organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1934-o1935

2-Amino-4-(4-fluoro­phen­yl)-6-meth­­oxy-4H-benzo[h]chromene-3-carbo­nitrile

aChemistry Department, Faculty of Science, King Khalid University, 9004 Abha, Saudi Arabia, bDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 13 May 2012; accepted 20 May 2012; online 31 May 2012)

In the title mol­ecule, C21H15FN2O2, the dihedral angle between the fluoro-substituted benzene ring and the mean plane of the 4H-benzo[h]chromene ring system [maximum deviation = 0.109 (2) Å] is 83.35 (7)°. The pyran ring adopts a slight sofa conformation with the tertiary C(H) atom forming the flap. The meth­oxy group is slightly twisted from the attached benzene ring of the 4H-benzo[h]chromene moiety [C—O—C—C = −4.3 (3)°]. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds into infinite wave-like chains along the b axis. The crystal packing is further stabilized by ππ inter­actions [centroid–centroid distance = 3.7713 (9) Å].

Related literature

For the synthesis of 4H-chromene derivatives, see: Sayed et al. (2000[Sayed, A. Z., El-Hady, N. A. & El-Agrody, A. M. (2000). J. Chem. Res. 2000, 164-166.]); Bedair et al. (2001[Bedair, A. H., Emam, H. A., El-Hady, N. A., Ahmed, K. A. R. & El-Agrody, A. M. (2001). Farmaco, 56, 965-973.]); El-Agrody et al. (2000[El-Agrody, A. M., El-Hakim, M. H., Abd El-Latif, M. S., Fakery, A. H., El-Sayed, E. S. M. & El-Ghareab, K. A. (2000). Acta Pharm. 50, 111-120.], 2002[El-Agrody, A. M., Eid, F. A., Emam, H. A., Mohamed, H. M. & Bedair, A. H. (2002). Z. Naturforsch. Teil B, 57, 579-585.]). For the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives, see: El-Agrody et al. (2000[El-Agrody, A. M., El-Hakim, M. H., Abd El-Latif, M. S., Fakery, A. H., El-Sayed, E. S. M. & El-Ghareab, K. A. (2000). Acta Pharm. 50, 111-120.]); Abd-El-Aziz et al. (2004[Abd-El-Aziz, A. S., El-Agrody, A. M., Bedair, A. H., Corkery, T. C. & Ata, A. (2004). Heterocycles, 63, 1793-1812.], 2007[Abd-El-Aziz, A. S., Mohamed, H. M., Mohammed, S., Zahid, S., Ata, A., Bedair, A. H., El-Agrody, A. M. & Harvey, P. D. (2007). J. Heterocycl. Chem. 44, 1287-1301.]); Sabry et al. (2011[Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15FN2O2

  • Mr = 346.35

  • Monoclinic, P 21 /c

  • a = 12.6336 (4) Å

  • b = 11.9333 (3) Å

  • c = 12.0471 (4) Å

  • β = 113.581 (2)°

  • V = 1664.56 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 296 K

  • 0.88 × 0.68 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.537, Tmax = 0.953

  • 11390 measured reflections

  • 3199 independent reflections

  • 2770 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.132

  • S = 1.05

  • 3199 reflections

  • 245 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N1⋯N2i 0.89 (2) 2.17 (2) 3.054 (2) 175 (2)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In our previous work, we have reported the synthesis of 4H-chromene derivatives using α-cyanocinnamonitriles and ethyl α-cyanocinnamates (Sayed et al., 2000; Bedair et al., 2001; El-Agrody et al., 2000, 2002), study of their characterization and evaluation of their antimicrobial and antitumor activities. In continuation of our interest in the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives (El-Agrody et al., 2000; Abd-El-Aziz et al., 2004, 2007; Sabry et al., 2011), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The fluoro-substituted benzene ring (C14–C19) is approximately perpendicular to the 4H-benzo[h]chromene ring system [O1/C1–C13, maximum deviation = 0.109 (2) Å at atom C3] as indicated by the dihedral angle of 83.35 (7)°. The pyran ring (O1/C1–C5) adopts slight sofa conformation [puckering parameters (Cremer & Pople, 1975), Q = 0.0980 (16) Å, θ = 69.5 (9)° and ϕ = 167.7 (10)°] with C3 as the flap atom. The methoxy group (C20/O2) is slightly twisted from the attached benzene ring (C4–C6/C11–C13) of the 4H-benzo[h]chromene moiety with torsion angle C20—O2—C12—C13 of -4.3 (3)°.

In the crystal (Fig. 2), molecules are linked by intermolecular N1—H2N1···N2i hydrogen bonds (Table 1) into infinite wave-like chains along b axis. The crystal packing is further stabilized by ππ interaction with Cg1-Cg1 distance of 3.7713 (9) Å, where Cg1 is the centroid of O1/C1–C5 ring [symmetry code: 1-x, 1-y, -z].

Related literature top

For the synthesis of 4H-chromene derivatives, see: Sayed et al. (2000); Bedair et al. (2001); El-Agrody et al. (2000, 2002). For the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives, see: El-Agrody et al. (2000); Abd-El-Aziz et al. (2004, 2007); Sabry et al. (2011). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of 4-methoxy-1-naphthol (0.01 mol) in EtOH (30 ml) was treated with α-cyano-p-fluorocinnamonitrile (0.01 mol) and piperidine (0.5 ml). The reaction mixture was heated until complete precipitation occurred (reaction time: 60 min). The solid product formed was collected by filtration and recrystallized from ethanol to give the title compound. M.p.: 493–494 K.

Refinement top

The atoms H2N1 and H1N1 were located in a difference fourier map and refined freely [N—H = 0.89 (2) and 0.90 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93, 0.96 and 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity, hydrogen atoms not involved in hydrogen bonding have been omitted.
2-Amino-4-(4-fluorophenyl)-6-methoxy-4H-benzo[h]chromene- 3-carbonitrile top
Crystal data top
C21H15FN2O2F(000) = 720
Mr = 346.35Dx = 1.382 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3014 reflections
a = 12.6336 (4) Åθ = 3.8–71.5°
b = 11.9333 (3) ŵ = 0.81 mm1
c = 12.0471 (4) ÅT = 296 K
β = 113.581 (2)°Plate, yellow
V = 1664.56 (9) Å30.88 × 0.68 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3199 independent reflections
Radiation source: fine-focus sealed tube2770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 71.9°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.537, Tmax = 0.953k = 1214
11390 measured reflectionsl = 1214
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.3162P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3199 reflectionsΔρmax = 0.22 e Å3
245 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (5)
Crystal data top
C21H15FN2O2V = 1664.56 (9) Å3
Mr = 346.35Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.6336 (4) ŵ = 0.81 mm1
b = 11.9333 (3) ÅT = 296 K
c = 12.0471 (4) Å0.88 × 0.68 × 0.06 mm
β = 113.581 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3199 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2770 reflections with I > 2σ(I)
Tmin = 0.537, Tmax = 0.953Rint = 0.035
11390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
3199 reflectionsΔρmin = 0.21 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.08340 (11)0.92571 (13)0.19221 (15)0.0946 (5)
O10.59888 (10)0.46944 (9)0.14761 (10)0.0507 (3)
O20.85128 (13)0.37355 (11)0.12356 (13)0.0677 (4)
N10.52279 (14)0.57508 (14)0.24812 (14)0.0569 (4)
N20.58458 (15)0.85793 (13)0.21110 (16)0.0666 (4)
C10.58225 (13)0.57477 (13)0.17674 (13)0.0442 (3)
C20.62297 (13)0.66625 (13)0.13969 (13)0.0439 (3)
C30.68193 (12)0.66037 (12)0.05215 (13)0.0416 (3)
H3A0.62740.68880.02620.050*
C40.70666 (12)0.53883 (12)0.03481 (12)0.0412 (3)
C50.66493 (12)0.45325 (12)0.07952 (13)0.0422 (3)
C60.68132 (12)0.33927 (13)0.05802 (13)0.0437 (3)
C70.63629 (15)0.24988 (14)0.10278 (16)0.0541 (4)
H7A0.59720.26500.15220.065*
C80.64953 (19)0.14210 (15)0.07431 (19)0.0656 (5)
H8A0.61910.08410.10400.079*
C90.70845 (18)0.11761 (15)0.00090 (19)0.0683 (5)
H9A0.71610.04350.01870.082*
C100.75491 (17)0.20137 (15)0.04230 (17)0.0592 (4)
H10A0.79470.18390.09040.071*
C110.74309 (13)0.31434 (13)0.01470 (14)0.0466 (4)
C120.78985 (14)0.40492 (14)0.05799 (14)0.0490 (4)
C130.77181 (13)0.51312 (13)0.03431 (14)0.0469 (4)
H13A0.80260.57100.06380.056*
C140.79036 (13)0.73268 (12)0.09176 (13)0.0433 (3)
C150.80585 (16)0.80610 (15)0.01145 (16)0.0573 (4)
H15A0.74870.81250.06640.069*
C160.90543 (18)0.87111 (17)0.04453 (19)0.0682 (5)
H16A0.91570.92030.01020.082*
C170.98691 (16)0.86051 (16)0.15903 (19)0.0629 (5)
C180.97531 (16)0.78960 (18)0.24158 (19)0.0675 (5)
H18A1.03270.78440.31940.081*
C190.87556 (15)0.72490 (15)0.20702 (16)0.0567 (4)
H19A0.86630.67580.26240.068*
C200.8921 (2)0.46109 (19)0.1767 (2)0.0726 (6)
H20A0.92940.42910.22480.109*
H20B0.94630.50660.11390.109*
H20C0.82820.50640.22710.109*
C210.60126 (14)0.77220 (13)0.17819 (14)0.0479 (4)
H2N10.4932 (18)0.510 (2)0.2566 (19)0.065 (6)*
H1N10.4912 (19)0.642 (2)0.251 (2)0.073 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0660 (7)0.0911 (9)0.1290 (11)0.0335 (7)0.0416 (7)0.0317 (8)
O10.0622 (7)0.0378 (6)0.0650 (7)0.0010 (5)0.0391 (5)0.0020 (5)
O20.0845 (9)0.0567 (8)0.0838 (9)0.0070 (6)0.0566 (7)0.0061 (6)
N10.0703 (9)0.0447 (8)0.0724 (9)0.0022 (7)0.0461 (8)0.0035 (7)
N20.0771 (10)0.0491 (9)0.0787 (10)0.0032 (7)0.0364 (8)0.0149 (7)
C10.0464 (7)0.0404 (8)0.0472 (8)0.0021 (6)0.0202 (6)0.0029 (6)
C20.0450 (7)0.0399 (8)0.0486 (8)0.0018 (6)0.0206 (6)0.0025 (6)
C30.0441 (7)0.0378 (7)0.0420 (7)0.0014 (6)0.0162 (6)0.0007 (6)
C40.0429 (7)0.0383 (7)0.0411 (7)0.0010 (5)0.0155 (6)0.0019 (6)
C50.0444 (7)0.0390 (7)0.0440 (7)0.0017 (6)0.0185 (6)0.0025 (6)
C60.0433 (7)0.0392 (8)0.0443 (7)0.0030 (6)0.0131 (6)0.0014 (6)
C70.0605 (9)0.0427 (8)0.0615 (9)0.0019 (7)0.0269 (8)0.0031 (7)
C80.0794 (12)0.0396 (9)0.0821 (12)0.0006 (8)0.0366 (10)0.0040 (8)
C90.0804 (13)0.0379 (9)0.0857 (13)0.0083 (8)0.0322 (10)0.0052 (9)
C100.0653 (10)0.0477 (9)0.0664 (10)0.0085 (8)0.0283 (8)0.0084 (8)
C110.0460 (8)0.0428 (8)0.0471 (8)0.0058 (6)0.0146 (6)0.0042 (6)
C120.0494 (8)0.0503 (9)0.0499 (8)0.0046 (7)0.0227 (6)0.0053 (7)
C130.0506 (8)0.0447 (8)0.0488 (8)0.0014 (6)0.0234 (6)0.0021 (6)
C140.0455 (7)0.0367 (7)0.0509 (8)0.0004 (6)0.0227 (6)0.0051 (6)
C150.0639 (10)0.0539 (10)0.0538 (9)0.0093 (8)0.0232 (8)0.0002 (7)
C160.0781 (13)0.0595 (11)0.0786 (12)0.0178 (9)0.0434 (11)0.0029 (9)
C170.0534 (9)0.0539 (10)0.0883 (13)0.0127 (8)0.0357 (9)0.0207 (9)
C180.0507 (10)0.0709 (12)0.0684 (11)0.0004 (8)0.0107 (8)0.0124 (9)
C190.0566 (9)0.0543 (10)0.0550 (9)0.0006 (7)0.0180 (7)0.0028 (7)
C200.0858 (14)0.0711 (13)0.0848 (13)0.0002 (10)0.0591 (12)0.0052 (10)
C210.0510 (8)0.0442 (9)0.0516 (8)0.0004 (6)0.0237 (7)0.0039 (7)
Geometric parameters (Å, º) top
F1—C171.364 (2)C8—C91.396 (3)
O1—C11.3440 (18)C8—H8A0.9300
O1—C51.3979 (18)C9—C101.364 (3)
O2—C121.3627 (19)C9—H9A0.9300
O2—C201.425 (2)C10—C111.411 (2)
N1—C11.349 (2)C10—H10A0.9300
N1—H2N10.89 (2)C11—C121.427 (2)
N1—H1N10.90 (2)C12—C131.361 (2)
N2—C211.147 (2)C13—H13A0.9300
C1—C21.356 (2)C14—C151.376 (2)
C2—C211.411 (2)C14—C191.378 (2)
C2—C31.517 (2)C15—C161.394 (3)
C3—C41.516 (2)C15—H15A0.9300
C3—C141.525 (2)C16—C171.357 (3)
C3—H3A0.9800C16—H16A0.9300
C4—C51.356 (2)C17—C181.358 (3)
C4—C131.419 (2)C18—C191.392 (3)
C5—C61.415 (2)C18—H18A0.9300
C6—C71.413 (2)C19—H19A0.9300
C6—C111.418 (2)C20—H20A0.9600
C7—C81.359 (3)C20—H20B0.9600
C7—H7A0.9300C20—H20C0.9600
C1—O1—C5118.35 (12)C9—C10—H10A119.7
C12—O2—C20116.83 (14)C11—C10—H10A119.7
C1—N1—H2N1115.9 (14)C10—C11—C6118.83 (15)
C1—N1—H1N1113.3 (15)C10—C11—C12122.65 (15)
H2N1—N1—H1N1124.2 (19)C6—C11—C12118.51 (14)
O1—C1—N1110.73 (14)C13—C12—O2124.33 (15)
O1—C1—C2123.18 (13)C13—C12—C11120.91 (14)
N1—C1—C2126.07 (15)O2—C12—C11114.76 (14)
C1—C2—C21117.63 (13)C12—C13—C4120.87 (15)
C1—C2—C3123.24 (13)C12—C13—H13A119.6
C21—C2—C3118.96 (13)C4—C13—H13A119.6
C4—C3—C2109.01 (12)C15—C14—C19118.55 (15)
C4—C3—C14112.07 (12)C15—C14—C3120.19 (14)
C2—C3—C14112.70 (12)C19—C14—C3121.25 (14)
C4—C3—H3A107.6C14—C15—C16121.29 (17)
C2—C3—H3A107.6C14—C15—H15A119.4
C14—C3—H3A107.6C16—C15—H15A119.4
C5—C4—C13118.64 (14)C17—C16—C15118.01 (18)
C5—C4—C3122.12 (13)C17—C16—H16A121.0
C13—C4—C3119.19 (13)C15—C16—H16A121.0
C4—C5—O1123.18 (13)C16—C17—C18122.84 (17)
C4—C5—C6122.86 (14)C16—C17—F1118.04 (19)
O1—C5—C6113.93 (13)C18—C17—F1119.11 (19)
C7—C6—C5123.01 (14)C17—C18—C19118.47 (17)
C7—C6—C11118.83 (14)C17—C18—H18A120.8
C5—C6—C11118.13 (14)C19—C18—H18A120.8
C8—C7—C6120.61 (17)C14—C19—C18120.84 (17)
C8—C7—H7A119.7C14—C19—H19A119.6
C6—C7—H7A119.7C18—C19—H19A119.6
C7—C8—C9120.59 (18)O2—C20—H20A109.5
C7—C8—H8A119.7O2—C20—H20B109.5
C9—C8—H8A119.7H20A—C20—H20B109.5
C10—C9—C8120.56 (16)O2—C20—H20C109.5
C10—C9—H9A119.7H20A—C20—H20C109.5
C8—C9—H9A119.7H20B—C20—H20C109.5
C9—C10—C11120.55 (17)N2—C21—C2179.06 (19)
C5—O1—C1—N1176.40 (13)C9—C10—C11—C12179.82 (17)
C5—O1—C1—C22.4 (2)C7—C6—C11—C101.6 (2)
O1—C1—C2—C21178.96 (14)C5—C6—C11—C10176.68 (14)
N1—C1—C2—C210.3 (2)C7—C6—C11—C12179.03 (14)
O1—C1—C2—C35.8 (2)C5—C6—C11—C122.7 (2)
N1—C1—C2—C3175.55 (15)C20—O2—C12—C134.3 (3)
C1—C2—C3—C410.64 (19)C20—O2—C12—C11175.28 (16)
C21—C2—C3—C4174.21 (13)C10—C11—C12—C13176.76 (16)
C1—C2—C3—C14135.72 (15)C6—C11—C12—C132.6 (2)
C21—C2—C3—C1449.13 (18)C10—C11—C12—O22.8 (2)
C2—C3—C4—C58.57 (19)C6—C11—C12—O2177.82 (14)
C14—C3—C4—C5134.03 (14)O2—C12—C13—C4179.97 (14)
C2—C3—C4—C13173.90 (12)C11—C12—C13—C40.4 (2)
C14—C3—C4—C1348.44 (17)C5—C4—C13—C121.6 (2)
C13—C4—C5—O1179.35 (13)C3—C4—C13—C12176.02 (14)
C3—C4—C5—O11.8 (2)C4—C3—C14—C15106.56 (16)
C13—C4—C5—C61.4 (2)C2—C3—C14—C15130.03 (15)
C3—C4—C5—C6176.10 (13)C4—C3—C14—C1972.26 (18)
C1—O1—C5—C44.4 (2)C2—C3—C14—C1951.14 (19)
C1—O1—C5—C6177.49 (12)C19—C14—C15—C160.4 (3)
C4—C5—C6—C7178.91 (15)C3—C14—C15—C16178.43 (16)
O1—C5—C6—C70.8 (2)C14—C15—C16—C170.4 (3)
C4—C5—C6—C110.7 (2)C15—C16—C17—C180.1 (3)
O1—C5—C6—C11177.36 (12)C15—C16—C17—F1178.75 (17)
C5—C6—C7—C8176.61 (16)C16—C17—C18—C190.1 (3)
C11—C6—C7—C81.6 (2)F1—C17—C18—C19178.99 (16)
C6—C7—C8—C90.4 (3)C15—C14—C19—C180.2 (3)
C7—C8—C9—C100.8 (3)C3—C14—C19—C18178.68 (15)
C8—C9—C10—C110.7 (3)C17—C18—C19—C140.1 (3)
C9—C10—C11—C60.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N1···N2i0.89 (2)2.17 (2)3.054 (2)175 (2)
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H15FN2O2
Mr346.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.6336 (4), 11.9333 (3), 12.0471 (4)
β (°) 113.581 (2)
V3)1664.56 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.81
Crystal size (mm)0.88 × 0.68 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.537, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
11390, 3199, 2770
Rint0.035
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.132, 1.05
No. of reflections3199
No. of parameters245
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N1···N2i0.89 (2)2.17 (2)3.054 (2)175 (2)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP-VPP-172.

References

First citationAbd-El-Aziz, A. S., El-Agrody, A. M., Bedair, A. H., Corkery, T. C. & Ata, A. (2004). Heterocycles, 63, 1793–1812.  CAS Google Scholar
First citationAbd-El-Aziz, A. S., Mohamed, H. M., Mohammed, S., Zahid, S., Ata, A., Bedair, A. H., El-Agrody, A. M. & Harvey, P. D. (2007). J. Heterocycl. Chem. 44, 1287–1301.  CAS Google Scholar
First citationBedair, A. H., Emam, H. A., El-Hady, N. A., Ahmed, K. A. R. & El-Agrody, A. M. (2001). Farmaco, 56, 965–973.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Agrody, A. M., Eid, F. A., Emam, H. A., Mohamed, H. M. & Bedair, A. H. (2002). Z. Naturforsch. Teil B, 57, 579–585.  CAS Google Scholar
First citationEl-Agrody, A. M., El-Hakim, M. H., Abd El-Latif, M. S., Fakery, A. H., El-Sayed, E. S. M. & El-Ghareab, K. A. (2000). Acta Pharm. 50, 111–120.  CAS Google Scholar
First citationSabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSayed, A. Z., El-Hady, N. A. & El-Agrody, A. M. (2000). J. Chem. Res. 2000, 164–166.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1934-o1935
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds