metal-organic compounds
catena-Poly[3,3′-diethyl-1,1′-(propane-1,3-diyl)di(1H-imidazol-3-ium) [silver(I)-di-μ-iodido-silver(I)-di-μ-iodido]]
aTianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: qxliu@eyou.com
The title compound, {(C13H22N4)[Ag2I4]}n, was prepared by reaction of 1,3-bis(N-ethylimidazolium-1-yl)propane iodide with silver (I) oxide. In the 3,3′-diethyl-1,1′-(propane-1,3-diyl)di(1H-imidazol-3-ium) cation, the dihedral angle between the imidazole rings is 49.3 (1)°. In the [Ag2I4]2− anion, each AgI atom is bonded to three iodide anions, the two AgI atoms and two of the iodides forming Ag2I2 square-planar (r.m.s. deviation = 0.01 Å) units·The remaining two iodides, which are placed on opposite sides of the square, together with their centrosymmetric counterparts, link the square-planar Ag2I2 units into {[Ag2I4]2−}n polymeric chains via Ag—I bonds.
Related literature
For background to the chemistry of imidazolium compounds, see: Wasserscheid & Keim (2000); Migowski & Dupont (2007). For some applications of imidazolium salts, see: Leclercq & Schmitzer (2009); Petkovic et al. (2011); Chen et al. (2006). For other polymeric chain structures formed via Ag—I bonds, see: Chen & Liu (2003).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812020715/lr2057sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812020715/lr2057Isup2.hkl
A solution of 1-ethylimidazole (1.432 g, 14.9 mmol) and 1,3-diiodopropane (2.000 g, 6.8 mmol) in THF (100 ml) was stirred for three days under refluxing, and a precipitate was formed. The product was filtered and washed with THF, and the white powders of 1, 3-dis(N-ethylimidazolium-1-yl)propane iodide was obtained by recrystallization from methanol/diethyl ether. Yield: 2.838 g (86%). Mp: 100–102°C. A suspension of 1, 3-dis(N-ethylimidazolium-1-yl)propane iodide (0.200 g, 0.4 mmol) and silver(I) oxide (0.093 g, 0.4 mmol) in dichloromethane (30 ml) was refluxed for 12 h to give a brown solution. The resulting solution was filtered and concentrated to 8 ml, and then diethyl ether (5 ml) was added to precipitate a white powder [1,3-dis(N-ethylimidazolium-1-yl)propane][Ag2I4]. Yield: 0.216 g (55%). Mp: 178–180°C. Anal. Calcd for C13H22Ag2I4N4: C 16.30, H 2.32, N 5.85%; found: C 16.45, H 2.63, N 5.91%. 1H NMR (400 MHz, DMSO-d6): 1.59 (t, J = 7.2 Hz, 6H, CH3), 1.76 (m, 2H, CH2), 4.62 (q, J = 7.2 Hz, 4H, CH2), 5.82 (t, J = 6.6 Hz, 4H, CH2), 7.80 (s, 2H, imiH), 7.87 (s, 2H, imiH), 9.46 (s, 2H, 2-imiH) (imi = imidazole).
All H atoms were initially located in a difference Fourier map. They were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.96 Å(methyl), 0.97 Å (methylene), 0.93 Å (heterocyclic-ring ) and Uiso(H) set to either 1.2 Ueq(C) or 1.5 Ueq(C).
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Perspective view of the title compound with anisotropic displacement parameters depicting 30% probability. All hydrogen atoms were omitted for clarity. |
(C13H22N4)[Ag2I4] | Z = 2 |
Mr = 957.69 | F(000) = 868 |
Triclinic, P1 | Dx = 2.745 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1202 (18) Å | Cell parameters from 5325 reflections |
b = 11.543 (2) Å | θ = 2.3–27.9° |
c = 12.158 (2) Å | µ = 7.02 mm−1 |
α = 74.677 (3)° | T = 296 K |
β = 70.566 (3)° | Block, light yellow |
γ = 79.903 (3)° | 0.25 × 0.24 × 0.22 mm |
V = 1158.7 (4) Å3 |
Bruker APEXII CCD area-detector diffractometer | 4008 independent reflections |
Radiation source: fine-focus sealed tube | 3692 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
phi and ω scans | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→10 |
Tmin = 0.932, Tmax = 0.987 | k = −13→13 |
5868 measured reflections | l = −14→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0283P)2 + 2.6676P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4008 reflections | Δρmax = 1.05 e Å−3 |
211 parameters | Δρmin = −0.86 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00298 (17) |
(C13H22N4)[Ag2I4] | γ = 79.903 (3)° |
Mr = 957.69 | V = 1158.7 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.1202 (18) Å | Mo Kα radiation |
b = 11.543 (2) Å | µ = 7.02 mm−1 |
c = 12.158 (2) Å | T = 296 K |
α = 74.677 (3)° | 0.25 × 0.24 × 0.22 mm |
β = 70.566 (3)° |
Bruker APEXII CCD area-detector diffractometer | 4008 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3692 reflections with I > 2σ(I) |
Tmin = 0.932, Tmax = 0.987 | Rint = 0.025 |
5868 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.05 e Å−3 |
4008 reflections | Δρmin = −0.86 e Å−3 |
211 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.49679 (5) | 0.38435 (5) | 0.12441 (5) | 0.06103 (15) | |
Ag2 | 0.51160 (6) | 0.13741 (5) | 0.37420 (5) | 0.06227 (15) | |
I1 | 0.60326 (4) | 0.13113 (3) | 0.12542 (3) | 0.04516 (12) | |
I2 | 0.40256 (4) | 0.38216 (3) | 0.37820 (3) | 0.05260 (12) | |
I3 | 0.75335 (4) | 0.51943 (3) | −0.02697 (3) | 0.04661 (12) | |
I4 | 0.71765 (4) | 0.03787 (3) | 0.51764 (3) | 0.05221 (13) | |
N1 | 0.0416 (6) | 0.6747 (4) | 0.6691 (4) | 0.0537 (11) | |
N2 | −0.0555 (5) | 0.7953 (4) | 0.7900 (4) | 0.0409 (9) | |
N3 | 0.0591 (6) | 1.1532 (4) | 0.7756 (4) | 0.0520 (11) | |
N4 | 0.2501 (5) | 1.2543 (4) | 0.7546 (4) | 0.0494 (11) | |
C1 | 0.0810 (13) | 0.6785 (8) | 0.4606 (7) | 0.112 (3) | |
H1A | −0.0160 | 0.7252 | 0.4568 | 0.169* | |
H1B | 0.1122 | 0.6284 | 0.4034 | 0.169* | |
H1C | 0.1598 | 0.7318 | 0.4426 | 0.169* | |
C2 | 0.0617 (12) | 0.6051 (7) | 0.5769 (7) | 0.091 (3) | |
H2A | 0.1523 | 0.5465 | 0.5756 | 0.109* | |
H2B | −0.0290 | 0.5611 | 0.5993 | 0.109* | |
C3 | −0.0752 (7) | 0.7562 (5) | 0.7026 (5) | 0.0535 (14) | |
H3 | −0.1577 | 0.7820 | 0.6704 | 0.064* | |
C4 | 0.0778 (6) | 0.7339 (5) | 0.8119 (6) | 0.0527 (14) | |
H4 | 0.1185 | 0.7415 | 0.8701 | 0.063* | |
C5 | 0.1395 (7) | 0.6616 (5) | 0.7360 (6) | 0.0570 (15) | |
H5 | 0.2323 | 0.6115 | 0.7297 | 0.068* | |
C6 | −0.1652 (7) | 0.8773 (6) | 0.8592 (6) | 0.0639 (17) | |
H6A | −0.2207 | 0.8311 | 0.9368 | 0.077* | |
H6B | −0.2414 | 0.9173 | 0.8182 | 0.077* | |
C7 | −0.0831 (8) | 0.9726 (6) | 0.8771 (6) | 0.0601 (15) | |
H7A | −0.1545 | 1.0129 | 0.9378 | 0.072* | |
H7B | 0.0059 | 0.9340 | 0.9042 | 0.072* | |
C8 | −0.0296 (8) | 1.0630 (6) | 0.7621 (6) | 0.0629 (16) | |
H8A | −0.1194 | 1.1045 | 0.7374 | 0.076* | |
H8B | 0.0367 | 1.0218 | 0.7004 | 0.076* | |
C9 | −0.0017 (7) | 1.2409 (5) | 0.8407 (5) | 0.0556 (14) | |
H9 | −0.1052 | 1.2541 | 0.8859 | 0.067* | |
C10 | 0.1163 (7) | 1.3039 (5) | 0.8267 (5) | 0.0576 (15) | |
H10 | 0.1090 | 1.3694 | 0.8598 | 0.069* | |
C11 | 0.2117 (7) | 1.1627 (5) | 0.7253 (5) | 0.0525 (13) | |
H11 | 0.2805 | 1.1133 | 0.6774 | 0.063* | |
C12 | 0.4114 (8) | 1.2921 (7) | 0.7163 (6) | 0.0737 (19) | |
H12A | 0.4710 | 1.2680 | 0.6421 | 0.088* | |
H12B | 0.4052 | 1.3794 | 0.7009 | 0.088* | |
C13 | 0.4953 (7) | 1.2391 (7) | 0.8069 (7) | 0.0719 (19) | |
H13A | 0.4354 | 1.2606 | 0.8814 | 0.108* | |
H13B | 0.5956 | 1.2697 | 0.7797 | 0.108* | |
H13C | 0.5089 | 1.1529 | 0.8181 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0493 (3) | 0.0654 (3) | 0.0668 (3) | −0.0107 (2) | −0.0207 (2) | −0.0044 (2) |
Ag2 | 0.0636 (3) | 0.0600 (3) | 0.0629 (3) | −0.0068 (2) | −0.0189 (2) | −0.0128 (2) |
I1 | 0.0412 (2) | 0.0478 (2) | 0.0471 (2) | −0.00823 (15) | −0.01187 (15) | −0.01073 (15) |
I2 | 0.0532 (2) | 0.0519 (2) | 0.0513 (2) | −0.00460 (17) | −0.01208 (17) | −0.01417 (17) |
I3 | 0.03871 (19) | 0.0443 (2) | 0.0542 (2) | −0.00964 (14) | −0.01653 (15) | 0.00034 (16) |
I4 | 0.0522 (2) | 0.0540 (2) | 0.0524 (2) | −0.01805 (17) | −0.01913 (17) | −0.00228 (17) |
N1 | 0.059 (3) | 0.051 (3) | 0.051 (3) | −0.009 (2) | −0.016 (2) | −0.010 (2) |
N2 | 0.033 (2) | 0.043 (2) | 0.048 (2) | −0.0121 (18) | −0.0158 (18) | −0.0016 (19) |
N3 | 0.058 (3) | 0.045 (2) | 0.054 (3) | −0.011 (2) | −0.010 (2) | −0.017 (2) |
N4 | 0.057 (3) | 0.047 (2) | 0.045 (3) | −0.014 (2) | −0.017 (2) | −0.004 (2) |
C1 | 0.199 (11) | 0.081 (6) | 0.066 (5) | −0.043 (6) | −0.034 (6) | −0.019 (4) |
C2 | 0.138 (8) | 0.065 (4) | 0.083 (5) | −0.014 (5) | −0.037 (5) | −0.027 (4) |
C3 | 0.057 (3) | 0.056 (3) | 0.059 (3) | −0.012 (3) | −0.035 (3) | −0.004 (3) |
C4 | 0.044 (3) | 0.054 (3) | 0.067 (4) | −0.011 (3) | −0.031 (3) | −0.002 (3) |
C5 | 0.039 (3) | 0.053 (3) | 0.080 (4) | −0.008 (3) | −0.021 (3) | −0.010 (3) |
C6 | 0.042 (3) | 0.074 (4) | 0.070 (4) | −0.021 (3) | 0.003 (3) | −0.021 (3) |
C7 | 0.063 (4) | 0.064 (4) | 0.054 (3) | −0.009 (3) | −0.011 (3) | −0.021 (3) |
C8 | 0.075 (4) | 0.060 (4) | 0.063 (4) | −0.016 (3) | −0.027 (3) | −0.014 (3) |
C9 | 0.051 (3) | 0.057 (3) | 0.059 (3) | −0.005 (3) | −0.009 (3) | −0.024 (3) |
C10 | 0.071 (4) | 0.052 (3) | 0.055 (3) | −0.009 (3) | −0.018 (3) | −0.019 (3) |
C11 | 0.058 (3) | 0.044 (3) | 0.053 (3) | −0.001 (3) | −0.014 (3) | −0.013 (3) |
C12 | 0.073 (5) | 0.084 (5) | 0.064 (4) | −0.034 (4) | −0.019 (3) | −0.002 (4) |
C13 | 0.050 (4) | 0.093 (5) | 0.074 (4) | −0.005 (3) | −0.023 (3) | −0.018 (4) |
Ag1—I3i | 2.8383 (7) | C1—H1C | 0.9600 |
Ag1—I3 | 2.8618 (7) | C2—H2A | 0.9700 |
Ag1—I2 | 2.9089 (9) | C2—H2B | 0.9700 |
Ag1—I1 | 2.9120 (8) | C3—H3 | 0.9300 |
Ag2—I2 | 2.8333 (8) | C4—C5 | 1.327 (9) |
Ag2—I4 | 2.8735 (7) | C4—H4 | 0.9300 |
Ag2—I1 | 2.8749 (8) | C5—H5 | 0.9300 |
Ag2—I4ii | 2.9054 (8) | C6—C7 | 1.529 (8) |
I3—Ag1i | 2.8383 (7) | C6—H6A | 0.9700 |
I4—Ag2ii | 2.9054 (7) | C6—H6B | 0.9700 |
N1—C3 | 1.322 (8) | C7—C8 | 1.495 (9) |
N1—C5 | 1.362 (7) | C7—H7A | 0.9700 |
N1—C2 | 1.491 (8) | C7—H7B | 0.9700 |
N2—C3 | 1.332 (7) | C8—H8A | 0.9700 |
N2—C4 | 1.366 (7) | C8—H8B | 0.9700 |
N2—C6 | 1.460 (7) | C9—C10 | 1.342 (8) |
N3—C11 | 1.332 (7) | C9—H9 | 0.9300 |
N3—C9 | 1.376 (7) | C10—H10 | 0.9300 |
N3—C8 | 1.496 (7) | C11—H11 | 0.9300 |
N4—C11 | 1.333 (7) | C12—C13 | 1.488 (10) |
N4—C10 | 1.376 (7) | C12—H12A | 0.9700 |
N4—C12 | 1.495 (8) | C12—H12B | 0.9700 |
C1—C2 | 1.415 (11) | C13—H13A | 0.9600 |
C1—H1A | 0.9600 | C13—H13B | 0.9600 |
C1—H1B | 0.9600 | C13—H13C | 0.9600 |
I3i—Ag1—I3 | 105.33 (2) | C5—C4—H4 | 125.8 |
I3i—Ag1—I2 | 111.08 (2) | N2—C4—H4 | 125.8 |
I3—Ag1—I2 | 116.87 (2) | C4—C5—N1 | 107.1 (5) |
I3i—Ag1—I1 | 115.75 (2) | C4—C5—H5 | 126.4 |
I3—Ag1—I1 | 106.74 (2) | N1—C5—H5 | 126.4 |
I2—Ag1—I1 | 101.418 (18) | N2—C6—C7 | 112.2 (5) |
I2—Ag2—I4 | 112.83 (2) | N2—C6—H6A | 109.2 |
I2—Ag2—I1 | 104.221 (19) | C7—C6—H6A | 109.2 |
I4—Ag2—I1 | 121.64 (2) | N2—C6—H6B | 109.2 |
I2—Ag2—I4ii | 117.25 (2) | C7—C6—H6B | 109.2 |
I4—Ag2—I4ii | 98.81 (2) | H6A—C6—H6B | 107.9 |
I1—Ag2—I4ii | 102.35 (2) | C8—C7—C6 | 110.0 (5) |
Ag2—I1—Ag1 | 76.825 (17) | C8—C7—H7A | 109.7 |
Ag2—I2—Ag1 | 77.525 (17) | C6—C7—H7A | 109.7 |
Ag1i—I3—Ag1 | 74.67 (2) | C8—C7—H7B | 109.7 |
Ag2—I4—Ag2ii | 81.19 (2) | C6—C7—H7B | 109.7 |
C3—N1—C5 | 108.4 (5) | H7A—C7—H7B | 108.2 |
C3—N1—C2 | 126.4 (6) | C7—C8—N3 | 111.0 (5) |
C5—N1—C2 | 125.2 (6) | C7—C8—H8A | 109.4 |
C3—N2—C4 | 107.0 (5) | N3—C8—H8A | 109.4 |
C3—N2—C6 | 126.4 (5) | C7—C8—H8B | 109.4 |
C4—N2—C6 | 126.1 (5) | N3—C8—H8B | 109.4 |
C11—N3—C9 | 108.1 (5) | H8A—C8—H8B | 108.0 |
C11—N3—C8 | 125.4 (5) | C10—C9—N3 | 107.2 (5) |
C9—N3—C8 | 126.4 (5) | C10—C9—H9 | 126.4 |
C11—N4—C10 | 107.7 (5) | N3—C9—H9 | 126.4 |
C11—N4—C12 | 124.9 (5) | C9—C10—N4 | 107.9 (5) |
C10—N4—C12 | 127.4 (5) | C9—C10—H10 | 126.1 |
C2—C1—H1A | 109.5 | N4—C10—H10 | 126.1 |
C2—C1—H1B | 109.5 | N3—C11—N4 | 109.1 (5) |
H1A—C1—H1B | 109.5 | N3—C11—H11 | 125.4 |
C2—C1—H1C | 109.5 | N4—C11—H11 | 125.4 |
H1A—C1—H1C | 109.5 | C13—C12—N4 | 113.0 (6) |
H1B—C1—H1C | 109.5 | C13—C12—H12A | 109.0 |
C1—C2—N1 | 113.4 (6) | N4—C12—H12A | 109.0 |
C1—C2—H2A | 108.9 | C13—C12—H12B | 109.0 |
N1—C2—H2A | 108.9 | N4—C12—H12B | 109.0 |
C1—C2—H2B | 108.9 | H12A—C12—H12B | 107.8 |
N1—C2—H2B | 108.9 | C12—C13—H13A | 109.5 |
H2A—C2—H2B | 107.7 | C12—C13—H13B | 109.5 |
N1—C3—N2 | 109.0 (5) | H13A—C13—H13B | 109.5 |
N1—C3—H3 | 125.5 | C12—C13—H13C | 109.5 |
N2—C3—H3 | 125.5 | H13A—C13—H13C | 109.5 |
C5—C4—N2 | 108.4 (5) | H13B—C13—H13C | 109.5 |
I2—Ag2—I1—Ag1 | 0.813 (16) | C6—N2—C3—N1 | −174.1 (5) |
I4—Ag2—I1—Ag1 | −127.96 (2) | C3—N2—C4—C5 | 1.8 (6) |
I4ii—Ag2—I1—Ag1 | 123.43 (2) | C6—N2—C4—C5 | 175.1 (5) |
I3i—Ag1—I1—Ag2 | −121.10 (2) | N2—C4—C5—N1 | −2.1 (7) |
I3—Ag1—I1—Ag2 | 122.05 (2) | C3—N1—C5—C4 | 1.6 (7) |
I2—Ag1—I1—Ag2 | −0.783 (16) | C2—N1—C5—C4 | −176.6 (6) |
I4—Ag2—I2—Ag1 | 133.12 (2) | C3—N2—C6—C7 | −137.1 (6) |
I1—Ag2—I2—Ag1 | −0.811 (16) | C4—N2—C6—C7 | 50.9 (8) |
I4ii—Ag2—I2—Ag1 | −113.07 (2) | N2—C6—C7—C8 | 72.4 (7) |
I3i—Ag1—I2—Ag2 | 124.36 (2) | C6—C7—C8—N3 | −176.8 (5) |
I3—Ag1—I2—Ag2 | −114.78 (3) | C11—N3—C8—C7 | 111.0 (7) |
I1—Ag1—I2—Ag2 | 0.792 (16) | C9—N3—C8—C7 | −69.5 (8) |
I3i—Ag1—I3—Ag1i | 0.0 | C11—N3—C9—C10 | 1.0 (7) |
I2—Ag1—I3—Ag1i | −123.85 (3) | C8—N3—C9—C10 | −178.5 (6) |
I1—Ag1—I3—Ag1i | 123.56 (3) | N3—C9—C10—N4 | −0.8 (7) |
I2—Ag2—I4—Ag2ii | 124.61 (3) | C11—N4—C10—C9 | 0.3 (7) |
I1—Ag2—I4—Ag2ii | −110.47 (3) | C12—N4—C10—C9 | −178.5 (6) |
I4ii—Ag2—I4—Ag2ii | 0.0 | C9—N3—C11—N4 | −0.8 (7) |
C3—N1—C2—C1 | 63.8 (11) | C8—N3—C11—N4 | 178.7 (5) |
C5—N1—C2—C1 | −118.4 (9) | C10—N4—C11—N3 | 0.3 (6) |
C5—N1—C3—N2 | −0.4 (6) | C12—N4—C11—N3 | 179.2 (5) |
C2—N1—C3—N2 | 177.7 (6) | C11—N4—C12—C13 | −95.5 (8) |
C4—N2—C3—N1 | −0.8 (6) | C10—N4—C12—C13 | 83.2 (8) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C13H22N4)[Ag2I4] |
Mr | 957.69 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 9.1202 (18), 11.543 (2), 12.158 (2) |
α, β, γ (°) | 74.677 (3), 70.566 (3), 79.903 (3) |
V (Å3) | 1158.7 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 7.02 |
Crystal size (mm) | 0.25 × 0.24 × 0.22 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.932, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5868, 4008, 3692 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.075, 1.04 |
No. of reflections | 4008 |
No. of parameters | 211 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.05, −0.86 |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This project was supported by the National Science Foundation of China (project grant No. 21172172) and the Natural Science Foundation of Tianjin (11JCZDJC22000).
References
Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, W. Z. & Liu, F. H. (2003). J. Organomet. Chem. 673, 5–12. Web of Science CSD CrossRef CAS Google Scholar
Chen, J. H., Zhang, X. Q., Feng, Q. & Luo, M. M. (2006). J. Organomet. Chem. 691, 470–474. Web of Science CrossRef CAS Google Scholar
Leclercq, L. & Schmitzer, A. R. (2009). Supramol. Chem. 21, 245–263. Web of Science CrossRef CAS Google Scholar
Migowski, P. & Dupont, J. (2007). Chem. Eur. J. 13, 32–39. Web of Science CrossRef PubMed CAS Google Scholar
Petkovic, M., Seddon, K. R., Rebelo, L. P. N. & Pereira, C. S. (2011). Chem. Soc. Rev. 40, 1383–1403. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wasserscheid, P. & Keim, W. (2000). Angew. Chem. 112, 3926–3945. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and synthesis of functionalized imidazolium salts are driven by the need for understanding fundamental physical and chemical properties of low melting point salts and modifying them as specific materials (Wasserscheid & Keim, 2000; Migowski & Dupont, 2007). In recent years, the imidazolium salts have been widely studied in ionic liquids (Leclercq & Schmitzer, 2009; Petkovic et al., 2011) and catalytic chemistry (Chen et al., 2006). Herein, we report the preparation and crystal structure of a anionic complex with bis-imidazolium salt, [1,3-bis(N-ethylimidazolium-1-yl)propane][Ag2I4].
The title compound [1,3-dis(N-ethylimidazolium-1-yl)propane][Ag2I4] was prepared via the reaction of 1,3-dis(N-ethylimidazolium-1-yl)propane iodide with silver oxide (Fig. 1). In the cationic unit of title compound, the dihedral angle between two imidazole rings is 49.3 (1)° (Fig. 2). In the anionic unit [Ag2I4]2-, two silver atoms and two iodine atoms formed a nearly coplanar [Ag2I2] moiety (the dihedral angle between I1—Ag1—I2 plane and I1—Ag2—I2 plane is 1.2 (5)°), and other two iodine atoms lie in two sides of the [Ag2I2] plane. Anionic complex [Ag2I4]2- has been reported, and its formation is strongly influenced by the counteraction. Also, the anionic unit [Ag2I4]2- can form one-dimensional polymeric chain [Ag2I4]n2n- via Ag—I bonds (Chen & Liu, 2003). In anion [Ag2I4]2-, each silver atom is surrounded by four iodine atoms to afford a distorted tetrahedral geometry. The I1—Ag1—I2, Ag1—I1—Ag2 and I3—Ag1—I2 bond angles are 101.4 (1)°, 76.8 (2)° and 116.8 (7)°, respectively. The Ag1—I1, Ag1—I2 and Ag1—I3 bond distances are 2.912 (0) Å, 2.908 (9) Å and 2.861 (8) Å, respectively.