metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[3,3′-di­ethyl-1,1′-(propane-1,3-di­yl)di(1H-imidazol-3-ium) [silver(I)-di-μ-iodido-silver(I)-di-μ-iodido]]

aTianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: qxliu@eyou.com

(Received 28 March 2012; accepted 8 May 2012; online 23 May 2012)

The title compound, {(C13H22N4)[Ag2I4]}n, was prepared by reaction of 1,3-bis­(N-ethyl­imidazolium-1-yl)propane iodide with silver (I) oxide. In the 3,3′-diethyl-1,1′-(propane-1,3-di­yl)di(1H-imidazol-3-ium) cation, the dihedral angle between the imidazole rings is 49.3 (1)°. In the [Ag2I4]2− anion, each AgI atom is bonded to three iodide anions, the two AgI atoms and two of the iodides forming Ag2I2 square-planar (r.m.s. deviation = 0.01 Å) units·The remaining two iodides, which are placed on opposite sides of the square, together with their centrosymmetric counterparts, link the square-planar Ag2I2 units into {[Ag2I4]2−}n polymeric chains via Ag—I bonds.

Related literature

For background to the chemistry of imidazolium compounds, see: Wasserscheid & Keim (2000[Wasserscheid, P. & Keim, W. (2000). Angew. Chem. 112, 3926-3945.]); Migowski & Dupont (2007[Migowski, P. & Dupont, J. (2007). Chem. Eur. J. 13, 32-39.]). For some applications of imidazolium salts, see: Leclercq & Schmitzer (2009[Leclercq, L. & Schmitzer, A. R. (2009). Supramol. Chem. 21, 245-263.]); Petkovic et al. (2011[Petkovic, M., Seddon, K. R., Rebelo, L. P. N. & Pereira, C. S. (2011). Chem. Soc. Rev. 40, 1383-1403.]); Chen et al. (2006[Chen, J. H., Zhang, X. Q., Feng, Q. & Luo, M. M. (2006). J. Organomet. Chem. 691, 470-474.]). For other polymeric chain structures formed via Ag—I bonds, see: Chen & Liu (2003[Chen, W. Z. & Liu, F. H. (2003). J. Organomet. Chem. 673, 5-12.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H22N4)[Ag2I4]

  • Mr = 957.69

  • Triclinic, [P \overline 1]

  • a = 9.1202 (18) Å

  • b = 11.543 (2) Å

  • c = 12.158 (2) Å

  • α = 74.677 (3)°

  • β = 70.566 (3)°

  • γ = 79.903 (3)°

  • V = 1158.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.02 mm−1

  • T = 296 K

  • 0.25 × 0.24 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.987

  • 5868 measured reflections

  • 4008 independent reflections

  • 3692 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.04

  • 4008 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.86 e Å−3

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of functionalized imidazolium salts are driven by the need for understanding fundamental physical and chemical properties of low melting point salts and modifying them as specific materials (Wasserscheid & Keim, 2000; Migowski & Dupont, 2007). In recent years, the imidazolium salts have been widely studied in ionic liquids (Leclercq & Schmitzer, 2009; Petkovic et al., 2011) and catalytic chemistry (Chen et al., 2006). Herein, we report the preparation and crystal structure of a anionic complex with bis-imidazolium salt, [1,3-bis(N-ethylimidazolium-1-yl)propane][Ag2I4].

The title compound [1,3-dis(N-ethylimidazolium-1-yl)propane][Ag2I4] was prepared via the reaction of 1,3-dis(N-ethylimidazolium-1-yl)propane iodide with silver oxide (Fig. 1). In the cationic unit of title compound, the dihedral angle between two imidazole rings is 49.3 (1)° (Fig. 2). In the anionic unit [Ag2I4]2-, two silver atoms and two iodine atoms formed a nearly coplanar [Ag2I2] moiety (the dihedral angle between I1—Ag1—I2 plane and I1—Ag2—I2 plane is 1.2 (5)°), and other two iodine atoms lie in two sides of the [Ag2I2] plane. Anionic complex [Ag2I4]2- has been reported, and its formation is strongly influenced by the counteraction. Also, the anionic unit [Ag2I4]2- can form one-dimensional polymeric chain [Ag2I4]n2n- via Ag—I bonds (Chen & Liu, 2003). In anion [Ag2I4]2-, each silver atom is surrounded by four iodine atoms to afford a distorted tetrahedral geometry. The I1—Ag1—I2, Ag1—I1—Ag2 and I3—Ag1—I2 bond angles are 101.4 (1)°, 76.8 (2)° and 116.8 (7)°, respectively. The Ag1—I1, Ag1—I2 and Ag1—I3 bond distances are 2.912 (0) Å, 2.908 (9) Å and 2.861 (8) Å, respectively.

Related literature top

For background to the chemistry of imidazolium compounds, see: Wasserscheid & Keim (2000); Migowski & Dupont (2007). For some applications of imidazolium salts, see: Leclercq & Schmitzer (2009); Petkovic et al. (2011); Chen et al. (2006). For other polymeric chain structures formed via Ag—I bonds, see: Chen & Liu (2003).

Experimental top

A solution of 1-ethylimidazole (1.432 g, 14.9 mmol) and 1,3-diiodopropane (2.000 g, 6.8 mmol) in THF (100 ml) was stirred for three days under refluxing, and a precipitate was formed. The product was filtered and washed with THF, and the white powders of 1, 3-dis(N-ethylimidazolium-1-yl)propane iodide was obtained by recrystallization from methanol/diethyl ether. Yield: 2.838 g (86%). Mp: 100–102°C. A suspension of 1, 3-dis(N-ethylimidazolium-1-yl)propane iodide (0.200 g, 0.4 mmol) and silver(I) oxide (0.093 g, 0.4 mmol) in dichloromethane (30 ml) was refluxed for 12 h to give a brown solution. The resulting solution was filtered and concentrated to 8 ml, and then diethyl ether (5 ml) was added to precipitate a white powder [1,3-dis(N-ethylimidazolium-1-yl)propane][Ag2I4]. Yield: 0.216 g (55%). Mp: 178–180°C. Anal. Calcd for C13H22Ag2I4N4: C 16.30, H 2.32, N 5.85%; found: C 16.45, H 2.63, N 5.91%. 1H NMR (400 MHz, DMSO-d6): 1.59 (t, J = 7.2 Hz, 6H, CH3), 1.76 (m, 2H, CH2), 4.62 (q, J = 7.2 Hz, 4H, CH2), 5.82 (t, J = 6.6 Hz, 4H, CH2), 7.80 (s, 2H, imiH), 7.87 (s, 2H, imiH), 9.46 (s, 2H, 2-imiH) (imi = imidazole).

Refinement top

All H atoms were initially located in a difference Fourier map. They were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.96 Å(methyl), 0.97 Å (methylene), 0.93 Å (heterocyclic-ring ) and Uiso(H) set to either 1.2 Ueq(C) or 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with anisotropic displacement parameters depicting 30% probability. All hydrogen atoms were omitted for clarity.
catena-Poly[3,3'-diethyl-1,1'-(propane-1,3-diyl)di(1H- imidazol-3-ium) [silver(I)-di-µ-iodido-silver(I)-di-µ-iodido]] top
Crystal data top
(C13H22N4)[Ag2I4]Z = 2
Mr = 957.69F(000) = 868
Triclinic, P1Dx = 2.745 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1202 (18) ÅCell parameters from 5325 reflections
b = 11.543 (2) Åθ = 2.3–27.9°
c = 12.158 (2) ŵ = 7.02 mm1
α = 74.677 (3)°T = 296 K
β = 70.566 (3)°Block, light yellow
γ = 79.903 (3)°0.25 × 0.24 × 0.22 mm
V = 1158.7 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4008 independent reflections
Radiation source: fine-focus sealed tube3692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.932, Tmax = 0.987k = 1313
5868 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0283P)2 + 2.6676P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4008 reflectionsΔρmax = 1.05 e Å3
211 parametersΔρmin = 0.86 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00298 (17)
Crystal data top
(C13H22N4)[Ag2I4]γ = 79.903 (3)°
Mr = 957.69V = 1158.7 (4) Å3
Triclinic, P1Z = 2
a = 9.1202 (18) ÅMo Kα radiation
b = 11.543 (2) ŵ = 7.02 mm1
c = 12.158 (2) ÅT = 296 K
α = 74.677 (3)°0.25 × 0.24 × 0.22 mm
β = 70.566 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3692 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.987Rint = 0.025
5868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.04Δρmax = 1.05 e Å3
4008 reflectionsΔρmin = 0.86 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.49679 (5)0.38435 (5)0.12441 (5)0.06103 (15)
Ag20.51160 (6)0.13741 (5)0.37420 (5)0.06227 (15)
I10.60326 (4)0.13113 (3)0.12542 (3)0.04516 (12)
I20.40256 (4)0.38216 (3)0.37820 (3)0.05260 (12)
I30.75335 (4)0.51943 (3)0.02697 (3)0.04661 (12)
I40.71765 (4)0.03787 (3)0.51764 (3)0.05221 (13)
N10.0416 (6)0.6747 (4)0.6691 (4)0.0537 (11)
N20.0555 (5)0.7953 (4)0.7900 (4)0.0409 (9)
N30.0591 (6)1.1532 (4)0.7756 (4)0.0520 (11)
N40.2501 (5)1.2543 (4)0.7546 (4)0.0494 (11)
C10.0810 (13)0.6785 (8)0.4606 (7)0.112 (3)
H1A0.01600.72520.45680.169*
H1B0.11220.62840.40340.169*
H1C0.15980.73180.44260.169*
C20.0617 (12)0.6051 (7)0.5769 (7)0.091 (3)
H2A0.15230.54650.57560.109*
H2B0.02900.56110.59930.109*
C30.0752 (7)0.7562 (5)0.7026 (5)0.0535 (14)
H30.15770.78200.67040.064*
C40.0778 (6)0.7339 (5)0.8119 (6)0.0527 (14)
H40.11850.74150.87010.063*
C50.1395 (7)0.6616 (5)0.7360 (6)0.0570 (15)
H50.23230.61150.72970.068*
C60.1652 (7)0.8773 (6)0.8592 (6)0.0639 (17)
H6A0.22070.83110.93680.077*
H6B0.24140.91730.81820.077*
C70.0831 (8)0.9726 (6)0.8771 (6)0.0601 (15)
H7A0.15451.01290.93780.072*
H7B0.00590.93400.90420.072*
C80.0296 (8)1.0630 (6)0.7621 (6)0.0629 (16)
H8A0.11941.10450.73740.076*
H8B0.03671.02180.70040.076*
C90.0017 (7)1.2409 (5)0.8407 (5)0.0556 (14)
H90.10521.25410.88590.067*
C100.1163 (7)1.3039 (5)0.8267 (5)0.0576 (15)
H100.10901.36940.85980.069*
C110.2117 (7)1.1627 (5)0.7253 (5)0.0525 (13)
H110.28051.11330.67740.063*
C120.4114 (8)1.2921 (7)0.7163 (6)0.0737 (19)
H12A0.47101.26800.64210.088*
H12B0.40521.37940.70090.088*
C130.4953 (7)1.2391 (7)0.8069 (7)0.0719 (19)
H13A0.43541.26060.88140.108*
H13B0.59561.26970.77970.108*
H13C0.50891.15290.81810.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0493 (3)0.0654 (3)0.0668 (3)0.0107 (2)0.0207 (2)0.0044 (2)
Ag20.0636 (3)0.0600 (3)0.0629 (3)0.0068 (2)0.0189 (2)0.0128 (2)
I10.0412 (2)0.0478 (2)0.0471 (2)0.00823 (15)0.01187 (15)0.01073 (15)
I20.0532 (2)0.0519 (2)0.0513 (2)0.00460 (17)0.01208 (17)0.01417 (17)
I30.03871 (19)0.0443 (2)0.0542 (2)0.00964 (14)0.01653 (15)0.00034 (16)
I40.0522 (2)0.0540 (2)0.0524 (2)0.01805 (17)0.01913 (17)0.00228 (17)
N10.059 (3)0.051 (3)0.051 (3)0.009 (2)0.016 (2)0.010 (2)
N20.033 (2)0.043 (2)0.048 (2)0.0121 (18)0.0158 (18)0.0016 (19)
N30.058 (3)0.045 (2)0.054 (3)0.011 (2)0.010 (2)0.017 (2)
N40.057 (3)0.047 (2)0.045 (3)0.014 (2)0.017 (2)0.004 (2)
C10.199 (11)0.081 (6)0.066 (5)0.043 (6)0.034 (6)0.019 (4)
C20.138 (8)0.065 (4)0.083 (5)0.014 (5)0.037 (5)0.027 (4)
C30.057 (3)0.056 (3)0.059 (3)0.012 (3)0.035 (3)0.004 (3)
C40.044 (3)0.054 (3)0.067 (4)0.011 (3)0.031 (3)0.002 (3)
C50.039 (3)0.053 (3)0.080 (4)0.008 (3)0.021 (3)0.010 (3)
C60.042 (3)0.074 (4)0.070 (4)0.021 (3)0.003 (3)0.021 (3)
C70.063 (4)0.064 (4)0.054 (3)0.009 (3)0.011 (3)0.021 (3)
C80.075 (4)0.060 (4)0.063 (4)0.016 (3)0.027 (3)0.014 (3)
C90.051 (3)0.057 (3)0.059 (3)0.005 (3)0.009 (3)0.024 (3)
C100.071 (4)0.052 (3)0.055 (3)0.009 (3)0.018 (3)0.019 (3)
C110.058 (3)0.044 (3)0.053 (3)0.001 (3)0.014 (3)0.013 (3)
C120.073 (5)0.084 (5)0.064 (4)0.034 (4)0.019 (3)0.002 (4)
C130.050 (4)0.093 (5)0.074 (4)0.005 (3)0.023 (3)0.018 (4)
Geometric parameters (Å, º) top
Ag1—I3i2.8383 (7)C1—H1C0.9600
Ag1—I32.8618 (7)C2—H2A0.9700
Ag1—I22.9089 (9)C2—H2B0.9700
Ag1—I12.9120 (8)C3—H30.9300
Ag2—I22.8333 (8)C4—C51.327 (9)
Ag2—I42.8735 (7)C4—H40.9300
Ag2—I12.8749 (8)C5—H50.9300
Ag2—I4ii2.9054 (8)C6—C71.529 (8)
I3—Ag1i2.8383 (7)C6—H6A0.9700
I4—Ag2ii2.9054 (7)C6—H6B0.9700
N1—C31.322 (8)C7—C81.495 (9)
N1—C51.362 (7)C7—H7A0.9700
N1—C21.491 (8)C7—H7B0.9700
N2—C31.332 (7)C8—H8A0.9700
N2—C41.366 (7)C8—H8B0.9700
N2—C61.460 (7)C9—C101.342 (8)
N3—C111.332 (7)C9—H90.9300
N3—C91.376 (7)C10—H100.9300
N3—C81.496 (7)C11—H110.9300
N4—C111.333 (7)C12—C131.488 (10)
N4—C101.376 (7)C12—H12A0.9700
N4—C121.495 (8)C12—H12B0.9700
C1—C21.415 (11)C13—H13A0.9600
C1—H1A0.9600C13—H13B0.9600
C1—H1B0.9600C13—H13C0.9600
I3i—Ag1—I3105.33 (2)C5—C4—H4125.8
I3i—Ag1—I2111.08 (2)N2—C4—H4125.8
I3—Ag1—I2116.87 (2)C4—C5—N1107.1 (5)
I3i—Ag1—I1115.75 (2)C4—C5—H5126.4
I3—Ag1—I1106.74 (2)N1—C5—H5126.4
I2—Ag1—I1101.418 (18)N2—C6—C7112.2 (5)
I2—Ag2—I4112.83 (2)N2—C6—H6A109.2
I2—Ag2—I1104.221 (19)C7—C6—H6A109.2
I4—Ag2—I1121.64 (2)N2—C6—H6B109.2
I2—Ag2—I4ii117.25 (2)C7—C6—H6B109.2
I4—Ag2—I4ii98.81 (2)H6A—C6—H6B107.9
I1—Ag2—I4ii102.35 (2)C8—C7—C6110.0 (5)
Ag2—I1—Ag176.825 (17)C8—C7—H7A109.7
Ag2—I2—Ag177.525 (17)C6—C7—H7A109.7
Ag1i—I3—Ag174.67 (2)C8—C7—H7B109.7
Ag2—I4—Ag2ii81.19 (2)C6—C7—H7B109.7
C3—N1—C5108.4 (5)H7A—C7—H7B108.2
C3—N1—C2126.4 (6)C7—C8—N3111.0 (5)
C5—N1—C2125.2 (6)C7—C8—H8A109.4
C3—N2—C4107.0 (5)N3—C8—H8A109.4
C3—N2—C6126.4 (5)C7—C8—H8B109.4
C4—N2—C6126.1 (5)N3—C8—H8B109.4
C11—N3—C9108.1 (5)H8A—C8—H8B108.0
C11—N3—C8125.4 (5)C10—C9—N3107.2 (5)
C9—N3—C8126.4 (5)C10—C9—H9126.4
C11—N4—C10107.7 (5)N3—C9—H9126.4
C11—N4—C12124.9 (5)C9—C10—N4107.9 (5)
C10—N4—C12127.4 (5)C9—C10—H10126.1
C2—C1—H1A109.5N4—C10—H10126.1
C2—C1—H1B109.5N3—C11—N4109.1 (5)
H1A—C1—H1B109.5N3—C11—H11125.4
C2—C1—H1C109.5N4—C11—H11125.4
H1A—C1—H1C109.5C13—C12—N4113.0 (6)
H1B—C1—H1C109.5C13—C12—H12A109.0
C1—C2—N1113.4 (6)N4—C12—H12A109.0
C1—C2—H2A108.9C13—C12—H12B109.0
N1—C2—H2A108.9N4—C12—H12B109.0
C1—C2—H2B108.9H12A—C12—H12B107.8
N1—C2—H2B108.9C12—C13—H13A109.5
H2A—C2—H2B107.7C12—C13—H13B109.5
N1—C3—N2109.0 (5)H13A—C13—H13B109.5
N1—C3—H3125.5C12—C13—H13C109.5
N2—C3—H3125.5H13A—C13—H13C109.5
C5—C4—N2108.4 (5)H13B—C13—H13C109.5
I2—Ag2—I1—Ag10.813 (16)C6—N2—C3—N1174.1 (5)
I4—Ag2—I1—Ag1127.96 (2)C3—N2—C4—C51.8 (6)
I4ii—Ag2—I1—Ag1123.43 (2)C6—N2—C4—C5175.1 (5)
I3i—Ag1—I1—Ag2121.10 (2)N2—C4—C5—N12.1 (7)
I3—Ag1—I1—Ag2122.05 (2)C3—N1—C5—C41.6 (7)
I2—Ag1—I1—Ag20.783 (16)C2—N1—C5—C4176.6 (6)
I4—Ag2—I2—Ag1133.12 (2)C3—N2—C6—C7137.1 (6)
I1—Ag2—I2—Ag10.811 (16)C4—N2—C6—C750.9 (8)
I4ii—Ag2—I2—Ag1113.07 (2)N2—C6—C7—C872.4 (7)
I3i—Ag1—I2—Ag2124.36 (2)C6—C7—C8—N3176.8 (5)
I3—Ag1—I2—Ag2114.78 (3)C11—N3—C8—C7111.0 (7)
I1—Ag1—I2—Ag20.792 (16)C9—N3—C8—C769.5 (8)
I3i—Ag1—I3—Ag1i0.0C11—N3—C9—C101.0 (7)
I2—Ag1—I3—Ag1i123.85 (3)C8—N3—C9—C10178.5 (6)
I1—Ag1—I3—Ag1i123.56 (3)N3—C9—C10—N40.8 (7)
I2—Ag2—I4—Ag2ii124.61 (3)C11—N4—C10—C90.3 (7)
I1—Ag2—I4—Ag2ii110.47 (3)C12—N4—C10—C9178.5 (6)
I4ii—Ag2—I4—Ag2ii0.0C9—N3—C11—N40.8 (7)
C3—N1—C2—C163.8 (11)C8—N3—C11—N4178.7 (5)
C5—N1—C2—C1118.4 (9)C10—N4—C11—N30.3 (6)
C5—N1—C3—N20.4 (6)C12—N4—C11—N3179.2 (5)
C2—N1—C3—N2177.7 (6)C11—N4—C12—C1395.5 (8)
C4—N2—C3—N10.8 (6)C10—N4—C12—C1383.2 (8)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C13H22N4)[Ag2I4]
Mr957.69
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.1202 (18), 11.543 (2), 12.158 (2)
α, β, γ (°)74.677 (3), 70.566 (3), 79.903 (3)
V3)1158.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)7.02
Crystal size (mm)0.25 × 0.24 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
5868, 4008, 3692
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.04
No. of reflections4008
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.86

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the National Science Foundation of China (project grant No. 21172172) and the Natural Science Foundation of Tianjin (11JCZDJC22000).

References

First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W. Z. & Liu, F. H. (2003). J. Organomet. Chem. 673, 5–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, J. H., Zhang, X. Q., Feng, Q. & Luo, M. M. (2006). J. Organomet. Chem. 691, 470–474.  Web of Science CrossRef CAS Google Scholar
First citationLeclercq, L. & Schmitzer, A. R. (2009). Supramol. Chem. 21, 245–263.  Web of Science CrossRef CAS Google Scholar
First citationMigowski, P. & Dupont, J. (2007). Chem. Eur. J. 13, 32–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPetkovic, M., Seddon, K. R., Rebelo, L. P. N. & Pereira, C. S. (2011). Chem. Soc. Rev. 40, 1383–1403.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWasserscheid, P. & Keim, W. (2000). Angew. Chem. 112, 3926–3945.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds