organic compounds
2-Amino-4,6-dimethoxypyrimidin-1-ium 2,2-dichloroacetate
aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bJournal Editorial Department, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: lincuihua2009@126.com
In the title salt, C6H10N3O2+·C2HCl2O2−, two cations and two anions are linked by N—H⋯O hydrogen bonds, forming chains along the c axis.
Related literature
For the biological activity of ). For the bioactivity of pyrimidine derivatives, see: Xue et al. (1993). For a related structure, see: Hemamalini et al. (2005). For standard bond lengths, see: Allen et al. (1987).
see: Gilchrist (1998Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812021496/lh5473sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812021496/lh5473Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812021496/lh5473Isup3.cml
A mixture of 2-amino-4,6-dichloropyrimidine (0.1 mol) and sodium methoxide (0.1 mol) was stirred with methanol (30 ml) for 3 h to afford 2-Amino-4,6-dimethoxypyrimidine (yield 85%). The title compound was crystallized from an aqueous mixture containing 2-Amino-4,6-dimethoxypyrimidine and dichloroacetate in a 1:1 stoichiometric ratio at room temperature by the slow evaporation technique.
H atoms bonded to C atoms were fixed geometrically and and included in a riding-model approximation with C—H = 0.93–0.98 Å and N—H = 0.86Å with Uiso(H)=1.2–1.5Ueq(C).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids. | |
Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. |
C6H10N3O2+·C2HCl2O2− | Z = 2 |
Mr = 284.10 | F(000) = 292 |
Triclinic, P1 | Dx = 1.533 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8502 (14) Å | Cell parameters from 3794 reflections |
b = 8.6667 (17) Å | θ = 3.5–27.5° |
c = 11.255 (2) Å | µ = 0.53 mm−1 |
α = 67.480 (1)° | T = 293 K |
β = 87.320 (2)° | Block, colorless |
γ = 85.970 (2)° | 0.45 × 0.43 × 0.35 mm |
V = 615.6 (2) Å3 |
Bruker SMART CCD diffractometer | 2173 independent reflections |
Radiation source: fine-focus sealed tube | 1806 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 25.0°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→7 |
Tmin = 0.795, Tmax = 0.835 | k = −10→10 |
4710 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.200 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.1265P)2 + 0.3628P] where P = (Fo2 + 2Fc2)/3 |
2173 reflections | (Δ/σ)max < 0.001 |
156 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C6H10N3O2+·C2HCl2O2− | γ = 85.970 (2)° |
Mr = 284.10 | V = 615.6 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.8502 (14) Å | Mo Kα radiation |
b = 8.6667 (17) Å | µ = 0.53 mm−1 |
c = 11.255 (2) Å | T = 293 K |
α = 67.480 (1)° | 0.45 × 0.43 × 0.35 mm |
β = 87.320 (2)° |
Bruker SMART CCD diffractometer | 2173 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1806 reflections with I > 2σ(I) |
Tmin = 0.795, Tmax = 0.835 | Rint = 0.026 |
4710 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.200 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.45 e Å−3 |
2173 reflections | Δρmin = −0.39 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.11057 (16) | 0.15674 (13) | 0.03526 (9) | 0.0641 (4) | |
Cl2 | 0.44050 (14) | 0.24515 (19) | 0.14101 (11) | 0.0804 (5) | |
N1 | 0.5368 (4) | 0.7901 (3) | 0.4560 (2) | 0.0365 (6) | |
N2 | 0.3706 (3) | 0.6207 (3) | 0.6442 (2) | 0.0336 (6) | |
H2 | 0.2667 | 0.6043 | 0.6924 | 0.040* | |
N3 | 0.2252 (4) | 0.8660 (3) | 0.5053 (3) | 0.0450 (7) | |
H3A | 0.2264 | 0.9542 | 0.4356 | 0.054* | |
H3B | 0.1235 | 0.8474 | 0.5555 | 0.054* | |
O1 | 0.4900 (3) | 0.3802 (3) | 0.7880 (2) | 0.0487 (6) | |
O2 | 0.8446 (3) | 0.7020 (3) | 0.4156 (2) | 0.0530 (7) | |
O3 | 0.0938 (4) | 0.1810 (3) | 0.3189 (2) | 0.0511 (7) | |
O4 | −0.0703 (4) | 0.4064 (3) | 0.1873 (2) | 0.0653 (8) | |
C1 | 0.3790 (4) | 0.7598 (3) | 0.5350 (3) | 0.0332 (6) | |
C2 | 0.5248 (4) | 0.5073 (4) | 0.6779 (3) | 0.0367 (7) | |
C3 | 0.6887 (4) | 0.5305 (4) | 0.6026 (3) | 0.0389 (7) | |
H3 | 0.7962 | 0.4540 | 0.6232 | 0.047* | |
C4 | 0.6855 (4) | 0.6780 (4) | 0.4910 (3) | 0.0384 (7) | |
C5 | 0.6408 (6) | 0.2493 (5) | 0.8325 (4) | 0.0651 (11) | |
H5A | 0.6728 | 0.2056 | 0.7670 | 0.098* | |
H5B | 0.5956 | 0.1614 | 0.9089 | 0.098* | |
H5C | 0.7551 | 0.2931 | 0.8514 | 0.098* | |
C6 | 0.8456 (6) | 0.8491 (5) | 0.3002 (4) | 0.0614 (10) | |
H6A | 0.7688 | 0.8339 | 0.2367 | 0.092* | |
H6B | 0.9777 | 0.8690 | 0.2682 | 0.092* | |
H6C | 0.7910 | 0.9432 | 0.3181 | 0.092* | |
C7 | 0.0616 (4) | 0.2935 (4) | 0.2130 (3) | 0.0378 (7) | |
C8 | 0.1932 (4) | 0.2995 (4) | 0.0968 (3) | 0.0394 (7) | |
H8 | 0.1832 | 0.4127 | 0.0302 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0840 (8) | 0.0668 (7) | 0.0495 (6) | −0.0127 (5) | −0.0068 (5) | −0.0292 (5) |
Cl2 | 0.0425 (6) | 0.1419 (12) | 0.0752 (7) | 0.0083 (6) | −0.0034 (5) | −0.0639 (8) |
N1 | 0.0382 (13) | 0.0356 (13) | 0.0345 (13) | −0.0043 (10) | 0.0020 (10) | −0.0121 (10) |
N2 | 0.0329 (12) | 0.0350 (13) | 0.0292 (12) | 0.0017 (10) | 0.0014 (9) | −0.0089 (10) |
N3 | 0.0435 (14) | 0.0386 (14) | 0.0392 (14) | 0.0085 (11) | 0.0022 (11) | −0.0016 (11) |
O1 | 0.0530 (13) | 0.0411 (12) | 0.0371 (12) | 0.0138 (10) | 0.0023 (10) | −0.0015 (9) |
O2 | 0.0392 (12) | 0.0607 (16) | 0.0543 (14) | −0.0042 (11) | 0.0145 (10) | −0.0181 (12) |
O3 | 0.0588 (15) | 0.0438 (13) | 0.0337 (12) | 0.0107 (10) | 0.0032 (10) | 0.0012 (10) |
O4 | 0.0660 (16) | 0.0588 (16) | 0.0430 (13) | 0.0296 (13) | 0.0131 (12) | 0.0046 (11) |
C1 | 0.0372 (15) | 0.0319 (14) | 0.0311 (14) | −0.0031 (11) | −0.0025 (11) | −0.0124 (11) |
C2 | 0.0424 (16) | 0.0340 (15) | 0.0334 (14) | 0.0028 (12) | −0.0045 (12) | −0.0128 (12) |
C3 | 0.0330 (15) | 0.0410 (16) | 0.0416 (16) | 0.0042 (12) | −0.0039 (12) | −0.0152 (13) |
C4 | 0.0348 (15) | 0.0445 (17) | 0.0396 (16) | −0.0071 (13) | 0.0019 (12) | −0.0197 (13) |
C5 | 0.070 (2) | 0.059 (2) | 0.0451 (19) | 0.0295 (19) | −0.0043 (18) | −0.0025 (17) |
C6 | 0.057 (2) | 0.068 (3) | 0.052 (2) | −0.0141 (18) | 0.0182 (17) | −0.0157 (18) |
C7 | 0.0431 (16) | 0.0315 (15) | 0.0340 (15) | 0.0008 (12) | 0.0002 (12) | −0.0076 (12) |
C8 | 0.0445 (17) | 0.0375 (16) | 0.0339 (15) | 0.0009 (12) | 0.0003 (12) | −0.0116 (12) |
Cl1—C8 | 1.767 (3) | O3—C7 | 1.234 (4) |
Cl2—C8 | 1.768 (3) | O4—C7 | 1.241 (4) |
N1—C4 | 1.320 (4) | C2—C3 | 1.353 (4) |
N1—C1 | 1.342 (4) | C3—C4 | 1.408 (4) |
N2—C2 | 1.354 (4) | C3—H3 | 0.9300 |
N2—C1 | 1.355 (4) | C5—H5A | 0.9600 |
N2—H2 | 0.8600 | C5—H5B | 0.9600 |
N3—C1 | 1.315 (4) | C5—H5C | 0.9600 |
N3—H3A | 0.8600 | C6—H6A | 0.9600 |
N3—H3B | 0.8600 | C6—H6B | 0.9600 |
O1—C2 | 1.330 (4) | C6—H6C | 0.9600 |
O1—C5 | 1.433 (4) | C7—C8 | 1.539 (4) |
O2—C4 | 1.327 (4) | C8—H8 | 0.9800 |
O2—C6 | 1.430 (5) | ||
C4—N1—C1 | 116.5 (2) | O1—C5—H5A | 109.5 |
C2—N2—C1 | 120.4 (2) | O1—C5—H5B | 109.5 |
C2—N2—H2 | 119.8 | H5A—C5—H5B | 109.5 |
C1—N2—H2 | 119.8 | O1—C5—H5C | 109.5 |
C1—N3—H3A | 120.0 | H5A—C5—H5C | 109.5 |
C1—N3—H3B | 120.0 | H5B—C5—H5C | 109.5 |
H3A—N3—H3B | 120.0 | O2—C6—H6A | 109.5 |
C2—O1—C5 | 117.1 (3) | O2—C6—H6B | 109.5 |
C4—O2—C6 | 117.9 (3) | H6A—C6—H6B | 109.5 |
N3—C1—N1 | 119.5 (3) | O2—C6—H6C | 109.5 |
N3—C1—N2 | 118.4 (3) | H6A—C6—H6C | 109.5 |
N1—C1—N2 | 122.1 (3) | H6B—C6—H6C | 109.5 |
O1—C2—C3 | 127.8 (3) | O3—C7—O4 | 126.9 (3) |
O1—C2—N2 | 111.7 (3) | O3—C7—C8 | 119.0 (3) |
C3—C2—N2 | 120.5 (3) | O4—C7—C8 | 114.1 (3) |
C2—C3—C4 | 115.5 (3) | C7—C8—Cl1 | 108.5 (2) |
C2—C3—H3 | 122.2 | C7—C8—Cl2 | 111.4 (2) |
C4—C3—H3 | 122.2 | Cl1—C8—Cl2 | 109.21 (17) |
N1—C4—O2 | 118.7 (3) | C7—C8—H8 | 109.3 |
N1—C4—C3 | 125.0 (3) | Cl1—C8—H8 | 109.3 |
O2—C4—C3 | 116.3 (3) | Cl2—C8—H8 | 109.3 |
C4—N1—C1—N3 | −179.5 (3) | C1—N1—C4—O2 | 179.6 (3) |
C4—N1—C1—N2 | −0.8 (4) | C1—N1—C4—C3 | 0.9 (4) |
C2—N2—C1—N3 | 179.4 (3) | C6—O2—C4—N1 | 0.1 (4) |
C2—N2—C1—N1 | 0.7 (4) | C6—O2—C4—C3 | 179.0 (3) |
C5—O1—C2—C3 | −1.4 (5) | C2—C3—C4—N1 | −0.7 (5) |
C5—O1—C2—N2 | 178.5 (3) | C2—C3—C4—O2 | −179.5 (3) |
C1—N2—C2—O1 | 179.6 (3) | O3—C7—C8—Cl1 | 81.6 (3) |
C1—N2—C2—C3 | −0.5 (4) | O4—C7—C8—Cl1 | −97.9 (3) |
O1—C2—C3—C4 | −179.6 (3) | O3—C7—C8—Cl2 | −38.6 (4) |
N2—C2—C3—C4 | 0.5 (4) | O4—C7—C8—Cl2 | 141.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O3i | 0.86 | 1.97 | 2.822 (3) | 173 |
N3—H3A···O3ii | 0.86 | 2.07 | 2.848 (3) | 149 |
N2—H2···O4i | 0.86 | 1.85 | 2.692 (3) | 168 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C6H10N3O2+·C2HCl2O2− |
Mr | 284.10 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.8502 (14), 8.6667 (17), 11.255 (2) |
α, β, γ (°) | 67.480 (1), 87.320 (2), 85.970 (2) |
V (Å3) | 615.6 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.53 |
Crystal size (mm) | 0.45 × 0.43 × 0.35 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.795, 0.835 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4710, 2173, 1806 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.200, 1.09 |
No. of reflections | 2173 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.39 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O3i | 0.86 | 1.97 | 2.822 (3) | 173.1 |
N3—H3A···O3ii | 0.86 | 2.07 | 2.848 (3) | 149.4 |
N2—H2···O4i | 0.86 | 1.85 | 2.692 (3) | 167.8 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z. |
Acknowledgements
The authors thank the Natural Science Foundation of Shandong Province (No. ZR2010BL011), and Weifang University for a research grant (2012Z06).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (1997). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gilchrist, T. L. (1998). Heterocyclic Chemistry, 3rd ed. London: Addison Wesley Longman Ltd. Google Scholar
Hemamalini, M., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95–o97. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xue, S. J., Zhang, A. D. & Wang, H. T. (1993). Chem. Reagents, 15, 181–182. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Five and six-membered heterocyclic compounds are important constituents that often exist in biologically active natural products and synthetic compounds of medicinal interest (Gilchrist, 1998). As useful precursors to potentially bioactive pyrimidine derivatives, methylpyrimidine has attracted considerable attention for many years (Xue et al., 1993). In recent years, new complexes of pyrimidine have been synthesized (Hemamalini et al., 2005). Herein we report herein the crystal structure of the title compound (I).
The molecular structure of (I) is shown in Fig. 1. There is one cation and one anion in the asymmetric unit of (I). All bond lengths are within the normal ranges (Allen et al., 1987). In the crystal, two cations and two anions are linked by intermolecular N—H···O hydrogen bonds to form centrosymmetric four component aggregates.