Roy, R., Sinhaa, C. & Pengb, S.-M. (1999). Polyhedron, 18, 1909–1915.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y.-Q., Xu, H.-J., Weng, L.-H., Chen, Z.-X., Zhao, D.-Y. & You, X.-Z. (2004). Eur. J. Inorg. Chem. pp. 1813–1816.  Web of Science CSD CrossRef Google Scholar
First citationVoutsas, G. P., Kokkou, S. C., Cheer, C. J., Aslanidis, P. & Karagiannidis, P. (1995). Polyhedron, 14, 2287–2292.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m773-m774
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds