organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1841-o1842

N1,N4,3,6-Tetra­methyl-1,2,4,5-tetra­zine-1,4-dicarboxamide

aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China, bCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and cHangzhou Institute of Calibration and Testing for Quality and Technical Supervision, Hangzhou 310019, People's Republic of China
*Correspondence e-mail: rgw@zjut.edu.cn

(Received 6 May 2012; accepted 17 May 2012; online 23 May 2012)

The asymmetric unit of the title compound, C8H14N6O2, contains two independent mol­ecules. In one mol­ecule, the amide-substituted N atoms of the tetra­zine ring deviate from the plane [maximum deviation = 0.028 (1) Å] through the four other atoms in the ring by 0.350 (2) and 0.344 (2) Å, forming a boat conformation, and the mean planes of the two carboxamide groups form dihedral angles of 10.46 (13) and 20.41 (12)° with the four approximtely planar atoms in the tetra­zine ring. In the other mol­ecule, the amide-substituted N atoms of the tetra­zine ring deviate from the plane [maximum deviation = 0.033 (1) Å] through the four other atoms in the ring by 0.324 (2) and 0.307 (2) Å, forming a boat conformation, and the mean planes of the two carboxamide groups form dihedral angles of 14.66 (11) and 17.08 (10)° with the four approximately planar atoms of the tetra­zine ring. In the crystal, N—H⋯O hydrogen bonds connect mol­ecules to form a two-dimensional network parallel to (1-1-1). Intra­molecular N—H⋯N hydrogen bonds are observed.

Related literature

For chemical reactions of 1,2,4,5-tetra­zine derivatives, see: Domingo et al. (2009[Domingo, L. R., Picher, M. T. & Saez, J. A. (2009). J. Org. Chem. 74, 2726-2735.]); Lorincz et al. (2010[Lorincz, K., Kotschy, A., Tammiku-Taul, J., Sikk, L. & Burk, P. (2010). J. Org. Chem. 75, 6196-6200.]) and for their biological activity, see: Devaraj et al. (2009[Devaraj, N. K., Upadhyay, R., Haun, J. B., Hilderbrand, S. A. & Weissleder, R. (2009). Angew. Chem. Int. Ed. 48, 7013-7016.]); Eremeev et al. (1978[Eremeev, A. V., Tikhomirv, D. A., Tyusheva, V. A. & Liepins, F. (1978). Khim. Geterotsikl. Soedin. 6, 753-757.], 1980[Eremeev, A. V., Tikhomirova, D. A. & Zidermane, A. (1980). USSR Patent 686 336.]); Han et al. (2010[Han, H. S., Devaraj, N. K., Lee, J., Hilderbrand, S. A., Weissleder, R. & Bawendi, M. G. (2010). J. Am. Chem. Soc. 132, 7838-7839.]); Neunhoeffer (1984[Neunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katritzky, Vol. 3, pp. 531-572. Frankfurt: Pergamon.]); Sauer (1996[Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford: Elsevier.]). For the anti­tumor activity of 1,2,4,5-tetra­zine derivatives, see: Hu et al. (2002[Hu, W. X., Sun, Y. Q., Yuan, Q. & Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877-1881.], 2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Rao & Hu (2005[Rao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174-3176.], 2006[Rao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702-3705.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis of the title compound, see: Hu et al. (2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Rao et al. (2012[Rao, G. W., Li, Q. & Zhao, Z. G. (2012). J. Chem. Res. 36, 178-180.]); Sun et al. (2003[Sun, Y. Q., Hu, W. X. & Yuan, Q. (2003). Synth. Commun. 33, 2769-2775.]).

[Scheme 1]

Experimental

Crystal data
  • C8H14N6O2

  • Mr = 226.25

  • Triclinic, [P \overline 1]

  • a = 9.0002 (17) Å

  • b = 12.045 (2) Å

  • c = 12.357 (2) Å

  • α = 118.386 (2)°

  • β = 101.701 (3)°

  • γ = 99.494 (3)°

  • V = 1099.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.34 × 0.30 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.985

  • 5571 measured reflections

  • 3809 independent reflections

  • 3178 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.06

  • 3809 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2 0.86 2.16 2.572 (2) 108
N6—H6⋯N5 0.86 2.19 2.586 (2) 108
N9—H9⋯N8 0.86 2.15 2.567 (2) 109
N12—H12⋯N11 0.86 2.17 2.581 (2) 109
N3—H3⋯O4 0.86 2.20 2.925 (2) 142
N6—H6⋯O3i 0.86 2.16 2.918 (2) 146
N9—H9⋯O1ii 0.86 2.14 2.877 (3) 143
N12—H12⋯O2iii 0.86 2.24 2.967 (3) 142
Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Tetrazine derivatives have high activity in chemical reactions (Domingo et al., 2009; Lorincz et al., 2010), and have been widely used in pesticides and medicines (Devaraj et al., 2009; Eremeev et al.,1978, 1980; Han et al., 2010; Neunhoeffer, 1984; Sauer, 1996). In a continuation of our studies of antitumor activities in 1,2,4,5-tetrazine derivatives (Hu et al., 2002, 2004; Rao & Hu, 2005, 2006), we have obtained a colourless crystalline compound, (I). The structure was confirmed by single-crystal X-ray diffraction.

The two molecules forming the asymmetric unit of (I) are shown in Fig. 1. The C=N, N—N and C—N bonds have normal distances (Allen et al., 1987). The tetrazine rings are 1,4-dihydro structure with the N-substituted groups at the 1,4-positions.

In (I), atoms N2, C3, N5 and C6 are approximately planar, with the largest deviation from this plane being 0.028 (1) Å. Atoms N1 and N4 deviate from this plane by 0.350 (2) and 0.344 (2) Å, respectively. Atoms N8, C9, N11 and C12 are approximately planar, with the largest deviation from this plane being 0.033 (1) Å. Atoms N7 and N10 deviate from this plane by 0.324 (2) and 0.307 (2) Å, respectively. The dihedral angle between the N2/C3/N5/C6 plane and the N1/N2/C6 plane is 27.99 (16)°, and between the N2/C3/N5/C6 plane and the N4/N5/C3 plane is 27.91 (16)°. The dihedral angle between the N8/C9/N11/C12 plane and the N7/N8/C12 plane is 26.36 (14)°, and between the N8/C9/N11/C12 plane and the N10/N11/C9 plane is 24.96 (13)°. The tetrazine ring exhibits a boat conformation. Atoms O1, C4, N3 and C7 are approximately planar, with the largest deviation from this plane being 0.016 (1) Å. Atoms O2, C5, N6 and C8 are approximately planar, with the largest deviation from this plane being -0.022 (1) Å. Atoms O3, C13, N9 and C15 are approximately planar, with the largest deviation from this plane being 0.004 (1) Å. Atoms O4, C14, N12 and C16 are approximately planar, with the largest deviation from this plane being -0.005 (1) Å. The dihedral angles between the N2/C3/N5/C6 plane and two planes of carboxamide groups are 10.46 (13) and 20.41 (12)°, respectively. The dihedral angles between the N8/C9/N11/C12 plane and two planes of carboxamide groups are 14.66 (11) and 17.08 (10)°, respectively. Intramolecular N—H···N hydrogen bonds are observed. In the crystal, N—H···O hydrogen bonds connect molecules to form a two-dimensional network parallel to (111) (Fig. 2).

Related literature top

For chemical reactions of 1,2,4,5-tetrazine derivatives, see: Domingo et al. (2009); Lorincz et al. (2010) and for their biological activity, see: Devaraj et al. (2009); Eremeev et al. (1978, 1980); Han et al. (2010); Neunhoeffer (1984); Sauer (1996). For the antitumor activity of 1,2,4,5-tetrazine derivatives, see: Hu et al. (2002, 2004); Rao & Hu (2005, 2006). For standard bond lengths, see: Allen et al. (1987). For the synthesis of the title compound, see: Hu et al. (2004); Rao et al. (2012); Sun et al. (2003).

Experimental top

The title compound was the product of the reaction of 3,6-dimethyl-1,6-dihydro-1,2,4,5-tetrazine, bis(trichloromethyl) carbonate and methanamine according to the procedure (Hu et al., 2004; Rao et al., 2012; Sun et al., 2003). A solution of the compound in ethanol was concentrated gradually at room temperature to afford colourless blocks.

Refinement top

H atoms were included in calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl H atoms) times the equivalent isotropic displacement parameters of their parent atoms, and C—H distances were set to 0.96 Å for methyl H atoms, while N—H distances were set to 0.86 Å.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen donds shown as dashed lines.
N1,N4,3,6-Tetramethyl-1,2,4,5-tetrazine-1,4-dicarboxamide top
Crystal data top
C8H14N6O2Z = 4
Mr = 226.25F(000) = 480
Triclinic, P1Dx = 1.367 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0002 (17) ÅCell parameters from 2161 reflections
b = 12.045 (2) Åθ = 2.4–26.0°
c = 12.357 (2) ŵ = 0.10 mm1
α = 118.386 (2)°T = 298 K
β = 101.701 (3)°Block, colourless
γ = 99.494 (3)°0.34 × 0.30 × 0.15 mm
V = 1099.6 (4) Å3
Data collection top
Bruker SMART CCD
diffractometer
3809 independent reflections
Radiation source: fine-focus sealed tube3178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1010
Tmin = 0.966, Tmax = 0.985k = 1411
5571 measured reflectionsl = 1114
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.2386P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3809 reflectionsΔρmax = 0.17 e Å3
298 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (2)
Crystal data top
C8H14N6O2γ = 99.494 (3)°
Mr = 226.25V = 1099.6 (4) Å3
Triclinic, P1Z = 4
a = 9.0002 (17) ÅMo Kα radiation
b = 12.045 (2) ŵ = 0.10 mm1
c = 12.357 (2) ÅT = 298 K
α = 118.386 (2)°0.34 × 0.30 × 0.15 mm
β = 101.701 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3809 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3178 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.985Rint = 0.018
5571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
3809 reflectionsΔρmin = 0.19 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.65578 (15)1.05745 (12)0.47718 (12)0.0481 (3)
O40.89425 (15)0.52517 (12)0.38657 (12)0.0485 (3)
O31.24324 (16)0.92428 (15)1.04950 (13)0.0591 (4)
O10.31715 (16)0.38004 (14)0.09001 (15)0.0624 (4)
N111.11229 (17)0.83375 (14)0.67258 (14)0.0413 (4)
N50.42071 (17)0.76464 (15)0.18158 (14)0.0428 (4)
N80.90988 (17)0.73177 (15)0.76534 (14)0.0441 (4)
N10.48121 (17)0.59229 (14)0.19776 (14)0.0427 (4)
N40.54445 (17)0.84531 (14)0.30278 (14)0.0408 (4)
N20.64314 (17)0.67031 (15)0.26959 (15)0.0456 (4)
N100.99591 (17)0.70658 (13)0.59312 (13)0.0401 (4)
N71.06880 (17)0.81490 (15)0.84255 (14)0.0424 (4)
C50.5569 (2)0.98150 (17)0.36969 (17)0.0389 (4)
C90.8816 (2)0.67574 (17)0.64282 (17)0.0389 (4)
N121.10612 (19)0.69002 (15)0.43553 (14)0.0459 (4)
H121.17310.76600.49500.055*
C121.1485 (2)0.88147 (16)0.79504 (16)0.0378 (4)
N30.57057 (19)0.42708 (15)0.20694 (15)0.0479 (4)
H30.65880.48860.25910.058*
C40.4495 (2)0.45756 (18)0.15889 (17)0.0432 (4)
N60.45245 (19)1.01525 (15)0.30820 (15)0.0470 (4)
H60.39190.95770.22970.056*
N90.99787 (19)0.79818 (17)1.00444 (15)0.0511 (4)
H90.90730.74700.94580.061*
C140.9928 (2)0.63353 (17)0.46360 (16)0.0379 (4)
C30.6682 (2)0.79506 (18)0.32349 (17)0.0408 (4)
C131.1104 (2)0.85187 (18)0.97372 (17)0.0425 (4)
C60.3891 (2)0.64048 (18)0.13459 (17)0.0394 (4)
C100.7187 (2)0.5826 (2)0.55809 (19)0.0531 (5)
H10A0.67370.60750.49870.080*
H10B0.65270.58610.61100.080*
H10C0.72490.49410.51000.080*
C111.2743 (2)1.01175 (18)0.88275 (18)0.0505 (5)
H11A1.23691.06990.94930.076*
H11B1.29851.05010.83340.076*
H11C1.36850.99930.92210.076*
C10.8344 (2)0.88257 (19)0.4028 (2)0.0555 (5)
H1A0.86270.94320.37530.083*
H1B0.90550.82960.39140.083*
H1C0.84220.93140.49290.083*
C20.2535 (2)0.5519 (2)0.01109 (18)0.0531 (5)
H2A0.28760.48460.05070.080*
H2B0.21820.60290.02350.080*
H2C0.16760.51100.02790.080*
C151.0255 (3)0.8246 (2)1.13515 (19)0.0585 (6)
H15A0.93170.77781.13950.088*
H15B1.04960.91791.19490.088*
H15C1.11330.79551.15780.088*
C70.5575 (3)0.29262 (19)0.1735 (2)0.0622 (6)
H7A0.64100.29310.23610.093*
H7B0.56690.24280.08860.093*
H7C0.45610.25270.17360.093*
C80.4394 (3)1.1471 (2)0.3715 (2)0.0615 (6)
H8A0.35071.15150.31720.092*
H8B0.53541.20860.38670.092*
H8C0.42351.16940.45300.092*
C161.1183 (3)0.6249 (2)0.30563 (19)0.0606 (6)
H16A1.20610.67970.30280.091*
H16B1.02150.61080.24440.091*
H16C1.13540.54130.28380.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0450 (7)0.0421 (7)0.0381 (7)0.0013 (6)0.0023 (6)0.0150 (6)
O40.0481 (8)0.0373 (7)0.0384 (7)0.0026 (6)0.0046 (6)0.0109 (6)
O30.0435 (8)0.0760 (10)0.0429 (8)0.0041 (7)0.0020 (6)0.0335 (8)
O10.0390 (8)0.0510 (8)0.0730 (10)0.0083 (7)0.0028 (7)0.0297 (8)
N110.0412 (9)0.0335 (8)0.0358 (8)0.0004 (6)0.0062 (7)0.0142 (7)
N50.0354 (8)0.0437 (9)0.0340 (8)0.0057 (7)0.0019 (7)0.0148 (7)
N80.0333 (8)0.0458 (9)0.0382 (9)0.0007 (7)0.0040 (7)0.0176 (7)
N10.0308 (8)0.0387 (8)0.0433 (9)0.0011 (6)0.0026 (7)0.0170 (7)
N40.0337 (8)0.0375 (8)0.0354 (8)0.0039 (6)0.0007 (6)0.0139 (7)
N20.0311 (8)0.0403 (9)0.0478 (9)0.0012 (7)0.0003 (7)0.0183 (7)
N100.0405 (8)0.0330 (8)0.0312 (8)0.0004 (6)0.0054 (6)0.0114 (6)
N70.0351 (8)0.0463 (9)0.0337 (8)0.0013 (7)0.0041 (6)0.0184 (7)
C50.0347 (9)0.0410 (10)0.0344 (10)0.0026 (8)0.0086 (8)0.0189 (8)
C90.0371 (10)0.0357 (9)0.0355 (10)0.0080 (8)0.0059 (8)0.0157 (8)
N120.0478 (9)0.0414 (8)0.0337 (8)0.0040 (7)0.0104 (7)0.0130 (7)
C120.0356 (9)0.0359 (9)0.0345 (10)0.0071 (7)0.0074 (8)0.0157 (8)
N30.0419 (9)0.0375 (8)0.0465 (9)0.0002 (7)0.0005 (7)0.0184 (7)
C40.0376 (10)0.0399 (10)0.0386 (10)0.0003 (8)0.0084 (8)0.0162 (8)
N60.0510 (10)0.0433 (9)0.0371 (8)0.0113 (7)0.0055 (7)0.0184 (7)
N90.0410 (9)0.0636 (11)0.0379 (9)0.0014 (8)0.0068 (7)0.0257 (8)
C140.0378 (10)0.0345 (9)0.0340 (9)0.0101 (8)0.0042 (8)0.0158 (8)
C30.0355 (10)0.0417 (10)0.0388 (10)0.0050 (8)0.0065 (8)0.0206 (8)
C130.0381 (10)0.0469 (11)0.0361 (10)0.0085 (8)0.0051 (8)0.0211 (9)
C60.0315 (9)0.0438 (10)0.0340 (9)0.0060 (8)0.0092 (7)0.0162 (8)
C100.0392 (11)0.0532 (12)0.0458 (11)0.0014 (9)0.0072 (9)0.0170 (10)
C110.0526 (12)0.0416 (10)0.0386 (10)0.0013 (9)0.0072 (9)0.0152 (9)
C10.0326 (10)0.0471 (11)0.0675 (14)0.0022 (9)0.0023 (9)0.0262 (10)
C20.0467 (12)0.0517 (12)0.0385 (11)0.0049 (9)0.0006 (9)0.0155 (9)
C150.0535 (13)0.0769 (15)0.0432 (11)0.0097 (11)0.0124 (10)0.0345 (11)
C70.0627 (14)0.0434 (11)0.0638 (14)0.0043 (10)0.0048 (11)0.0257 (11)
C80.0726 (15)0.0491 (12)0.0582 (13)0.0209 (11)0.0138 (12)0.0271 (11)
C160.0711 (15)0.0603 (13)0.0410 (11)0.0120 (11)0.0205 (11)0.0215 (10)
Geometric parameters (Å, º) top
O2—C51.221 (2)N6—H60.8600
O4—C141.221 (2)N9—C131.327 (2)
O3—C131.221 (2)N9—C151.447 (2)
O1—C41.217 (2)N9—H90.8600
N11—C121.280 (2)C3—C11.487 (2)
N11—N101.4251 (19)C6—C21.491 (2)
N5—C61.274 (2)C10—H10A0.9600
N5—N41.418 (2)C10—H10B0.9600
N8—C91.276 (2)C10—H10C0.9600
N8—N71.423 (2)C11—H11A0.9600
N1—C61.400 (2)C11—H11B0.9600
N1—C41.413 (2)C11—H11C0.9600
N1—N21.423 (2)C1—H1A0.9600
N4—C31.388 (2)C1—H1B0.9600
N4—C51.414 (2)C1—H1C0.9600
N2—C31.276 (2)C2—H2A0.9600
N10—C91.386 (2)C2—H2B0.9600
N10—C141.404 (2)C2—H2C0.9600
N7—C121.390 (2)C15—H15A0.9600
N7—C131.406 (2)C15—H15B0.9600
C5—N61.325 (2)C15—H15C0.9600
C9—C101.491 (2)C7—H7A0.9600
N12—C141.328 (2)C7—H7B0.9600
N12—C161.451 (2)C7—H7C0.9600
N12—H120.8600C8—H8A0.9600
C12—C111.489 (2)C8—H8B0.9600
N3—C41.323 (2)C8—H8C0.9600
N3—C71.445 (2)C16—H16A0.9600
N3—H30.8600C16—H16B0.9600
N6—C81.437 (3)C16—H16C0.9600
C12—N11—N10114.96 (14)N5—C6—C2117.15 (17)
C6—N5—N4115.19 (15)N1—C6—C2122.75 (16)
C9—N8—N7115.02 (15)C9—C10—H10A109.5
C6—N1—C4124.52 (15)C9—C10—H10B109.5
C6—N1—N2116.29 (14)H10A—C10—H10B109.5
C4—N1—N2114.69 (14)C9—C10—H10C109.5
C3—N4—C5124.12 (14)H10A—C10—H10C109.5
C3—N4—N5116.73 (14)H10B—C10—H10C109.5
C5—N4—N5115.63 (14)C12—C11—H11A109.5
C3—N2—N1114.98 (15)C12—C11—H11B109.5
C9—N10—C14125.66 (14)H11A—C11—H11B109.5
C9—N10—N11117.72 (13)C12—C11—H11C109.5
C14—N10—N11115.71 (14)H11A—C11—H11C109.5
C12—N7—C13124.70 (15)H11B—C11—H11C109.5
C12—N7—N8117.36 (14)C3—C1—H1A109.5
C13—N7—N8114.98 (14)C3—C1—H1B109.5
O2—C5—N6124.99 (17)H1A—C1—H1B109.5
O2—C5—N4120.13 (16)C3—C1—H1C109.5
N6—C5—N4114.86 (15)H1A—C1—H1C109.5
N8—C9—N10120.67 (16)H1B—C1—H1C109.5
N8—C9—C10116.79 (17)C6—C2—H2A109.5
N10—C9—C10122.46 (16)C6—C2—H2B109.5
C14—N12—C16120.73 (16)H2A—C2—H2B109.5
C14—N12—H12119.6C6—C2—H2C109.5
C16—N12—H12119.6H2A—C2—H2C109.5
N11—C12—N7120.50 (15)H2B—C2—H2C109.5
N11—C12—C11117.34 (16)N9—C15—H15A109.5
N7—C12—C11122.13 (15)N9—C15—H15B109.5
C4—N3—C7121.39 (16)H15A—C15—H15B109.5
C4—N3—H3119.3N9—C15—H15C109.5
C7—N3—H3119.3H15A—C15—H15C109.5
O1—C4—N3124.76 (18)H15B—C15—H15C109.5
O1—C4—N1120.22 (17)N3—C7—H7A109.5
N3—C4—N1114.97 (15)N3—C7—H7B109.5
C5—N6—C8120.58 (16)H7A—C7—H7B109.5
C5—N6—H6119.7N3—C7—H7C109.5
C8—N6—H6119.7H7A—C7—H7C109.5
C13—N9—C15120.93 (16)H7B—C7—H7C109.5
C13—N9—H9119.5N6—C8—H8A109.5
C15—N9—H9119.5N6—C8—H8B109.5
O4—C14—N12124.41 (16)H8A—C8—H8B109.5
O4—C14—N10120.80 (16)N6—C8—H8C109.5
N12—C14—N10114.76 (15)H8A—C8—H8C109.5
N2—C3—N4120.34 (16)H8B—C8—H8C109.5
N2—C3—C1117.75 (17)N12—C16—H16A109.5
N4—C3—C1121.85 (16)N12—C16—H16B109.5
O3—C13—N9124.37 (17)H16A—C16—H16B109.5
O3—C13—N7120.74 (17)N12—C16—H16C109.5
N9—C13—N7114.83 (16)H16A—C16—H16C109.5
N5—C6—N1120.09 (15)H16B—C16—H16C109.5
C6—N5—N4—C333.9 (2)C6—N1—C4—N3162.35 (16)
C6—N5—N4—C5166.36 (15)N2—N1—C4—N37.1 (2)
C6—N1—N2—C333.9 (2)O2—C5—N6—C85.5 (3)
C4—N1—N2—C3168.75 (16)N4—C5—N6—C8172.64 (16)
C12—N11—N10—C931.0 (2)C16—N12—C14—O41.3 (3)
C12—N11—N10—C14159.33 (16)C16—N12—C14—N10179.32 (17)
C9—N8—N7—C1232.6 (2)C9—N10—C14—O48.9 (3)
C9—N8—N7—C13165.91 (16)N11—N10—C14—O4177.71 (15)
C3—N4—C5—O225.0 (3)C9—N10—C14—N12172.96 (16)
N5—N4—C5—O2176.99 (15)N11—N10—C14—N124.2 (2)
C3—N4—C5—N6156.80 (16)N1—N2—C3—N44.4 (2)
N5—N4—C5—N61.2 (2)N1—N2—C3—C1178.52 (17)
N7—N8—C9—N106.1 (2)C5—N4—C3—N2172.45 (16)
N7—N8—C9—C10177.08 (15)N5—N4—C3—N229.7 (2)
C14—N10—C9—N8165.74 (17)C5—N4—C3—C110.6 (3)
N11—N10—C9—N825.7 (2)N5—N4—C3—C1147.23 (18)
C14—N10—C9—C1017.6 (3)C15—N9—C13—O31.0 (3)
N11—N10—C9—C10150.96 (17)C15—N9—C13—N7178.38 (17)
N10—N11—C12—N74.4 (2)C12—N7—C13—O319.3 (3)
N10—N11—C12—C11177.61 (16)N8—N7—C13—O3179.19 (17)
C13—N7—C12—N11173.17 (17)C12—N7—C13—N9163.24 (17)
N8—N7—C12—N1127.3 (2)N8—N7—C13—N93.3 (2)
C13—N7—C12—C118.9 (3)N4—N5—C6—N14.2 (2)
N8—N7—C12—C11150.58 (17)N4—N5—C6—C2176.52 (15)
C7—N3—C4—O14.1 (3)C4—N1—C6—N5175.41 (16)
C7—N3—C4—N1178.51 (17)N2—N1—C6—N529.7 (2)
C6—N1—C4—O120.2 (3)C4—N1—C6—C25.3 (3)
N2—N1—C4—O1175.36 (16)N2—N1—C6—C2149.51 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.862.162.572 (2)108
N6—H6···N50.862.192.586 (2)108
N9—H9···N80.862.152.567 (2)109
N12—H12···N110.862.172.581 (2)109
N3—H3···O40.862.202.925 (2)142
N6—H6···O3i0.862.162.918 (2)146
N9—H9···O1ii0.862.142.877 (3)143
N12—H12···O2iii0.862.242.967 (3)142
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC8H14N6O2
Mr226.25
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.0002 (17), 12.045 (2), 12.357 (2)
α, β, γ (°)118.386 (2), 101.701 (3), 99.494 (3)
V3)1099.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.30 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.966, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5571, 3809, 3178
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.06
No. of reflections3809
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N20.862.162.572 (2)108
N6—H6···N50.862.192.586 (2)108
N9—H9···N80.862.152.567 (2)109
N12—H12···N110.862.172.581 (2)109
N3—H3···O40.862.202.925 (2)142
N6—H6···O3i0.862.162.918 (2)146
N9—H9···O1ii0.862.142.877 (3)143
N12—H12···O2iii0.862.242.967 (3)142
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+1.
 

Acknowledgements

The authors are very grateful to the Natural Science Foundation of Zhejiang Province (No. Y2090985) and the National Natural Science Foundation of China (No. 20802069) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevaraj, N. K., Upadhyay, R., Haun, J. B., Hilderbrand, S. A. & Weissleder, R. (2009). Angew. Chem. Int. Ed. 48, 7013–7016.  Web of Science CrossRef CAS Google Scholar
First citationDomingo, L. R., Picher, M. T. & Saez, J. A. (2009). J. Org. Chem. 74, 2726–2735.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEremeev, A. V., Tikhomirova, D. A. & Zidermane, A. (1980). USSR Patent 686 336.  Google Scholar
First citationEremeev, A. V., Tikhomirv, D. A., Tyusheva, V. A. & Liepins, F. (1978). Khim. Geterotsikl. Soedin. 6, 753–757.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHan, H. S., Devaraj, N. K., Lee, J., Hilderbrand, S. A., Weissleder, R. & Bawendi, M. G. (2010). J. Am. Chem. Soc. 132, 7838–7839.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177–1181.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, W. X., Sun, Y. Q., Yuan, Q. & Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877–1881.  CAS Google Scholar
First citationLorincz, K., Kotschy, A., Tammiku-Taul, J., Sikk, L. & Burk, P. (2010). J. Org. Chem. 75, 6196–6200.  Web of Science CAS PubMed Google Scholar
First citationNeunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katritzky, Vol. 3, pp. 531–572. Frankfurt: Pergamon.  Google Scholar
First citationRao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174–3176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702–3705.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, G. W., Li, Q. & Zhao, Z. G. (2012). J. Chem. Res. 36, 178–180.  Web of Science CrossRef CAS Google Scholar
First citationSauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. Q., Hu, W. X. & Yuan, Q. (2003). Synth. Commun. 33, 2769–2775.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1841-o1842
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds